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Abstract—We study the Simplified Partial Digest Problem (SPDP), which is a mathematical model for a new simplified partial digest

method of genome mapping. This method is easy for laboratory implementation and robust with respect to the experimental errors.

SPDP is NP-hard in the strong sense. We present an Oðn2nÞ time enumerative algorithm (ENUM) and an Oðn2qÞ time dynamic

programming algorithm for the error-free SPDP, where n is the number of restriction sites and q is the number of distinct intersite

distances. We also give examples of the problem in which there are 2
nþ2

3 �1 noncongruent solutions. These examples partially answer a

question recently posed in the literature about the number of solutions of SPDP. We adapt our ENUM for handling SPDP with

imprecise input data. Finally, we describe and discuss the results of the computer experiments with our algorithms.

Index Terms—Algorithm design and analysis, dynamic programming, genome mapping, restriction site analysis, imprecise

information.

Ç

1 INTRODUCTION

A genome of a living organism can be viewed as a DNA
molecule in the form of a double helix consisting of two

strands. This molecule is a chain of nucleotides called
adenine (A), cytosine (C), guanine (G), and thymine (T).
Mathematically, its linear structure can be represented as a
word in the alphabet fA;C;G; Tg. According to the
fundamental law of DNA construction discovered by
Watson and Crick [28], one strand of a DNA molecule
unambiguously determines its second strand.

Linear structure is an important characteristic of a DNA
molecule. At present, it cannot be determined directly by
using physical or chemical measurement methods. The
existing indirect methods usually include three main
hierarchical procedures: mapping, assembling, and sequen-
cing. In a mapping procedure, a DNA molecule is exposed
to specific chemicals called restriction enzymes (ferments).
Enzymes cut DNA molecules at particular patterns of
nucleotides called restriction sites. For example, enzyme
EcoRI cuts at the pattern GAATTC (see Skiena and
Sundaram [26]). During the cutting process, the information
about the location of the restriction sites is lost. The
available information is the multiset of lengths of the cut
fragments (counted in the number of nucleotides between

the corresponding restriction sites). These lengths are
obtained by a gel electrophoresis experiment that is based
on the fact that shorter fragments generate a longer distance
in the gel under the electric current.

Reconstructing the location of restriction sites is the
subject of a mathematical theory called restriction site
analysis; see Setubal and Meidanis [24], Waterman [27], or
Pevzner [22] for details. The input data for restriction site
analysis are the lengths of the cut fragments and appro-
priate information about the cutting (digesting) method.
The most common cutting methods are double digest, where
two restriction enzymes are used (see, for example, [27] or
[22]), and partial digest, where the DNA is cut by one
enzyme but with different reaction times. The inventor of
the partial digest approach was Daniel Nathans, together
with his coworkers (see Danna and Nathans [8] and Danna
et al. [9]), who, in 1978, received the Nobel Prize for his
work on restriction enzymes and restriction mapping. In the
following, we will be concerned with this last approach as
the double digest constructs too many equivalent solutions
(maps); see Waterman [27].

In the classical partial digest approach, a series of
digesting experiments is performed. In the first experiment,
identical copies of a DNA chain, called DNA clones, are
exposed to an enzyme for a sufficiently small time period to
cut them in at most one restriction site. The second reaction
has a little more time allowed in order to obtain two cuts
per clone. Every other experiment takes more time and,
finally, the last one takes a sufficiently long time to cut
clones in every appropriate site. The Partial Digest Problem
(PDP) is a mathematical model that aims to reconstruct the
map of the target DNA based on the DNA fragment lengths
between every two restriction sites. It was studied in the
ideal error-free case and in the case of experimental errors;
see Skiena et al. [25], Skiena and Sundaram [26], Cieliebak
et al. [7], and Cieliebak and Eidenbenz [6]. From the
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combinatorial point of view, the computational complexity
of PDP is yet to be established. This problem was proved to
be NP-hard in the cases of measurement errors [6] and
noisy data [7]. However, a proof of NP-hardness of the
original error-free PDP, as well as a polynomial-time
solution algorithm for it, is not known; see Daurat et al.
[10] and Gerard [15].

The main disadvantage of the partial digest approach is
that the experimental data is very hard to obtain. The
output of the partial digestion is to be a multiset of all
interpoint distances, where the points are the restriction sites
and the ends of the molecule. For n restriction sites, this
multiset must consist of nþ2

2

� �
¼ ðnþ1Þðnþ2Þ

2 fragment lengths.
Pevzner [22] writes that the partial digestion has never been
the favorite mapping method in biological laboratories
because of difficulty in obtaining fragments between every
pair of sites. This is confirmed by the statistical data—experi-
ments using this approach are performed on a rather small
scale for molecules containing less than 20 restriction sites; see
Dudez et al. [13], Keis et al. [18], and Kuwahara et al. [19].

A simplified partial digest method was recently proposed by
Blazewicz et al. [2] to overcome the disadvantage of the
partial digest approach. In this simplified method, one
enzyme is used on two sets of clones of the same DNA
molecule. The corresponding experiment consists of two
parts. In the first part, the time of the chemical reaction is
chosen so that target cloned molecules of the first set are cut
at one restriction site at most. In the second part, the
reaction time span is sufficiently long to cut the cloned
molecules of the second set at all restriction sites. The
beneficial effect of this simplified approach is not only the
reduction of the number of reactions performed but also a
much easier choice of the reaction times—they are either
very short or very long and there is nothing in between.
Experimental data provided by any digesting method can
contain a level of error that is proportional to the total
amount of data produced. From this point of view, the
simplified partial digest method is again beneficial because
it produces less experimental data.

This paper presents new combinatorial algorithms that
can be used in the restriction site analysis based on the
simplified partial digest experiment. The extensive set of
experiments verifies the high efficiency of the proposed
algorithms and their clear advantage over the existing
procedures for realistic practically justified data.

The organization of the paper can be outlined as follows:
A mathematical model for genome mapping based on the
simplified partial digest experiment is described in Sec-
tion 2. The model is called the Simplified Partial Digest

Problem (SPDP). Section 3 presents an enumerative algo-
rithm (ENUM) for SPDP and examples of this problem in
which there are 2

nþ2
3 �1 noncongruent solutions (a definition is

given in Section 2). Section 4 presents a dynamic program-
ming algorithm for SPDP. Algorithm ENUM is adapted to
handle SPDP with measurement errors in Section 5. The
results of the computer experiments with the developed
algorithms are discussed in Section 6. Section 7 contains a
brief summary of the results and suggestions for future
research.

2 SPDP

Let us discuss a mathematical model for genome mapping
based on the simplified partial digest experiment. From the
first and second parts of this experiment, we obtain
multisets A and B, respectively, of molecule fragment
lengths. Let L be the length of the target DNA molecule and
let 1; . . . ; n be the restriction sites to be recognized by the
used enzyme in this molecule. We first assume that the
experiment is error free such that multiset A is comprised of
n pairs faj; L� ajg of positive numbers, where aj is the
length of the fragment including one specified end of the
molecule and restriction site j and L� aj is the length of the
complementary fragment, j ¼ 1; . . . ; n. Furthermore, multi-
set B is comprised of nþ 1 lengths bj of fragments between
every two adjacent points, that is, restriction sites and the
ends of the molecule (see the graphical interpretation in
Fig. 1).

The error-free SPDP can be formulated in terms of
number theory as follows: There is an interval ½0; L�, a
positive integer number n, and two multisets A and B of
positive integer numbers such that

A ¼ faj; L� ajg j j ¼ 1; . . . ; n
� �

;

B ¼ bj j j ¼ 1; . . . ; nþ 1;
Xnþ1

j¼1

bj ¼ L
( )

:

Multiset A contains at most two identical pairs faj; L� ajg.
Identical pairs, if they exist, correspond to the restriction
sites that are symmetric with respect to the middle of the
molecule (see points a2 and a3 in Fig. 1 such that
a2 ¼ L� a3). Each pair faj; L� ajg can be ordered as
ðaj; L� ajÞ or ðL� aj; ajÞ. Assume that each such ordered
pair ðpj; sjÞ is associated with a point pj 2 ½0; L� so that pj
and sj ¼ L� pj are the distances between points 0 and pj
and between points pj and L, respectively.

The multisets A and B satisfy the property that each pair
faj; L� ajg, j ¼ 1; . . . ; n, can be ordered so that the associated
points pj, j ¼ 1; . . . ; n partition the interval ½0; L� into nþ 1
subintervals with interpoint distances constituting the
multiset B, that is, fpjþ1 � pj j j ¼ 0; 1; . . . ; ng ¼ B, where
p0 ¼ 0 and pnþ1 ¼ L.

