Dataset with decision examples concerning ordinal classification

Student	Mathematics	Physics	Literature	Philosophy	Overall_Eval.
S 1	good	medium	bad	medium	bad
<u>52</u>	medium	medium	bad	bad	medium
<u>S</u> 3	medium	medium	medium	bad	medium
S 4	good	good	medium	medium	medium
<i>S</i> 5	good	good	medium	medium	good
S 6	good	medium	good	good	good
S 7	good	good	good	medium	good
S 8	bad	bad	bad	bad	bad
S 9	bad	bad	medium	bad	bad
S10	good	medium	medium	bad	medium

Dataset with decision examples concerning classification

Student	Mathematics	Physics	Literature	Philosophy	Overall_Eval.
51	good	medium	bad	medium	bad
<mark>52</mark>	medium 🕈	medium 🕇	bad	bad	medium
S 3	medium	medium	medium	bad	medium
S 4	good 🛉	good 🛉	medium	medium	medium
<i>S</i> 5	good	good 🕈	medium	medium	good
S 6	good	medium	good	good	good
S 7	good	good	good	medium	good
S 8	bad	bad	bad	bad	bad
S 9	bad	bad	medium	bad	bad
S10	good	medium	medium	bad	medium

Decision tree

4

If Lit \succeq good, then student \succeq good *{S6,S7}* If Phys \succeq medium & Lit \succeq medium, then student \succeq medium {**S3**,**S4**,**S5**,**S6**,**S7**,**S10**} If Phys \succ good & Lit \prec medium, then student is medium or good {<mark>\$4,\$</mark>5} If Math \geq medium & Lit \leq bad, then student is bad or medium $\{\underline{S1},\underline{S2}\}$ If Lit \leq bad, then student \leq medium *{S*1*,S*2*,S*8*}* If Philo \leq bad, then student \leq medium *{S*2*,S*3*,S*8*,S*9*,S*10*}* If Phys \leq bad, then student \leq bad *{S8,S9}*

Zdzisław Pawlak (1926 – 2006)

Student	Mathematics	Physics	Literature	Overall class
S1	good	medium	bad	bad
S 2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	medium	bad
S 8	bad	bad	medium	bad

One wants to characterize sets of objects from a universe (classes, concepts)

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	medium	bad
S 8	bad	bad	medium	bad

One wants to characterize sets of objects from a universe (classes, concepts)

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S5	good	medium	good	good
S 6	good	good	good	good
S7	bad	bad	medium	bad
S8	bad	bad	medium	bad

One wants to characterize sets of objects from a universe (classes, concepts)

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	medium	bad
S 8	bad	bad	medium	bad

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	medium	bad
S 8	bad	bad	medium	bad

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S5	good	medium	good	good
S 6	good	good	good	good
S7	bad	bad	medium	bad
S 8	bad	bad	medium	bad

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	medium	bad
S 8	bad	bad	medium	bad

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	medium	bad
S 8	bad	bad	medium	bad

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	medium	bad
S 8	bad	bad	medium	bad

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S5	good	medium	good	good
S 6	good	good	good	good
S7	bad	bad	medium	bad
S8	bad	bad	medium	bad

• The granules of indiscernible objects are used to approximate classes

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S 7	bad	bad	medium	bad
S 8	bad	bad	medium	bad

Lower approximation of class "good"

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium	medium	bad	medium
S3	medium	medium	medium	medium
S 4	medium	medium	medium	good
S 5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	medium	bad
S 8	bad	bad	medium	bad

Lower Approximation

Lower and upper approximation of class "good"

CRSA – decision rules induced from rough approximations

 Certain decision rule supported by objects from <u>lower approximation</u> of class "good" (discriminant rule)

If Lit=good, then Student is certainly good {S5,S6}

 Possible decision rule supported by objects from <u>upper approximation</u> of class "good" (partly discriminant rule)

