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CHAPTER 1
Introduction

1.1 Problem setting

This work concerns classification problems, in which the aim is to assign an object

(called also example, case or observation) to one of a finite number of discrete classes (or

categories). The objects are described by attributes. In machine learning, classification classification

is preceded by learning of a classifier on so-called training objects. For all training

objects the value of decision (or class) attribute is known a priori. Then, the aim of

learning is defined as to construct the classifier that predicts as accurately as possible

the value of decision attribute (or class) for another set of so-called testing objects.

To be more precise, we consider here ordinal classification problems, which further

also include monotonicity constraints. Ordinal classification problems involve additional

domain knowledge about attributes. This domain knowledge permits to an expert (or ordinal
classifica-
tion

decision maker) to specify an ordering in the value sets of some attributes. The set

of attributes is divided into condition attributes (independent variables) and decision

attributes. In ordinal classification problems, the values of decision attributes corre-

spond to ordered decision classes (or categories). Decision attribute is thus expressed

on an ordinal scale. There are perhaps two major types of ordered discrete decision

attributes (Anderson, 1984). A decision attribute of the first type is directly related

to a single, underlying continuous attribute which is discretized. Example of such an

attribute may be “income in dollars”: 0 − 2000, 2001 − 3000, and so on (McCullagh,

1980). Such attribute may be interpreted as grouped continuous attribute. A decision

attribute of the second type is qualitative and expresses a grade or an ordered value.

Here, example may be attribute “pain relief after treatment”: worse, same, slight im-

1



2 CHAPTER 1. INTRODUCTION

provement, moderate improvement, marked improvement or complete relief (Anderson

and Philips, 1981). The expert, being a doctor, making the assessment uses several

pieces of information making his decision on the observed class or category. In most of

practical classification problems the set of decision attributes is a singleton.

Informally, monotonicity constraints, which may be considered in the ordinal classi-

fication problem, mean that the predicted ordered values of the decision attribute are

monotonically non-decreasing (or non-increasing) with the values of other attributes

that are expressed on ordinal or numerical scales (Ben-David et al., 2009). Such amonotonicity
con-

straints
background knowledge is typical in describing various phenomena, e.g., “the larger the

mass and the smaller the distance, the larger the gravity”, “the more a tomato is red,

the more it is ripe” or “the better the school marks of a pupil, the better his overall

classification” (Greco et al., 2008b). Thus, monotonicity constraints relate condition

and decision attributes having ordinal scales. Monotonicity constraints considered in

the ordinal classification make this problem equivalent to multiple criteria sorting prob-

lem considered in multiple criteria decision analysis (MCDA) (Greco et al., 2010). In

multiple criteria sorting, attributes with value sets ordered according to decreasing or

increasing preference of a decision maker are called criteria (Roy, 1996). Nevertheless,

attributes may be treated as criteria even though ordering of their value sets may not

come from preferences of a decision maker. In problems described by criteria, mono-

tonicity constraints are also called semantic correlation. Semantic correlation states that

a better evaluation of an object on a condition criterion, with other evaluations being

fixed, should not worsen its evaluation on decision criterion.

For instance, consider bond rating which consists in assigning bonds to ordered cate-

gories called grades: “D”, “CC”, . . ., “B”, “B+”, . . ., “A-”, “A”, “AA”, “AAA”. In this

case, monotonicity constraint or semantic correlation means that a bond that is getting

a better evaluation on any of financial indicators, with other values of indicators being

fixed, should not get a worse grade. Another example may be pupil’s results in mathe-

matics, physics and its general achievement (Słowiński et al., 2002a). We may consider

preferences of, e.g., members of school teachers’ council in this example. Thus, the pref-

erence ordering of the attributes values is obvious: “good” is better than “medium” and

“bad”, and “medium” is better than “bad”. It is known, moreover, that mathematics

is semantically correlated with general achievement, as well as physics is semantically

correlated with general achievement. In this example, improvement of pupil’s score in

mathematics or physics, with other values unchanged, should not worsen pupil’s general

achievement, but rather improve it.
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Ordinal classification problems with monotonicity constraints are important, since

they are common in everyday life. For instance, selecting the best route to work, where

to shop, which product to buy, and where to live, are such examples of daily ordi-

nal decision-making which may involve monotonic constraints (Ben-David et al., 2009).