The problem (SPDP) is concerned with finding a
sequence of points p� ¼ ð0; p�1; . . . ; p�n; LÞ such that

fp�j ; L� p�jg j j ¼ 1; . . . ; n
n o

¼ A

and p�jþ1 � p�j j j ¼ 0; 1; . . . ; n
n o

¼ B;

where p�0 ¼ 0 and p�nþ1 ¼ L.
Notice that SPDP always has a solution (the one

that corresponds to the original DNA). Furthermore, it
may have several solutions. One can be interested in
finding one, several, or all mutually noncongruent
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solutions of SPDP. Two solutions, ð0; p1; p2; . . . ; pn; LÞ
and ð0; p01; p02; . . . ; p0n; LÞ, of SPDP are congruent if and
only if ðp1; . . . ; pnÞ ¼ ðL� p01; L� p02; . . . ; L� p0nÞ, that is,
they are mirror images of each other.

In the real partial digest experiment, different types of
experimental errors may appear. This question will be
discussed in detail in Section 5, where the most serious
error type—measurement errors—will be modeled and
then handled by the use of interval computations (for more
information about the theory of interval computations, see,
for example, Kearfott [17]).

The existing algorithmic results for SPDP include the
following: Blazewicz and Kasprzak [4] proved that error-
free SPDP is NP-hard in the strong sense and presented an
Oðn lognÞ time algorithm for the case where bj 2 f1; 2g,
j ¼ 1; . . . ; nþ 1. ENUMs for the general error-free SPDP
were proposed by Blazewicz et al. [2] and Blazewicz and
Jaroszewski [3]. The complexity of SPDP with errors was
studied in [6] and [7].

A new Oðn2nÞ time algorithm that enumerates all
mutually noncongruent solutions of SPDP is described in
Section 3. An Oðn2qÞ time dynamic programming algorithm
to find one solution of SPDP, where q is the number of
distinct values in the multiset B, is given in Section 3. Later
on, the first algorithm (ENUM) is adapted to handle SPDP
with measurement errors.

3 AN ENUMERATION OF ALL NONCONGRUENT

SOLUTIONS

In this section, we present an algorithm, denoted as ENUM,
which constructs all mutually noncongruent solutions of the
error-free SPDP. The idea of the algorithm is to enumerate
all possible locations of the restriction sites based on the
distance multisets A and B.

Consider the smallest distance in the multiset A. Let it be
a1. A restriction site corresponding to a1 is the closest to one
of the two ends of the molecule. If there is only one pair
fa1; L� a1g 2 A (case 1), then algorithm ENUM constructs
a partial solution p ¼ ð0; a1; �; . . . ; �; LÞ that contains point
a1 2 ½0; L�. Here, � is the symbol that represents empty.
Another possibility for the position of the corresponding
restriction site is the symmetric point L� a1. However,
there is no need to consider solutions containing this point
because, for every such solution, there exists a congruent
solution containing the point a1. If there are two identical
pairs fa1; L� a1g 2 A (case 2), then algorithm ENUM
constructs a partial solution p ¼ ð0; a1; �; . . . ; �; L� a1; LÞ
containing two points a1 and L� a1. The constructed
partial solution generates one interpoint distance a1

(between points 0 and a1) in case 1 and two interpoint
distances a1 (between points 0 and a1 and between points
L� a1 and L) in case 2. The multiset of unused interpoint
distances, that is, B n fa1g in case 1 and B n fa1; a1g in
case 2, is stored with the constructed partial solution p. It
is denoted as BðpÞ. Then, the second smallest distance in
the multiset A is considered. Let it be a2. A restriction site
corresponding to a2 is the second closest to one of the two
ends of the molecule. Assume that the previously
constructed partial solution is p ¼ ð0; a1; �; . . . ; �; LÞ. If
there is one pair fa2; L� a2g 2 A, then algorithm ENUM

extends p by point a2 and verifies whether the interpoint
distance a2 � a1 (between points a1 and a2) belongs to the
multiset BðpÞ. If a2 � a1 2 BðpÞ, then the extended solution
p0 ¼ ð0; a1; a2; �; . . . ; �; LÞ is kept and

Bðp0Þ  BðpÞ n fa2 � a1g:

If a2 � a1 62 BðpÞ, then p0 is discarded. Algorithm ENUM
also extends p by the symmetric point L� a2 and verifies
whether the interpoint distance a2 (between points L� a2

and L) belongs to the multiset BðpÞ. If a2 2 BðpÞ, then the
extended solution p00 ¼ ð0; a1; �; . . . ; �; L� a2; LÞ is kept and
Bðp00Þ :¼ BðpÞ nfa2g. If a2 62 BðpÞ, then p00 is discarded. The
process is repeated for n smallest distances in multiset A.

In algorithm ENUM, Xk denotes the set of partial
solutions of SPDP which have survived the consideration
of the k smallest distances in the multiset A, k ¼ 1; . . . ; n.
Each partial solution from Xk is a sequence of points
ð0; p1; . . . ; ps; �; . . . ; �; pt; . . . ; pn; LÞ such that k points
p1; . . . ; ps and pt; . . . ; pn, where

0 < p1 < . . . < ps < pt < . . . < pn < L;

sþ n� tþ 1 ¼ k, are determined and the remaining n� k
points between points ps and pt are to be determined. The
set Xn contains all mutually noncongruent solutions of
SPDP. As mentioned above, with each partial solution
p ¼ ð0; p1; . . . ; ps; �; . . . ; �; pt; . . . ; pn; LÞ 2 Xk, we associate
multiset BðpÞ of interpoint distances to be used for its
extension to a complete solution of SPDP:

BðpÞ ¼ B n fpj � pj�1 j j ¼ 1; . . . ; s;

j ¼ tþ 1; . . . ; nþ 1g; p0 :¼ 0; pnþ1 :¼ L:

The algorithm can be outlined as follows:

Algorithm ENUM

Step 1. In the multiset A, detect all pairs faj; L� ajg,
j ¼ 1; . . . ; n. Order each pair faj; L� ajg so that the
corresponding ordered pair ðoj; L� ojÞ satisfies
oj � L� oj, j ¼ 1; . . . ; n. Renumber the ordered pairs
such that o1 � � � � � on. Se t X0 ¼ fð0; �; . . . ; �; LÞg,
Bð0; �; . . . ; �; LÞ ¼ B and j ¼ 0.

Step 2. There are four mutually exclusive cases to consider.
Case 1. j � n� 3 and ojþ1 ¼ ojþ2. In this case, compute

Xjþ2 ¼
fð0; p1; . . . ; ps; ojþ1; �; . . . ; �; L� ojþ2; pt; . . . ; pn; LÞ j
p0 ¼ ð0; p1; . . . ; ps; �; . . . ; �; pt; . . . ; pn; LÞ 2 Xj;

ojþ1 � ps 2 Bðp0Þ; pt � Lþ ojþ2 2 Bðp0Þg:

For each p 2 Xjþ2 obtained from p0 2 Xj, calculate
BðpÞ ¼ Bðp0Þ nfojþ1 � ps; pt � Lþ ojþ2g. R e s e t j :¼ jþ 2
and repeat Step 2.

Case 2. j ¼ n� 2 and ojþ1 ¼ ojþ2. Compute

Xn ¼ fð0; p1; . . . ; ps; on�1; L� on; pt; . . . ; pn; LÞ j
p0 ¼ ð0; p1; . . . ; ps; �; �; pt; . . . ; pn; LÞ 2 Xn�2;

on�1 � ps 2 Bðp0Þ; pt � Lþ on 2 Bðp0Þ;
L� ðon�1 þ onÞ 2 Bðp0Þg

and stop.
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Case 3. j � n� 2 and ojþ1 6¼ ojþ2. If this case occurs for

the first time, then set Xj contains a single partial solution

p0 ¼ ð0; p1; . . . ; ps; �; . . . ; �; pn�sþ1; . . . ; pn; LÞwith points sym-

metric with respect to the middle of the interval ½0; L�. If

Case 3 occurs for the first time, in order to avoid congruent

solutions in the set Xn, we calculate

Xjþ1 ¼ fð0; p1; . . . ; ps; ojþ1; �; . . . ; �; pn�sþ1; . . . ; pn; LÞg

containing one partial solution and

BðpÞ ¼ Bðp0Þ nfojþ1 � psg:

We do not need to check ojþ1 � ps 2 Bðp0Þ because error-free

SPDP must have at least one solution.
For other occurrences of Case 3, we calculate