If Phys=medium & Lit=medium, *then* Student is possibly good {S3,S4}

 Approximate decision rule supported by objects from the <u>boundary</u> of class <u>"medium"</u> or "good"

If Phys=medium & Lit=medium, then Student is medium or good {S3,S4}

Classical Rough Set Approach (CRSA)

- Let U be a finite universe of discourse composed of objects (e.g. set A) described by a finite set of attributes (or criteria)
- Sets of objects indiscernible w.r.t. attributes create granules of knowledge (elementary sets)
- Any subset $X \subseteq U$ may be expressed in terms of these granules:
 - either precisely as a union of the granules
 - or roughly by two ordinary sets, called *lower* and *upper* approximations
- The lower approximation of X consists of all the granules included in X (interior of X)
- The upper approximation of X consists of all the granules having non-empty intersection with X (closure of X)

Classical Rough Set Approach has to be adapted to ordinal data

Classical rough set approach does not properly handle decision examples

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad
S2	medium 🔸	medium 🔸	bad	medium
S 3	medium	medium	medium	medium
S4	medium	medium	medium	good
S5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	bad	bad
S 8	bad	bad	medium	bad

Classical Rough Set Approach has to be adapted to ordinal data

Inconsistency w.r.t. dominance principle (Pareto principle)

Dominance-based Rough Set Approach (DRSA)

Classical Rough Set Theory vs. Dominance-based Rough Set Theory

Classical Rough Set Theory ↓

Indiscernibility principle

If x and y are indiscernible with respect to all relevant **attributes**,

then x should classified to the same class as y

Dominace-based Rough Set Theory

₩

Dominance principle

If x is at least as good as y with respect to all relevant criteria,

then x should be classified at least as good as y

S.Greco, B.Matarazzo, R.Słowiński: Rough sets theory for multicriteria decision analysis. *European J. of Operational Research*, 129 (2001) no.1, 1-47

Dominance principle as monotonicity principle

Interpretation of the dominance principle

<u>The better</u> the evaluation of *x* with respect to considered criteria,

the better its comprehensive evaluation

- Many other relationships of this type, e.g.:
 - The faster the car, the more expensive it is
 - The higher the inflation, the higher the interest rate
 - The larger the mass and the smaller the distance, the larger the gravity
 - The colder the weather, the greater the energy consumption
- The Dominance-based Rough Set Approach does not only permit representation and analysis of decision problems but, more generally, representation and analysis of <u>all phenomena involving monotonicity</u>

Dominance principle as monotonicity principle

Driving hypothesis:

 Relationship between different aspects of a phenomenon described by data can be represented by monotonicity relationship between specific measures or perceptions, e.g.

"the more a tomato is red, the more it is ripe"

"the more similar are the causes," the more similar are the effects one can expect"

R.Słowiński, S.Greco, B.Matarazzo: Rough set based decision support. Chapter 16 [in]: E.K.Burke and G.Kendall (eds.), *Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques*, Springer-Verlag, New York, 2005, pp. 475-527

Dominance-based Rough Set Approach (DRSA)

- Finite sets of condition (C) and decision (D) criteria are monotonically dependent
- \succeq_q weak preference relation (outranking) on *U* w.r.t. criterion $q \in \{C \cup D\}$ (complete preorder)
- $x_q \succeq_q y_q$: x_q is at least as good as y_q on criterion $q^{"}$
- xD_Py : x dominates y with respect to set of criteria $P \subseteq C$ in condition space $X_P = \prod_{q=1}^{|P|} V_q$ if $x_q \succeq_q y_q$ for all criteria $q \in P$
- $D_P = \bigcap_{q \in P} \succeq_q$ is a partial preorder
- Analogically, we define xD_Ry in decision space $X_R = \prod_{q=1}^{|R|} V_q$, $R \subseteq D$

Dominance-based Rough Set Approach (DRSA)

- For simplicity : $D = \{d\}$
- *d* makes a partition of *U* into decision classes $CI = \{CI_t, t=1,...,m\}$