Moreover, even when the ordering seems irrelevant, the presence or absence of a property

have an ordinal interpretation, because if two properties are related, the presence rather

than the absence should make more (or less) probable the presence of the other property

(Greco et al., 2010; Błaszczyński et al., accepted for publication 2010). The same is true

when the presence or absence of a property is graded or fuzzy.

While multiple criteria sorting is widely considered in multiple criteria decision anal-

ysis, ordinal classification problems with monotonicity constraints are rarely considered

in machine learning. This work is aiming to bridge these two approaches.

1.2 Background

In this section, we present the research background of this thesis. We start with compar-

ison of the points of view of machine learning and decision support on the classification

problems. Then, we continue with a brief presentation of existing approaches to ordinal

classification with monotonicity constraints.

1.2.1 Machine learning and decision aiding perspective on

classification

Looking at classification from machine learning perspective (Friedman, 2006), the goal

is to predict (estimate) the unknown value of attribute d given a set of measured values

of other attributes (characteristics or properties) of an object (observation) y. The

attribute d is called the output or response variable, and y are referred to as the input or

predictor variables. The prediction is a function on y and to achieve the goal one needs

to produce a good predictive function. This requires a definition of the quality measure

of any predictive function (classifier). The most commonly used measure of the lack of

quality is a loss that reflects the cost of mistakes (i.e., the loss or cost of predicting a

value ī when the true value of d is i). Different types of loss functions (i.e., zero-one loss

function, squared loss function, absolute loss function) allows to direct the search for a

good classifier. The problem, while being easy to state is difficult to solve. The simple

definition of the problem as an optimization problem with respect to one measure of

quality of a classifier (one aspect of quality of the predictive function) is important for
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the comparison of the view on classification problem from machine learning perspective

with the view on this problem from decision aiding perspective.

The classification problem from the decision aiding point of view is not so easy

to state. In decision aiding, classification corresponds to the sorting problematic (Roy,

1996), which can be seen as an activity aiming at revealing the unknown value of decision

(i.e., value of the decision attribute) and at recommending, or simply favoring, a decision

that will increase the consistency between the decision and description of objects by other

attributes. Thus, in decision aiding, it is always about recommendation that needs to be

interpretable to make the final decision. This is why the recommendation needs to be

consistent and traceable. The recommendations are presented to a decision maker who is

expecting them to be consistent with his/her preferences or expert knowledge. The final

objective of decision aiding is, of course, to help make “better” decisions. However, the

meaning of better depends, in part, on the context in which classification is being made.

Moreover, in many cases, due to the limitation of the decision model (i.e., classifier)

and imprecise, uncertain or ill-defined data, it is impossible to point the best decision

objectively (Figueira et al., 2005). The decision maker is assessing the recommended

decisions subjectively, on the basis of his/her expertise. Thus, while in machine learning

the goal is to accurately estimate the value of the dependent variable, in decision aiding

the goal is to find a convincing, consistent and traceable recommendation.

1.2.2 Existing approaches to ordinal classification problem with

monotonicity constraints

We overview the existing approaches to ordinal classification with monotonicity con-

straints. We consider methods that originate from multiple criteria decision analysis

(MCDA), machine learning and statistics. We start with UTADIS (UTilités Additives

DIScriminantes) and its extensions, which are good representatives of MCDA. Then we

present Dominance-based Rough Set Approach (DRSA), that is an important base on

which we build upon in this thesis. DRSA can be considered as a framework that joins

together MCDA approach and machine learning approaches. We continue the overview

with methods that originate from machine learning and statistics: OLM (Ordinal Learn-

ing Model), OSDL (Ordinal Stochastic Dominance Learner), monotone decision trees,

and other approaches.
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1.2.2.1 UTADIS

UTilités Additives DIScriminantes (UTADIS) method is a variant of the well known

UTilités Additives (UTA) method (Jacquet-Lagrèze and Siskos, 1982). UTADIS was

designed to solve the ordinal classification with monotonicity constraints (Doumpos and

Zopounidis, 2004). The objective of UTADIS method is to develop a classification func-

tion of an additive value form:

V (y) =
n∑
i=1

wivi(yi), (1.1)

where, wi is the weight of i-th attribute, yi is the value of object y on i-th attribute, and

vi(yi) the marginal value function for i-th attribute.