Xjþ1 ¼
n
p ¼ ð0; p1; . . . ; ps; ojþ1; �; . . . ; �; pt; . . . ; pn; LÞ j

p0 ¼ ð0; p1; . . . ; ps; �; . . . ; �; pt; . . . ; pn; LÞ 2 Xj;

ojþ1 � ps 2 Bðp0Þ
o
[n

�p ¼ ð0; p1; . . . ; ps; �; . . . ; �; L� ojþ1; pt; . . . ; pn; LÞ j

p0 ¼ ð0; p1; . . . ; ps; �; . . . ; �; pt; . . . ; pn; LÞ 2 Xj;

pt � Lþ ojþ1 2 Bðp0Þ
o
:

For each p 2 Xjþ1 obtained from p0 2 Xj, calculate BðpÞ ¼
Bðp0Þ nfðojþ1 � psÞg and, for each �p 2 Xjþ1 obtained from

p0 2 Xj, calculate Bð�pÞ ¼ Bðp0Þ n fðpt � Lþ ojþ1Þg. Reset j :

¼ jþ 1 and repeat Step 2.
Case 4. j ¼ n� 1. If Case 3 never occurred, then calculate

Xn ¼ fð0; p1; . . . ; ps; on; pt; . . . ; pn; LÞ j
ð0; p1; . . . ; ps; �; pt; . . . ; pn; LÞ 2 Xn�1g

and stop.
If Case 3 occurred at least once, then calculate

Xn ¼
n
ð0; p1; . . . ; ps; on; pt; . . . ; pn; LÞ j

p0 ¼ ð0; p1; . . . ; ps; �; pt; . . . ; pn; LÞ 2 Xn�1;

on � ps 2 Bðp0Þ; pt � on 2 Bðp0Þ
o
[n

ð0; p1; . . . ; ps; L� on; pt; . . . ; pn; LÞ j

p0 ¼ ð0; p1; . . . ; ps; �; pt; . . . ; pn; LÞ 2 Xn�1;

L� on � ps 2 Bðp0Þ; pt � Lþ on 2 Bðp0Þ
o

and stop.

It is clear that point oj or point L� oj must be present
in every solution of SPDP for each j ¼ 1; . . . ; n. If
oj ¼ ojþ1, then ðoj; L� ojÞ ¼ ðojþ1; L� ojþ1Þ and, hence,
both points oj and ojþ1 must be present in every solution
of SPDP. Algorithm ENUM enumerates all such solutions
and removes those with interpoint distances not from the
multiset B. Therefore, the algorithm is correct. Step 2
determines the time complexity of the algorithm. In
iteration jþ 1 of this step, at most 2jXjj sequences
ð0; p1; . . . ; pn; LÞ are analyzed. Each sequence is analyzed
in a constant time and it can be written to the set Xjþ1 or
the set Xjþ2 in OðnÞ time (if writing each element of a
sequence requires one operation). We have jXjþ1j � 2jXjj,
j ¼ 0; 1; . . . ; n� 1. Since jX0j ¼ 1, we obtain jXjj � 2j,
j ¼ 1; . . . ; n. The time complexity of Step 2 can be
evaluated as Oðn

Pn
j¼1 jXjjÞ ¼ Oðn2nÞ, which is also the

time complexity of ENUM. Its space requirement is
determined by nmax1�i�j�nfjXij þ jXjjg. It can also be
evaluated as Oðn2nÞ.

We now give an example of SPDP for which there are
2
nþ2

3 �1 noncongruent solutions, that is, the cardinality of the
set Xn is exponential in this case. Our example partially
answers a question about the number of solutions of SPDP
posed by Blazewicz et al. [1].

Let n and h be positive integer numbers satisfying
hþ ðhþ 1Þ=2� 1 ¼ n. In our example, the length of the
interval is L ¼ 2ðhþ 1Þ, multiset

A ¼
n
f2j� 1; L� ð2j� 1Þgj j ¼ 1; . . . ; ðhþ 1Þ=2

o
[
n
f2j; L� 2jgj j ¼ 1; . . . ;

hþ 1

2
� 1;

hþ 1

2
þ 1; . . . ; h

o
;

and multiset B consists of h numbers 1, ðhþ 1Þ=2� 1
numbers 2, and one number 3. Noncongruent solutions for
this example are shown in Fig. 2.

In the figure, the 0-1 vector ðy1; . . . ; yhþ1
2
Þ is associated with

the points “�.” A point “�” associated with yj can be placed
either in the position 2j� 1 or in the symmetric position
L� 2jþ 1. In the former case, yj ¼ 0 and, in the latter case,
yj ¼ 1.

Denote by Yhþ1
2

the set of all 0-1 vectors ðy1; . . . ; yhþ1
2
Þ. All

noncongruent solutions of SPDP are determined by the set

Ŷhþ1
2
	 Yhþ1

2
so that there are no two vectors y and y0 in Ŷhþ1

2

satisfying y0j ¼ 1� yj, j ¼ 1; . . . ; ðhþ 1Þ=2. Since jYhþ1
2
j ¼ 2

hþ1
2

and jŶhþ1
2
j ¼ jYhþ1

2
j=2, we obtain jŶhþ1

2
j ¼ 2

hþ1
2 �1 ¼ 2

nþ2
3 �1.

Our example can easily be transformed into an example
in which interpoint distances are all distinct. For these
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purposes, let the picture for the points “j” be symmetric
with respect to the middle, but let the distances between
any two adjacent such points be all distinct in the interval
½0; L=2� ¼ ½0; h� 1�. Let every point “�” partition an interval
between two adjacent points “j” so that all generated
distances are distinct. Furthermore, let the two interpoint
distances between the points h, “�,” and hþ 3 be distinct
and differ from all other interpoint distances. As with the
original example, every point “�” can be placed in one of
the two symmetric positions associated with it. Therefore,
there are 2

nþ2
3 �1 noncongruent solutions for this example.

In Section 4, a dynamic programming algorithm will be
presented for a special case of the error-free SPDP. It will be
tested against ENUM in an extensive computational
experiment in Section 6. Algorithm ENUM will be modified
to cover the case of measurement errors (cf., Section 5 and
tests in Section 6).

4 A DYNAMIC PROGRAMMING ALGORITHM

Dynamic programming is a well-established search techni-
que that has grown out of the operational research tradition.
Other complementary search procedures can be seen in [5].
A basic introduction to the technique can be found in the
tutorial by Dowsland [12] and its importance as a method to
underpin the development of computationally intelligent
systems is presented in the work of Poole et al. [23]. They
say, in the context of Computational Intelligence, that
dynamic programming “deserves attention because it is
important in many optimization problems, particularly
those involving decision making.”

We first consider a special case of the error-free SPDP in
which bj 2 fu; vg, j ¼ 1; . . . ; nþ 1. We denote this special
case as SPDPðu; vÞ and present a dynamic programming
algorithm, denoted as DP, which constructs a solution of
SPDPðu; vÞ in Oðn4Þ time. We stress that algorithm DP
constructs one solution, not all mutually noncongruent
solutions of SPDP. We use the same terminology and
notations as in the algorithm ENUM.

The idea of the algorithm DP is given as follows:
Consider two partial solutions p 2 Xj and p0 2 Xj, see an
example in Fig. 3.

Assume that the number of interpoint distances of each
type u and v is the same in the left part and in the right part
of both partial solutions. Then, 1) the points closest to the
middle of the molecule are the same in p and p0, and 2) the
interpoint distances to be used for the extensions of p and p0

are the same: BðpÞ ¼ Bðp0Þ. Partial solutions from the same
set Xj, which satisfy properties 1 and 2, are said to be in the
same state. Properties 1 and 2 imply that, if one of the two
partial solutions p and p0 can be extended to a complete
solution of SPDPðu; vÞ, then the other partial solution can do
the same. Therefore, if there are several partial solutions in

the same state, then only one of them (arbitrary) can be
considered for further expansion and all others can be
discarded. This selection procedure reduces the cardinality
of the set Xj. A more detailed description of algorithm DP is
given below.

Assume that the ordered pairs ðoj; L� ojÞ of elements
from the multiset A satisfy oj � L� oj, j ¼ 1; . . . ; n, and
o1 � � � � � on. In the algorithm DP, we assign points
associated with the distances o1; . . . ; on to partial solutions
of SPDPðu; vÞ in this order. Given a partial solution
ð0; p1; . . . ; ps; �; . . . ; �; pt; . . . ; pn; LÞ 2 Xj, there are two pos-
sible assignments of points corresponding to the distance
ojþ1: Point ojþ1 is assigned to the position sþ 1 or point
L� ojþ1 is assigned to the position t� 1. If ojþ1 ¼ ojþ2 ¼ o,
then point o is assigned to the position sþ 1 and point L� o
is assigned to the position t� 1.