•
$$[x \in Cl_r, y \in Cl_s, r > s] \Rightarrow x \succ y$$
 $(x \succeq y \text{ and } not y \succeq x)$

In order to handle monotonic dependency between condition and decision criteria:

$$Cl_t^{\geq} = \bigcup_{s \geq t} Cl_s - \text{upward union of classes, } t=2,...,m$$
 (*"at least"* class Cl_t)

 $Cl_t^{\leq} = \bigcup_{s \leq t} Cl_s - \text{downward union of classes}, t=1,...,m-1 (,,at most'' class <math>Cl_t$)

• Cl_t^{\geq} and Cl_t^{\leq} are positive and negative dominance cones in X_D , with D reduced to single dimension d

Granular computing with dominance cones

• Granules of knowledge are dominance cones in condition space X_P ($P \subseteq C$)

 $D_P^+(x) = \{y \in U: y D_P x\} : P-dominating set$

 $D_p(x) = \{y \in U: x D_p y\}: P$ -dominated set

- *P*-dominating and *P*-dominated sets are positive and negative dominance cones in X_P
- Classification patterns (preference model) to be discovered are functions representing granules Cl_t^{\geq} , Cl_t^{\leq} , by granules $D_p^+(x)$, $D_p^-(x)$

Dominance-based Rough Set Approach vs. Classical RSA

• Example of preference information about students:

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad 🛉
S 2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	good	good	medium	good
S 5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	bad	bad
S 8	bad	bad	medium	bad

Examples of classification of S1 and S2 are inconsistent

S.Greco, B.Matarazzo, R.Słowiński: Decision rule approach. Chapter 13 [in]: J.Figueira, S.Greco and M.Ehrgott (eds.), *Multiple Criteria Decision Analysis: State of the Art Surveys*, Springer-Verlag, New York, 2005, pp. 507-562

• If we eliminate Literature, then more inconsistencies appear:

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad 🛉
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	good	good	medium	good
S 5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	bad	bad
S 8	bad	bad	medium	bad

Examples of classification of S1, S2, S3 and S5 are inconsistent

Elimination of Mathematics does not increase inconsistencies:

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good///	medium	bad	bad 🛉
S2	medium	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	good	good	medium	good
S 5	goad	medium	good	good
S6	good	good	good	good
S7	bad	bad	bad	bad
S 8	bad	bad	medium	bad

Subset of criteria {Ph,L} is a reduct of {M,Ph,L}

Elimination of Physics also does not increase inconsistencies:

Student	Mathematics (M)	Physics (Ph)	Literature (L)	Overall class
S1	good	medium	bad	bad 🛉
S 2	medium 🕴	medium	bad	medium
S 3	medium	medium	medium	medium
S 4	good	good	medium	good
S 5	good	medium	good	good
S6	good	good	good	good
S7	bad	bad	bad	bad
S 8	bad	bad	medium	bad

- Subset of criteria {M,L} is a reduct of {M,Ph,L}
- Intersection of reducts {M,L} and {Ph,L} gives the core {L}

• Let us represent the students in condition space {M,L} :

Lower approximation of <u>at least medium students</u>:

41

Lower approximation of <u>at least</u> good students:

Upper approximation of <u>at least</u> good students:

Lower approximation of <u>at most medium students</u>:

Upper approximation of at most medium students:

Upper approximation of at most bad students:

DRSA – properties

Basic properies of rough approximations

 $\underline{P}(CI_t^{\geq}) \subseteq CI_t^{\geq} \subseteq \overline{P}(CI_t^{\geq}) \qquad \underline{P}(CI_t^{\leq}) \subseteq CI_t^{\leq} \subseteq \overline{P}(CI_t^{\leq})$ $\underline{P}(CI_t^{\geq}) = U - \overline{P}(CI_{t-1}^{\leq}), \text{ for } t=2,...,m$