The classification of objects into k categories introduced by value set of the decision

attribute is performed in a straightforward way through the introduction of k − 1 value

cut-off threshold points t1, t2, . . . , tk−1, such that object y for which V (y) ∈ (tk−1, tk] is

classified to class k. The estimation of the additive value function and cut-off thresholds

is performed through linear programing techniques. The objective of the problem is to

develop the additive value model that can reproduce the classification of objects from

the learning data set as accurately as possible. A detailed description of the linear

programming formulation used in UTADIS can be found in (Zopounidis and Doumpos,

1999; Doumpos and Zopounidis, 2004).

UTADISGMS (Greco et al., 2009) is an extension of UTADIS whose characteris-

tic feature is that it takes into account, in (1.1), the set of all value functions com-

patible with the assignment of training objects into k categories. It considers general

non-decreasing marginal value functions instead of piecewise linear only that are typi-

cally used in UTADIS. Moreover, since it explores the whole space of compatible value

functions it provides robust classification. These improvements involve, however, an

increased computation cost. A method that selects the “most representative” value

function among the set of compatible ones is presented in (Greco et al., to appear 2010).

This function represents all other compatible value functions, which also do contribute

to its definition. Furthermore, it highlights the possible assignments of objects to cat-

egories that correspond to the most stable part of the robust classification obtained by

UTADISGMS .

1.2.2.2 Dominance-based Rough Set Approach

Dominance-based rough set approach (DRSA) (Greco et al., 1995, 1999b; Słowiński et al.,

2005, 2009) is defined as an extension of the classical rough set approach (Pawlak, 1982),
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which is also called indiscernibility-based rough set approach (IRSA). More detailed

information about IRSA can be found in chapter 2. DRSA uses the dominance relation

where IRSA uses the indiscernibility relation. Application of the dominance relation

permits to take into account evaluations of objects by criteria (i.e., attributes with

preference-ordered domains (scales)). Suppose, for simplicity, that set D of decision

attributes is a singleton, D = {d}. Decision attribute d makes a partition of the universe

of object U into finite number of classes Xi, i = 1, . . . , n. Each y ∈ U belongs to one and

only one class Xi. The upward and downward unions of classes boil down, respectively,

to:

X≥i =
⋃
j≥i

Xj , X≤i =
⋃
j≤i

Xj , i = 1, . . . , n. (1.2)

DRSA uses the dominance relation in order to enable granular computing with dom-

inance cones (for more details, see chapter 3; particularly 3.2, and (Greco et al., 1998a,

1999b, 2001a, 2002b; Słowiński et al., 2000)).

Given a set of criteria P ⊆ C, the inclusion of an object y ∈ U to the upward

union of classes X≥i may be inconsistent with respect to the dominance principle. The

dominance principle says that if evaluations of object y1 ∈ U on all considered criteria

are not worse than evaluations of object y2 ∈ U , then y1 should be assigned to a class

not worse than y2. The dominance principle and more formally, the definition of the

dominance relation as well as the definition of granules of knowledge that it introduces

are discussed in section 3.2. If, given a set of criteria P , the inclusion of y ∈ U to X≥i ,

i = 2, . . . , n, creates inconsistency in the sense of the dominance principle, we say that

y belongs to X≥i with some ambiguity. Thus, y belongs to X≥i without any ambiguity

with respect to P ⊆ C, if y ∈ X≥i and there is no violation of the dominance principle.

This means that all objects P -dominating y belong to X≥i , which can be also denoted as

the P -dominating cone based on y being composed only of objects that belong to X≥i ,

i.e., D+
P (y) ∈ X≥i . Furthermore, y possibly belongs to X≥i with respect to P ⊆ C, if y

belongs to X≥i with or without ambiguity. Thus, y possibly belongs to X≥i , with respect

to P ⊆ C, if among the objects P -dominated by y there is an object x belonging to X≥i ,

which can be also denoted as the P -dominated cone based on y being composed of at

least one object that belongs to X≥i , i.e., D−P (y) ∩X≥i 6= ∅.

Analogous kind of reasoning may be made for object y and union X≤i .