Any feasible assignment described above can be viewed
as an assignment of at most two interpoint distances, u and
v, to the left part and to the right part of a partial solution.
To facilitate description of our algorithm, we introduce an
operation LRðx1; x2Þ that denotes an assignment of the
interpoint distances x1 and x2 to the left part and to the right
part of a partial solution, respectively. If x1 ¼ � or x2 ¼ �,
then nothing is assigned to the left part or to the right part,
respectively, of the solution under consideration.

A state ðj; lu; lv; ruÞ is associated with each partial
solution ð0; p1; . . . ; ps; �; . . . ; �; pt; . . . ; pn; LÞ 2 Xj. State vari-
ables are defined as follows:

. j is the number of distances oi, i ¼ 1; . . . ; j, con-
sidered so far. These distances generate the same
number j of interpoint distances between the
corresponding points.

. lu ¼ jfpj � pj�1 ¼ u j j ¼ 1; . . . ; sgj is the number of
interpoint distances equal to u in the left part of the
partial solution, where p0 ¼ 0.

. lv ¼ jfpj � pj�1 ¼ v j j ¼ 1; . . . ; sgj is the number of
interpoint distances equal to v in the left part of the
partial solution.

. ru ¼ jfpj � pj�1 ¼ u j j ¼ tþ 1; . . . ; nþ 1gj i s t h e
number of interpoint distances equal to u in the
right part of the partial solution, where pnþ1 ¼ L.

Having j, lu, lv, and ru, we can calculate:

. rv ¼ jfpj � pj�1 ¼ v j j ¼ tþ 1; . . . ; nþ 1gj, which is
the number of interpoint distances equal to v in the
right part of the partial solution. We can compute
rv ¼ j� ðlu þ lv þ ruÞ.

In algorithm DP, we iteratively generate sets Sj of states
ðj; lu; lv; ruÞ, j ¼ 1; . . . ; n. Set Sn is guaranteed to contain a
state corresponding to a complete solution of SPDPðu; vÞ. A
complete solution is recovered by backtracking. Denote
ku ¼ jfj j bj ¼ u; j ¼ 1; . . . ; nþ 1gj and kv ¼ nþ 1� ku. As-
sume, without loss of generality, that ku � kv. The algorithm
can be outlined as follows.

Algorithm DP

Step 1. In the multiset A, detect all pairs faj; L� ajg,
j ¼ 1; . . . ; n. Order each pair faj; L� ajg so that the
corresponding ordered pair ðoj; L� ojÞ satisfies
oj � L� oj, j ¼ 1; . . . ; n. Renumber the ordered pairs
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such that o1 � � � � � on. Initiate set S0 ¼ fð0; 0; 0; 0Þg and
j ¼ 0.

Step 2. For each state ðj; lu; lv; ruÞ 2 Sj, perform the follow-
ing computations: Calculate rv ¼ j� ðlu þ lv þ ruÞ,
Tl ¼ luuþ lvv, and Tr ¼ ruuþ rvv.
With each state ðj; lu; lv; ruÞ 2 Sj, for j 
 1, associate an

indicator variable J 2 f1; . . . ; 12g to be used for the purposes
of recovering a complete solution corresponding to a final
state ðn; lu; lv; ruÞ. Its meaning will be clear from our
description.

There are four mutually exclusive cases to consider:
Case 1. j � n� 3 and ojþ1 ¼ ojþ2. In this case, initiate set

Sjþ2 ¼ �.
If ojþ1 � Tl ¼ u, ojþ2 � Tr ¼ u, and lu þ ru þ 2 � ku, then

add state ðjþ 2; lu þ 1; lv; ru þ 1Þ to the set Sjþ2. With this
state, associate the value J ¼ 1, indicating that it was
obtained by performing operation LRðu; uÞ over the
corresponding partial solution from the set Sj.

I f ojþ1 � Tl ¼ u, ojþ2 � Tr ¼ v, lu þ ru þ 1 � ku, and
lv þ rv þ 1 � kv, then add state ðjþ 2; lu þ 1; lv; ruÞ to Sjþ2.
With this state, associate the value J ¼ 2 identifying
operation LRðu; vÞ.

I f ojþ1 � Tl ¼ v, ojþ2 � Tr ¼ u, lu þ ru þ 1 � ku, and
lv þ rv þ 1 � kv, then add state ðjþ 2; lu; lv þ 1; ru þ 1Þ to
Sjþ2. With this state, associate the value J ¼ 3 identifying
operation LRðv; uÞ.

If ojþ1 � Tl ¼ v, ojþ2 � Tr ¼ v, and lv þ rv þ 2 � kv, then
add state ðjþ 2; lu; lv þ 1; ruÞ to Sjþ2. With this state,
associate the value J ¼ 4 identifying operation LRðv; vÞ.

Case 2. j � n� 2 and ojþ1 6¼ ojþ2. In this case, initiate set
Sjþ1 ¼ �.

If ojþ1 � Tl ¼ u and lu þ ru þ 1 � ku, then add state ðjþ
1; lu þ 1; lv; ruÞ to Sjþ1. With this state, associate the value
J ¼ 5 identifying operation LRðu; �Þ.

If ojþ1 � Tl ¼ v and lv þ rv þ 1 � kv, then add state ðjþ
1; lu; lv þ 1; ruÞ to Sjþ1. With this state, associate the value
J ¼ 6 identifying operation LRðv; �Þ.

If ojþ1 � Tr ¼ u and lu þ ru þ 1 � ku, then add state ðjþ
1; lu; lv; ru þ 1Þ to Sjþ1. With this state, associate the value
J ¼ 7 identifying operation LRð�; uÞ.

If ojþ1 � Tr ¼ v and lv þ rv þ 1 � kv, then add state ðjþ
1; lu; lv; ruÞ to Sjþ1. With this state, associate the value J ¼ 8
identifying operation LRð�; vÞ.

Case 3. j ¼ n� 2 and ojþ1 ¼ ojþ2. In this case, initiate set
Sn ¼ �.

If on�1 � Tl ¼ u, L� ðon�1 þ onÞ ¼ u, L� Tr � on ¼ u, and
lu þ ru þ 3 ¼ ku, then add state ðn; lu þ 3; lv; ruÞ to Sn. With
this state, associate the value J ¼ 1. We can use the same
values of the indicator variable as in Cases 1 and 2 because
j ¼ n and j < n are obviously distinguished by the back-
tracking procedure described in Step 3.

If on�1 � Tl ¼ u, L� ðon�1 þ onÞ ¼ u, L� Tr � on ¼ v, and
lu þ ru þ 2 ¼ ku, then add state ðn; lu þ 2; lv þ 1; ruÞ to Sn.
With this state, associate the value J ¼ 2.

If on�1 � Tl ¼ u, L� ðon�1 þ onÞ ¼ v, L� Tr � on ¼ u, and
lu þ ru þ 2 ¼ ku, then add state ðn; lu þ 2; lv þ 1; ruÞ to Sn.
With this state, associate the value J ¼ 3.

If on�1 � Tl ¼ u, L� ðon�1 þ onÞ ¼ v, L� Tr � on ¼ v, and
lu þ ru þ 1 ¼ ku, then add state ðn; lu þ 1; lv þ 2; ruÞ to Sn.
With this state, associate the value J ¼ 4.

If on�1 � Tl ¼ v, L� ðon�1 þ onÞ ¼ u, L� Tr � on ¼ u, and
lu þ ru þ 2 ¼ ku, then add state ðn; lu þ 2; lv þ 1; ruÞ to Sn.
With this state, associate the value J ¼ 5.

If on�1 � Tl ¼ v, L� ðon�1 þ onÞ ¼ u, L� Tr � on ¼ v, and
lu þ ru þ 1 ¼ ku, then add state ðn; lu þ 1; lv þ 2; ruÞ to Sn.
With this state, associate the value J ¼ 6.

If on�1 � Tl ¼ v, L� ðon�1 þ onÞ ¼ v, L� Tr � on ¼ u, and
lu þ ru þ 1 ¼ ku, then add state ðn; lu þ 1; lv þ 2; ruÞ to Sn.
With this state, associate the value J ¼ 7.

If on�1 � Tl ¼ v, L� ðon�1 þ onÞ ¼ v, L� Tr � on ¼ v, and
lu þ ru ¼ ku, then add state ðn; lu; lv þ 3; ruÞ to Sn. With this
state, associate the value J ¼ 8.