- Identity of boundaries $Bn_P(CI_t^{\geq}) = Bn_P(CI_{t-1}^{\leq})$, for t=2,...,m
- Quality of approximation of classification $CI = \{CI_t, t=1,...m\}$ by set $P \subseteq C$

$$\gamma_{P}(\mathbf{CI}) = \frac{\left| U - \bigcup_{t \in \{2, \dots, m\}} Bn_{P}(CI_{t}^{\geq}) \right|}{\left| U \right|}$$

■ *CI*-reducts and *CI*-core of *P*⊆*C*

$$CORE_{CI}(P) = \bigcap RED_{CI}(P)$$

DRSA – induction of decision rules from rough approximations

- Induction of decision rules from rough approximations
 - certain D_≥-decision rules, supported by objects ∈ Cl[≥] without ambiguity:

if
$$x_{q1} \succeq q_1 r_{q1}$$
 and $x_{q2} \succeq q_2 r_{q2}$ and ... $x_{qp} \succeq q_p r_{qp}$, then $x \in Cl_t^{\geq}$

possible D_≥-*decision rules*, supported by objects ∈ Cl[≥]_t with or without any ambiguity:

if
$$x_{q1} \succeq q_1 r_{q1}$$
 and $x_{q2} \succeq q_2 r_{q2}$ and ... $x_{qp} \succeq q_p r_{qp}$, then x possibly $\in Cl_t^{\geq}$

DRSA – induction of decision rules from rough approximations

- Induction of decision rules from rough approximations
 - *certain* D_{\leq} -*decision rules*, supported by objects $\in Cl_t^{\leq}$ without ambiguity:

if
$$x_{q1} \leq q_1 r_{q1}$$
 and $x_{q2} \leq q_2 r_{q2}$ and ... $x_{qp} \leq q_p r_{qp}$, then $x \in Cl_t^{\leq}$

possible D_≤-*decision rules*, supported by objects ∈ Cl[≤]_t with or without any ambiguity:

if $x_{q1} \leq q_1 r_{q1}$ and $x_{q2} \leq q_2 r_{q2}$ and ... $x_{qp} \leq q_p r_{qp}$, then x possibly $\in Cl_t^{\leq}$

■ approximate $D_{\geq\leq}$ -decision rules, supported by objects $\in Cl_s \cup Cl_{s+1} \cup ... \cup Cl_t$ without possibility of discerning to which class:

if $x_{q1} \succeq_{q1} r_{q1}$ and $\dots x_{qk} \succeq_{qk} r_{qk}$ and $x_{qk+1} \preceq_{qk+1} r_{qk+1}$ and $\dots x_{qp} \preceq_{qp} r_{qp}$, then $x \in Cl_s \cup Cl_{s+1} \cup \dots \cup Cl_t$.

Set of decision rules in terms of {M, L} representing preferences:

If $M \geq \text{good} \& L \geq \text{medium}$, then student $\geq \text{good} \{ S4, S5, S6 \}$

If M \succeq medium & L \succeq medium, then student \succeq medium {S3,S4,S5,S6}

If M \geq medium & L \leq bad, then student is bad or medium {S1,S2}

If $M \leq medium$, then student $\leq medium$ {S2,S3,S7,S8}

If L \leq bad, then student \leq medium {S1,S2,S7}

If $M \leq bad$, then student $\leq bad$ {S7,S8}

Set of decision rules in terms of {M,Ph,L} representing preferences:

If $M \geq \text{good} \& L \geq \text{medium}$, then student $\geq \text{good}$ {S4,S5,S6}

If $M \succeq medium \& L \succeq medium$, then student $\succeq medium$ {S3,S4,S5,S6}

If $M \succeq medium \& L \preceq bad$, then student is bad or medium {S1,S2}

If Ph \leq medium & L \leq medium then student \leq medium $\{S1, S2, S3, S7, S8\}$

If M \leq bad, then student \leq bad

{**S7,S8**}

The preference model involving all three criteria is more concise