Case 4. j ¼ n� 1. In this case, initiate set Sn ¼ �.
If on � Tl ¼ u, L� Tr � on ¼ u, and lu þ ru þ 2 ¼ ku, then

add state ðn; lu þ 1; lv; ru þ 1Þ to Sn. With this state, associate
the value J ¼ 9. Here, we need a new value of the indicator
variable to distinguish between Cases 3 and 4 when
considering a final state from the set Sn in the backtracking
procedure.

If on � Tl ¼ u, L� Tr � on ¼ v, and lu þ ru þ 1 ¼ ku, then
add state ðn; lu þ 1; lv; ruÞ to Sn. With this state, associate the
value J ¼ 10.

If on � Tl ¼ v, L� Tr � on ¼ u, and lu þ ru þ 1 ¼ ku, then
add state ðn; lu; lv þ 1; ru þ 1Þ to Sn. With this state, associate
the value J ¼ 11.

If on � Tl ¼ v, L� Tr � on ¼ v, and lu þ ru ¼ ku, then add
ðj; lu; lv þ 1; ruÞ to Sn. With this state, associate the value
J ¼ 12.

If L� on � Tl ¼ u, on � Tr ¼ u, and lu þ ru þ 2 ¼ ku, then
add state ðn; lu þ 1; lv; ru þ 1Þ to Sn. With this state, associate
the value J ¼ 9.

If L� on � Tl ¼ u, on � Tr ¼ v, and lu þ ru þ 1 ¼ ku, then
add state ðn; lu þ 1; lv; ruÞ to Sn. With this state, associate the
value J ¼ 10.

If L� on � Tl ¼ v, on � Tr ¼ u, and lu þ ru þ 1 ¼ ku, then
add state ðn; lu; lv þ 1; ru þ 1Þ to Sn. With this state, associate
the value J ¼ 11.

If L� on � Tl ¼ v, on � Tr ¼ v, and lu þ ru ¼ ku, then add
ðj; lu; lv þ 1; ruÞ to Sn. With this state, associate the value
J ¼ 12.

If all states from Sj are considered, reset j :¼ jþ 1. If
j ¼ n, then perform Step 3. Otherwise, repeat Step 2.

Step 3. Select any state ðn; lu; lv; ruÞ 2 Sn and backtrack to
determine the corresponding solution of SPDPðu; vÞ.
In the first iteration of the backtracking procedure, if J ¼

1 is associated with a state ðn; lu; lv; ruÞ 2 Sn, then we know
that this state was obtained from the state ðn� 2; lu �
3; lv; ruÞ 2 Sn�2 by assigning three interpoint distancs u to
the left part of the corresponding partial solution. Other
values of J are similarly analyzed.

In iteration i 
 2 of the backtracking procedure, if J ¼ 1
is associated with a state ði; lu; lv; ruÞ 2 Si, then we know
that this state was obtained from the state ði� 2; lu �
1; lv; ru � 1Þ 2 Si�2 by assigning interpoint distances u to the
left part and the right part of the corresponding partial
solution. Other values of J are similarly analyzed. The
procedure terminates when a complete solution of
SPDPðu; vÞ is recovered.

Similarly to algorithm ENUM, Step 2 determines the

time complexity of algorithm DP. The time complexity of
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this step can be evaluated as Oð
Pn

j¼1 jSjjÞ. Since lu � ku,

lv � kv, and ru � ku, we have jSjj � Oðk2
ukvÞ, j ¼ 1; . . . ; n.

Therefore, Step 2 requires Oðnk2
ukvÞ ¼ Oðn4Þ operations,

giving us the overall time complexity of algorithm DP. Its

space requirement is determined by
Pn

j¼1 jSjj because we

store the indicator variable J with each state. Thus, the

space requirement of algorithm DP is also Oðn4Þ. Notice

that n4 � 2n for n 
 16. Therefore, algorithm DP should be

much more efficient than ENUMs with runtime Oð2nÞ for

SPDPðu; vÞ with a large number of restriction sites.
Algorithm DP is justified by the following theorem:

Theorem 1. If state ðj; lu; lv; ruÞ is associated with a partial

solution that can be extended to a complete solution of

SPDPðu; vÞ, then any partial solution in this state can be

extended to a complete solution of SPDPðu; vÞ.
Proof. Assume that a partial solution p ¼
ð0; p1; . . . ; ps; �; . . . ; �; pt; . . . ; pn; LÞ 2 Xj associated with
state ðj; lu; lv; ruÞ 2 Sj can be extended to a
complete solution �p ¼ ð0; p1; . . . ; pn; LÞ 2 Xn of pro-
b l e m SPDPðu; vÞ b y a s s i g n i n g d i s t a n c e s
psþ1; . . . ; pt�1. Consider another partial solution
p0 ¼ ð0; p01; . . . ; p0s0 ; �; . . . ; �; p0t0 ; . . . ; p0n; LÞ 2 Xj i n t h e
same state ðj; lu; lv; ruÞ. Notice that s0 ¼ s ¼ lu þ lv
and t0 ¼ t ¼ ru þ rv.

For both partial solutions p and p0, the corresponding
values Tl and Tr are the same. Furthermore, the same
number of interpoint distances u and the same number of
interpoint distances v are present in both solutions.
Therefore, partial solution p0 can be extended to a complete
solution �p0 ¼ ð0; p01; . . . ; p0s; psþ1; . . . ; pt�1; p

0
t; . . . ; p0n; LÞ 2

Xn in the same way as p. In this extension, new
assignments will generate the same multiset of interpoint
distances as in the extension of the partial solution p.
Hence, if �p is a solution of SPDPðu; vÞ, then �p0 is a
solution of this problem as well. tu

It is clear that partial solution ð0; �; . . . ; �; LÞ 2 X0

associated with the state ð0; 0; 0; 0Þ 2 S0 can be extended to
a complete solution of SPDPðu; vÞ. Then, we can iteratively
apply Theorem 1 to demonstrate that algorithm DP finds a
solution of SPDPðu; vÞ.

Algorithm DP can be modified to solve error-free SPDP
with any number q of distinct interpoint distances bj,
j ¼ 1; . . . ; nþ 1, which we denote as SDPðu1; . . . ; uqÞ. Here,
u1; . . . ; uq are all distinct values in the multiset B.

In the modified algorithm, a state ðj; l1; . . . ; lq; r1; . . . ; rq�1Þ
with 2q state variables will be associated with a partial
solution. Here, j is the number of smallest distances in the
multiset A considered so far. Also, li and ri are the numbers
of interpoint distances equal to ui in the left part and the
right part of the partial solution, respectively. We can
calculate rq ¼ j� ðl1 þ . . .þ lq þ r1 þ . . .þ rq�1Þ.

The time and space requirements of the modified
algorithm can be evaluated as Oðn2qÞ for a given q. They
are polynomial if q is a constant. In the modified algorithm,
we will need q3 þ q2 different values of the indicator
variable because, in Case 3, each of the three last interpoint
distances (left, middle, and right) can take any of the

q values bj and, in Case 4, each of the two last interpoint
distances can take any of these values.

5 MEASUREMENT ERRORS

In the literature, three main types of errors are discussed,
which can affect the input data for a digesting method; see,
for example, Dix and Kieronska [11], Inglehart and Nelson
[16], and Wright et al. [29]. Errors of the first type are caused
by the imprecise measurement of the lengths of the cut
fragments. According to Marra et al. [21], the relative
deviation of 5 percent from the true fragment length can be
guaranteed in a biochemical experiment (it was within
1.5 percent for 95 percent of fragments with lengths
between 600 and 12,000 base pairs in a specific experiment).
Errors of the second type, which are called negative errors,
are due to the loss of information about some fragments.
Recall that the length determination experiment is con-
ducted on a sufficiently large number of DNA clones and a
particular fragment length is accepted if the quantity of the
corresponding fragments exceeds a given threshold. A
negative error can occur when there are two fragments of
almost the same length such that they cannot be distin-
guished in the experiment. It can also occur when some
small fragments are lost because they are too speedy and
cannot be traced. Finally, certain sites can be less likely to be
cut than others and the quantity of the corresponding
fragments can be insufficient for accepting their lengths.
Errors of the third type, called positive errors, appear when
an enzyme erroneously cuts a DNA molecule at a place that
is similar to but not the same as the restriction site
associated with this enzyme. They can also appear when
some unrelated material is occasionally added to the gel. In
this case, we may obtain some fragments that do not belong
to the target DNA. Moreover, a clone can be cut in more
than one restriction site in the short digestion reaction.

When an error of the second or third type occurs in the
simplified partial digest experiment, it can be identified and
sometimes corrected as follows: If there is a large length aj
and no small complementary length L� aj in the
multiset A, then we can deduce that the fragment of the
length L� aj was lost in the experiment. If there are more
than two identical pairs faj; L� ajg in the multiset A, then
we know that only two of them can correspond to the
symmetric restriction sites and the other pairs are obtained
erroneously. Several positive errors can be recognized
during the phase of gel electrophoresis, where the fragment
lengths are measured—simply, the erroneous fragments
will occur in negligible amounts.

Measurement errors of the first type are difficult to avoid
in any digesting experiment. In this section, we describe an
adaptation of algorithm ENUM for the case when distances
in the multisets A and B are measured with the guaranteed
relative error r. Then, this algorithm will construct an
approximate solution with interpoint distances being with-
in a � distance from corresponding interpoint distances of
an error-free SPDP solution. If an instance of error-free
SPDP has more than one feasible solution, the algorithm
will find one approximate solution for every feasible
solution of this instance.
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Specifically, we assume that there are given multi-
sets A0 ¼ fa0j j j ¼ 1; . . . ; 2ng and B0 ¼ fb0j j j ¼ 1; . . . ; nþ
1;
Pnþ1

j¼1 b
0
j ¼ L0g such that there exists a DNA molecule with

a multiset A ¼ faj j j ¼ 1; . . . ; 2ng of true distances between
the restriction sites and the two ends of the molecule and a
multiset B ¼ fbj j j ¼ 1; . . . ; nþ 1;

Pnþ1
j¼1 bj ¼ Lg of true

interpoint distances, which satisfy

ja0j � ajj
aj

� r; j ¼ 1; . . . ; 2n;

and
jb0j � bjj
bj

� r; j ¼ 1; . . . ; nþ 1

ð1Þ

for a given relative error r, 0 < r < 1. Notice that there may
exist several distinct molecules satisfying this property for
the same multisets A0 and B0.

Let P � be the set of all mutually noncongruent
solutions of the error-free SPDP with the multisets A
and B, where each p� 2 P � is a sequence of increasing
points in the interval ½0; L�, p� ¼ ðp�0; p�1; . . . ; p�n; p

�
nþ1Þ,

p�0 ¼ 0, and p�nþ1 ¼ L.
Given multisets A0 and B0 and a point sequence

p� 2 P �, a ð�; p�Þ-approximate solution to the problem
(SPDP) with measurement errors is a point sequence p0 ¼
ðp00; p01; . . . ; p0n; p

0
nþ1Þ such that

max
jp0j�p�j j
p�j

;
jðp0nþ1�p0jÞ�ðp�nþ1�p�j Þj

p�nþ1�p�j

(

jðp0jþ1�p0jÞ�ðp�jþ1�p�j Þj
p�jþ1�p�j

)
� �; j ¼ 0; 1; . . . ; n:

For SPDP with measurement errors, we adapt algorithm

ENUM to work with intervals rather than with single

numbers. Given relative error r, an interval ½ 1
1þr a

0
j;

1
1�r a

0
j� is

associated with each a0j 2 A0 and an interval ½ 1
1þr b

0
j;

1
1�r b

0
j� is

associated with each b0j 2 B0. This choice of the intervals

guarantees that if aj 2 A and bj 2 B are true interpoint

distances satisfying (1), then aj 2 ½ 1
1þr a

0
j;

1
1�r a

0
j� and

bj 2 ½ 1
1þr b

0
j;

1
1�r b

0
j�, that is, the true interpoint distances are

inside the chosen intervals.
We denote the adapted algorithm as Interval-ENUM. In

this algorithm, we use the operation of summation of two

intervals i ¼ ½a; b�, a � b, and g ¼ ½c; d�, c � d, which is

defined as iþ g ¼ ½aþ c; bþ d�. This definition is in accor-

dance with the theory of interval computations; see, for

example, Kearfott [17].

A l g o r i t h m I n t e r v a l - E N U M c o n s t r u c t s a

ð 2r
1�r ; p

�Þ-approximate solution for each p� 2 P �. As in algo-

rithm ENUM, we construct sets X0k, k ¼ 1; . . . ; n, of partial

interval solutions, where a partial interval solution fromX0k is a

sequence of intervals i ¼ ði0; i1; . . . ; is; �; . . . ; �; it; . . . ; inþ1Þ,
sþ n� tþ 1 ¼ k, i0 ¼ inþ1 ¼ ½0; 0�. Let us introduce multi-

set I :¼ f½ 1
1þr b;

1
1�r b� j b 2 B0g. With each partial solution i, a

multiset of unused intervals IðiÞ 	 I is stored whose precise

definition will be clear from the description of the

algorithm.

Let a01 � � � � � a02n. In the first iteration of algorithm

Interval-ENUM, we assign the interval y1 :¼ ½ 1
1þr a

0
1;

1
1�r a

0
1�

to the left part of the molecule and find a multiset B1 of

b 2 I such that i1ðbÞ :¼ ði0 þ bÞ \ y1 ¼ b \ y1 6¼ �. We set

X01 ¼ fði0; i1ðbÞ; �; . . . ; �; inþ1Þ j b 2 B1g. Thus, if there exists

a partial solution p ¼ ð0; a1; �; . . . ; �; LÞ to the error-free

SPDP with distance multisets A and B, then a1 2 i1ðbÞ for

b 2 B1. We do not consider assignment of the interval y1 to

the right part of the molecule to avoid congruent solutions.

Furthermore, since we work with imprecise data, we do not

separately consider the case of several identical intervals y1.
In the second iteration, we consider assignments of the

interval y2 :¼ ½ 1
1þr a

0
2;

1
1�r a

0
2� to the left part and to the right part

of the molecule for each i ¼ ði0; i1; �; . . . ; �; inþ1Þ 2 X01. An

assignment to the left part is accepted if ði1 þ b0Þ \ y2 6¼ � for

some b0 2 IðiÞ; see Fig. 4 for a graphical interpretation.
Similarly, an assignment to the right part is accepted if

ðinþ1 þ b00Þ \ y2 ¼ b00 \ y2 6¼ � for some b00 2 IðiÞ. Here,

there is a small difference from algorithm ENUM, namely,

the distance to the interval assigned to the right part of the

molecule is counted from the right end of the molecule. In

algorithm ENUM, the corresponding distance was L� a2,

that is, it was counted from the left end of the molecule.
Set X0n is such that, for each solution p� 2 P � of the error-

free SPDP, there exists a sequence of intervals i� ¼
ði�0; i�1; . . . ; i�nþ1Þ 2 X0n satisfying the following two properties:

BLAZEWICZ ET AL.: THE SIMPLIFIED PARTIAL DIGEST PROBLEM: ENUMERATIVE AND DYNAMIC PROGRAMMING ALGORITHMS 675

Fig. 4. Assignments of the interval y2 ¼ ½ 1
1þr a

0
2;

1
1�r a

0
2�.

Authorized licensed use limited to: Politechnika Poznanska. Downloaded on April 21, 2009 at 05:09 from IEEE Xplore.  Restrictions apply.



. p�j 2 i�j f o r j ¼ 0; 1; . . . ; s a n d L� p�j 2 i�j f o r
j ¼ sþ 1; . . . ; nþ 1, where i�s is the last interval
assigned to the left part of the molecule and

. p�j � p�j�1 2 b0j, j ¼ 1; . . . ; nþ 1, where

fb01; . . . ;b0nþ1g ¼ I:

By the construction of intervals i�j , any point sequence p0 ¼
ðp00; p01; . . . ; p0n; p

0
nþ1Þ that satisfies the above properties (when

substituting p0 instead of p�) is a ð 2r
1�r ; p

�Þ-approximate

solution for SPDP with measurement errors. Such a point

sequence p0 is constructed for each i 2 X0n in Step 4 of

algorithm Interval-ENUM. The algorithm can be formally

described as follows.

Algorithm Interval-ENUM

Step 1. Order numbers in the multiset A0 so that

a01 � � � � � a02n. Introduce intervals yj ¼ ½ 1
1þr a

0
j;

1
1�r a

0
j�,

j ¼ 1; . . . ; n, and the mul t i se t o f in terva ls

I ¼ f½ 1
1þr b;

1
1�r b� j b 2 B0g. Calculate L0 ¼

Pnþ1
j¼1 b

0
j. Set

X00 ¼ fði0; �; . . . ; �; inþ1Þg, w h e r e i0 ¼ inþ1 ¼ ½0; 0�,
Bði0; �; . . . ; �; inþ1Þ ¼ I, and j ¼ 0.

Step 2 (the case j � n� 2). If j ¼ n� 1, go to Step 3. Otherwise,

perform the following computations. For each partial

solution i0 ¼ ði0; i1; . . . ; is; �; . . . ; �; it; . . . ; inþ1Þ 2 X0j, find

a multiset B1 of intervals b 2 Iði0Þ such that isþ1ðbÞ :¼
ðis þ bÞ \ yjþ1 6¼ � and, if j 
 1, a multiset B2 of intervals

b 2 Iði0Þ such that it�1ðbÞ :¼ ðit þ bÞ \ yjþ1 6¼ �. With

each interval isþ1ðbÞ and it�1ðbÞ, store the corresponding

interval b by setting Lðisþ1ðbÞÞ :¼ b and Rðit�1ðbÞÞ :¼ b,

respectively.
If j ¼ 0, set B2 ¼ �. The case j ¼ 0 is treated separately to

avoid congruent solutions. Calculate

X0jþ1 ¼ fði0; i1; . . . ; is; isþ1ðbÞ; �; . . . ; �; it; . . . ; inþ1Þ j
i0 2 X0j;b 2 B1g [

fði0; i1; . . . ; is; �; . . . ; �; it�1ðbÞ; it; . . . ; inþ1Þ j
i0 2 X0j;b 2 B2g:

For each i 2 X0jþ1 obtained from i0 2 X0j and b 2 Iði0Þ,
calculate IðiÞ ¼ Iði0Þ nfbg.

Reset j :¼ jþ 1 and repeat Step 2.

Step 3 (the case j ¼ n� 1). Set X0n ¼ �. For each partial

s o l u t i o n i0 ¼ ði0; i1; . . . ; is; �; it; . . . ; inþ1Þ 2 X0n�1, l e t

Iði0Þ ¼ fb1;b2g.
If isþ1ðb1Þ :¼ ðis þ b1Þ \ yn 6¼ � and

ðisþ1ðb1Þ þ b2 þ itÞ \
1

1þ r L
0;

1

1� rL
0

� �
6¼ �;

then set X0n :¼ X0n [ fi ¼ ði0; i1; . . . ; is; isþ1ðb1Þ; it; . . . ; inþ1Þg.
Store the number nLðiÞ :¼ sþ 1 of intervals assigned to the

left part of the molecule corresponding to i.
The last interval assigned to the left part is specific in that

we store the interval from Iði0Þ, which was used for

checking the acceptability on the right of it, by setting

Rðisþ1ðb1ÞÞ :¼ b2 in the considered case.
If isþ1ðb2Þ :¼ ðis þ b2Þ \ yn 6¼ � and

ðisþ1ðb2Þ þ b1 þ itÞ \
1

1þ rL
0;

1

1� rL
0

� �
6¼ �;

then set

X0n :¼ X0n [ fi ¼ ði0; i1; . . . ; is; isþ1ðb2Þ; it; . . . ; inþ1Þg; nLðiÞ :
¼ sþ 1

and Rðisþ1ðb2ÞÞ :¼ b1.
If it�1ðb1Þ :¼ ðit þ b1Þ \ yn 6¼ � and

ðit�1ðb1Þ þ b2 þ isÞ \
1

1þ rL
0;

1

1� rL
0

� �
6¼ �;

then set X0n :¼ X0n [ fi ¼ ði0; i1; . . . ; is; it�1ðb1Þ; it; . . . ; inþ1Þg,
nLðiÞ :¼ s and RðisÞ :¼ b2.

If it�1ðb2Þ :¼ ðit þ b2Þ \ yn 6¼ � and

ðit�1ðb2Þ þ b1 þ isÞ \
1

1þ rL
0;

1

1� rL
0

� �
6¼ �;

then set X0n :¼ X0n [ fi ¼ ði0; i1; . . . ; is; it�1ðb2Þ; it; . . . ; inþ1Þg,
nLðiÞ :¼ s, and RðisÞ :¼ b1.

Step 4. For each i ¼ ði0; i1; . . . ; in; inþ1Þ 2 X0n, i0 ¼ inþ1 ¼ ½0; 0�,
perform the following computations: Let ½cj; dj� :¼ ij,
j ¼ 1; . . . ; n, s :¼ nLðiÞ, ½vj; wj� :¼ LðijÞ, j ¼ 1; . . . ; s,
½vj; wj� :¼ RðijÞ, j ¼ sþ 1; . . . ; n, and ½vnþ1; wnþ1� :¼ RðisÞ.
Construct an increasing point sequence

pðiÞ ¼ ðp0; p1; . . . ; pnþ1Þ, where p0 ¼ 0, which is an approx-
imate solution to SPDP with measurement errors. Introduce
positive integer variables x1; . . . ; xnþ1. Points pj,
j ¼ 1; . . . ; nþ 1, are determined from pj � pj�1 ¼ xj,
j ¼ 1; . . . ; s, pjþ1 � pj ¼ xj, j ¼ sþ 1; . . . ; n, a n d
xnþ1 ¼ psþ1 � ps. Variables xj, j ¼ 1; . . . ; nþ 1, represent a
solution to the following system of inequalities:

vj � xj � wj; j ¼ 1; . . . ; nþ 1;

cj �
Xj
h¼1

xh � dj; j ¼ 1; . . . ; s;

cj �
Xn
h¼j

xh � dj; j ¼ sþ 1; . . . ; n;

1

1þ r L
0 �

Xnþ1

h¼1

xh �
1

1� rL
0:

There are standard integer programming algorithms to
solve the above system of inequalities.

Output set fpðiÞ j i 2 X0ng, which contains a
ð 2r

1�r ; p
�Þ-approximate solution for each p� 2 P �.

Similarly to the above adaptation of algorithm ENUM,
our dynamic programming algorithm DP can be used for
finding an approximate solution of the general case of the
error-free SPDP and the problem with measurement errors.
The idea is to round input data of the problem so that the
number of distinct rounded interpoint distances is suffi-
ciently small to apply a modification of algorithm DP
efficiently. More specifically, nþ 1 interpoint distances
from the multiset B can be partitioned into several groups,
say, q groups, so that a relative or absolute deviation
between distances in the same group does not exceed a
given value. Then, we can reset distances in the same group
to be equal to the average distance in this group and, as a
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result, obtain the number of distinct interpoint distances
equal to the number of the groups q. Algorithm DP can be
modified for interval computations as follows: While
considering oj 2 A, an assignment of a rounded interpoint
distance b 2 B to the left part of the molecule is accepted if
the sum of the rounded interpoint distances assigned to the
left part so far deviates from oj within a specified range. A
similar rule can be applied for the assignment of a rounded
interpoint distance to the right part of the molecule. A
detailed implementation of this approach is not straightfor-
ward and represents a direction for future research.

6 EXPERIMENTS

In this section, we present the results of computer
experiments with algorithms ENUM, DP, Interval-ENUM,
and their comparison with the results of Skiena and
Sundaram [26] for PDP and with the results of Blazewicz
et al. [2] for SPDP. We denote the algorithm of Skiena and
Sundaram [26] as Pyramid-PDP and the algorithm of
Blazewicz et al. [2] as First-SPDP. Algorithms ENUM,
Interval-ENUM, and DP were implemented in Borland C++
Builder 6, and the tests were run on a portable PC with an
Intel Pentium M 2 GHz processor and 480 Mbytes of RAM
under Windows XP. Large-scale instances with bigger
memory requirements were run on a single processor of a
Sun SunFire 6800 supercomputer. All random numbers in
our experiments were generated by using uniform distribu-
tion. Tests of the algorithm Pyramid-PDP were run on a Sun
Sparcstation 2 and those of the algorithm First-SPDP on a
PC with Celeron 420 MHz processor and 64 Mbytes of
RAM; see [26] and [2].

6.1 Error-Free Data

In the first set of experiments, algorithms ENUM and DP
were run for fixed n ¼ 1; 000 and various values of q. Given
q, we randomly generated distinct interpoint distances
ui 2 ð100; 2;000Þ, i ¼ 1; . . . ; q. Let ki denote the number of
interpoint distances equal to ui, i ¼ 1; . . . ; q. We randomly
generated these numbers such that

Pq
i¼1 ki ¼ nþ 1. With

numbers ui and ki, i ¼ 1; . . . ; q, the multiset B is fully

determined. We assumed that oj ¼
Pj

i¼1 bi represents the
distance between point 0 and a point corresponding to
restriction site j in a DNA chain. The multiset A was
generated accordingly. Given n ¼ 1;000, algorithms ENUM
and DP were run on 100 instances for every value of q.
Corresponding values of average runtimes of the algo-
rithms (column “Average”), standard deviation from the
average runtime (column “Std deviation”), and the max-
imum number of solutions found by algorithm ENUM are
given in Table 1.

In the first set of experiments, we observed that
algorithm DP outperforms algorithm ENUM if the number,
q, of distinct interpoint distances is within 10 percent of the
total number nþ 1 of interpoint distances.

Our second set of experiments was performed using real
data about DNA chains taken from the nucleotide database
GenBank; see [14]. Given a sequence of nucleotides (an
entry in GenBank) and a restriction enzyme, the multisets A
and B were determined as if we performed an ideal
biochemical experiment. Table 2 presents the results of our
second set of experiments.

Table 2 does not contain information about earlier
techniques because, for the PDP, no experimental results
over real data were reported in the literature and, for SPDP,
only a few such results were reported in [2] with regard to
the algorithm First-SPDP. However, the runtime values of
First-SPDP were presented in the form “< 1 sec.” This
information cannot be used for comparison with our
algorithms because both algorithms ENUM and DP solve
the same real data instances in less than one second too.

Our third set of experiments for large n was run on
a single 400 MHz IP35 processor of a Sun SunFire 6800
supercomputer, with 20 Gbytes of memory limit. In this
set of experiments, we considered q ¼ 2, interpoint
distances, u1 ¼ 3 and u2 ¼ 5, and various values of n.
The multisets A and B were determined in the same
way as in the first set of experiments. Given q ¼ 2,
u1 ¼ 3, and u2 ¼ 5, algorithms ENUM and DP were run
on 100 instances for every n 2 f100; 150; 200; 250g. More-
over, algorithm DP was run on 100 instances for every
n 2 f2000; 4000; 6000; 8000; 10000; 12000g. A l g o r i t h m
ENUM was not used for these values of n due to the excess
of the 20 Gbyte of memory limit. Corresponding values of
average runtimes of the algorithms, standard deviation
from the average runtime, and the maximum number of
solutions are given in Table 3.

We use fðnÞ to denote the average runtime of
algorithm DP as a function of n in the third set of
experiments. From Table 3, we observe that, for n ¼ 1;000,
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fð2nÞ � 22:5fðnÞ, fð3nÞ � 32:5fðnÞ, fð4nÞ � 42:5fðnÞ,
fð5nÞ � 52:5fðnÞ, and fð6nÞ � 62:5fðnÞ. If we assume that
fðnÞ � Cn2:5 for n ¼ 2; 000 and some constant C, then the
b e h a v i o r o f t h e f u n c t i o n fðnÞ f o r n 2
f4;000; 6;000; 8;000; 10;000Þg is in accordance with the
above inequality. Notice that the theoretical upper bound
on fðnÞ is Oðn4Þ in this case.

Our fourth set of experiments was performed over the
same random data as proposed in [2] and [26]. Algorithms
ENUM and DP were run on 100 instances for different
values of n. We compared runtimes of the algorithms
ENUM, DP, Pyramid-PDP [26], and First-SPDP [2] for each
n, see Table 4. The left value of the given time interval
denotes the shortest runtime and the right value denotes the
longest runtime. We performed additional tests for n ¼ 30
and n ¼ 100 to demonstrate that ENUM and DP perform
well for larger instances.

Our experiments demonstrated that algorithms ENUM
and DP are able to solve instances of SPDP with hundreds
of restriction sites in less than one second on a standard PC.
Algorithm DP outperformed algorithm ENUM on random
data if q � 0:1n. Based on the results of the experiments, the
average runtime of algorithm DP is expected to be Oðn1:25qÞ,
whereas its theoretical worst-case runtime is Oðn2qÞ.

We analyzed real data from the nucleotide database
GenBank [14] with regard to the number of distinct
interpoint distances q. In this experiment, we cut 43 DNA
molecules containing 2,000-200,000 base pairs by 168 en-
zymes. To reduce search time, we selected only those
distinct pairs (DNA molecule, restriction enzyme) which
gave instances of SPDP with n < 300. As a result, we
obtained 3,710 distinct combinations (DNA molecule,
restriction enzyme). Among them, the average value of q
was equal to 0; 935n, and the standard deviation from the
average value was equal to 0; 034n. We also conducted
computer experiments with the same 3,710 real instances of
SPDP to establish the number of noncongruent solutions. It
was equal to 1, 2, and 4 for 3,641, 64, and 5 instances,
respectively, and it was never equal to 3 or exceeded 4.

Notice that any solution from the set of noncongruent
solutions can correspond to the original DNA and, within
the considered model, there is no instrument to determine

the closeness of a given solution to the original DNA. If the
problem is to verify whether the map of the target DNA is
present in a database, every noncongruent solution can be
presented for the verification and the results can be
analyzed by an expert.

The number of noncongruent solutions of SPDP is an
important characteristic of the simplified partial digest
method, which shows whether the map of the original DNA
can be uniquely determined by solving the corresponding
instance of SPDP. If there is more than one solution, it is an
indication that the used enzyme provides fragment lengths
that can be combined to form several distinct DNA maps. In
this case, another enzyme can be used to identify the target
DNA through solving SPDP.

6.2 Data with Measurement Errors

In the first set of experiments, for the case of measurement
errors, we used real data obtained after cutting bacterioph-
age � with enzyme HindIII; see [20]. The ideal biochemical
experiment provided n ¼ 7 restriction sites, multiset B ¼
f23;130; 2;027; 2;322; 9;416; 564; 125; 6;557; 4;361g w i t h
interpoint distances listed from the left end to the right
end of the molecule and corresponding multiset A. To
simulate measurement errors, we used the same simulation
method that was used to obtain imprecise input data for the
algorithm Pyramid-PDP [26]. That is, we replaced every
distance d in the multisets A and B by a random integer
number in the interval ½dð1� rÞ; dð1þ rÞ�, where r is a given
relative measurement error. The obtained multisets A0 and
B0 were used as an input for the algorithm Interval-ENUM.
The corresponding runtimes of the algorithms and the
maximum number of solutions found are given in Table 5.

Recall that the algorithm Interval-ENUM finds one

ð 2r
1�r ; p

�Þ-approximate solution for each p� 2 P �. The total

number of such approximate solutions can be huge (a product

of the lengths of some intervals of integer points), although

many of them will be close to one another. It appears that

Algorithm Pyramid-PDP can find several approximate

solutions for the same p� 2 P �. This observation explains

the fact that algorithm Pyramid-PDP sometimes finds more

solutions than our algorithm Interval-ENUM.
Our final set of experiments was performed over random

data. First, an instance of the error-free SPDP was
constructed. Multisets A and B for this instance were
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generated according to the probabilistic model in [26].

Perturbed data (with measurement errors) was obtained as

in the first set of experiments presented in this section.

Table 6 shows the runtimes of algorithms Pyramid-PDP on

five random instances and Interval-SPDP on 100 random

instances for various combinations of n and r, 10 � n � 20

and 0 � r � 0:02. The left value of the given time interval

denotes the shortest runtime and the right value denotes the

longest runtime. As was the case in [26], the number of

solutions was not counted in these experiments.
Experiments with imprecise data demonstrate that our

algorithm Interval-ENUM is able to reconstruct the linear

structure of a DNA molecule with reasonable quality in a

short time.

7 CONCLUSIONS

We presented an Oðn2nÞ time ENUM and an Oðn2qÞ time

dynamic programming algorithm for the error-free case of

the SPDP, where n is the number of sites and q is the

number of distinct interpoint distances. The algorithms are

based on the established combinatorial properties of the

problem. We gave examples of the problem with interpoint

distances 1 and 2 and all interpoint distances distinct in

which there are 2
nþ2

3 �1 noncongruent solutions. The ENUM

was adapted to handle the problem with imprecise input

data by providing a set of solutions, which contains a

solution with a linear structure that is close to the original

DNA. Computer experiments with our algorithms demon-

strated that they outperform earlier algorithms (for recover-

ing DNA linear structure) in the runtime while providing

the same quality of solution.
Further research on SPDP can be undertaken to adapt

our dynamic programming algorithm for finding an

approximate solution of the error-free problem and the

problem with measurement errors. It would also be

interesting to establish a theoretical relationship between

the input parameters of the error-free SPDP and the number

of its noncongruent solutions. In the general area of the

restriction site analysis, an important open question is the

computation complexity of the error-free PDP.
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