For P ⊆ C, the set of all objects belonging toX≥i , i = 2, . . . , n, without any ambiguity

constitutes the P -lower approximation of X≥i , denoted by P (X≥i ), and the set of all

objects that possibly belong to X≥i , i = 2, . . . , n constitutes the P -upper approximation
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of X≥i , denoted by P (X≥i ):

P (X≥i ) =
{
y ∈ U : D+

P (y) ⊆ X≥i
}

, P (X≥i ) =
{
y ∈ U : D−P (y) ∩X≥i 6= ∅

}
. (1.3)

Analogously, we define P -lower approximation and P -upper approximation of X≤i ,

i = 1, . . . , n− 1, as follows:

P (X≤i ) =
{
y ∈ U : D−P (y) ⊆ X≤i

}
, P (X≤i ) =

{
y ∈ U : D+

P (y) ∩X≤i 6= ∅
}

. (1.4)

All the objects belonging to X≥i and X≤i with some ambiguity constitute the P -

boundary of X≥i and X≤i . P -boundaries are denoted by BnP (X≥i ) and BnP (X≤i ),

respectively. They can be represented in terms of P -lower approximations and P -upper

approximations as follows:

BnP (X≥i ) = P (X≥i )− P (X≥i ), BnP (X≤i ) = P (X≤i )− P (X≤i ) (1.5)

In DRSA, rules are induced from three types of approximated sets: P -lower approxi-

mations (certain rules), P -upper approximations (possible rules) and P -boundaries (ap-

proximate rules). Induction of decision rules is a complex problem and many algorithms

have been introduced to solve it. Some examples of rule induction algorithms that were

presented in the context of the rough set analysis are given in (Grzymała-Busse, 1992;

Skowron, 1993; Grzymała-Busse, 1997; Grzymała-Busse and Zou, 1998; Bazan, 1998;

Krawiec et al., 1998; Stefanowski, 1998; Susmaga et al., 2000). Algorithms proposed for

DRSA are the following: (Greco et al., 2000a; Susmaga et al., 2000; Błaszczyński and

Słowiński, 2003). All these algorithms can be divided into three categories that reflect

different induction strategies: generation of a minimal set of decision rules, generation

of an exhaustive set of decision rules, generation of a satisfactory set of decision rules.

Algorithms from the first category focus on describing objects from approximations by

minimal number of minimal rules that are necessary to cover all the objects from the

decision table. Algorithms from the second category generate all possible minimal de-

cision rules. The third category includes algorithms that generate all possible minimal

rules that satisfy some a priori defined requirements (e.g. maximal rule length). It is

known that algorithms from the first category generate sets of rules that perform best

in classification. Sets of rules generated by algorithms from the second and the third

category are useful for description and discovery purposes. More about rule induction

algorithms applicable in DRSA classification can be found in chapter 4.

Once rules are induced they can be used for classification of objects. Rules classifi-

cation methods for DRSA are described in chapter 5.
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1.2.2.3 Ordinal learning model

Ordinal learning model (OLM) (Ben-David et al., 1989) is a simple algorithm that learns

monotonic ordinal relations in data by eliminating non-monotonic pairwise inconsisten-

cies. The algorithm is instance-based. This means that it stores the given learning

objects into memory in some kind of format, and it is able to deduce from them the

class labels of unseen objects by some usually local extrapolation technique. The learning

objects are stored as rules (i.e., objects are transformed to rules) in a rule set. Initially,

the rule set is empty. Then, during learning, each object is checked against each of the

rules in the rule set. If the object is inconsistent with a rule in the rule set, the object or

the rule is selected randomly while the other is discarded. If the object is selected it must

be checked again against each of the rules in the rule set. If it passes this consistency

test, it is added to the rule set as a rule. Thus, the rule set is always consistent.

Classification is made in a similar manner to learning, by checking the classified

object against rules from the rule set. The rules are checked in decreasing order of

decision attribute values (i.e., classes). The object is assigned to the class indicated by

the first rule that cover it. This is equivalent to assigning maximal class i suggested

by rules that cover object. If there is no rule in the rule set that covers object, two

approaches are possible. In the first and simpler approach, the object is assigned to the

worst class. In the second approach, the class is assigned by a nearest neighbor search

of rules closest to the object according to the Euclidean distance.

OLM proved to produce very small rule set while learning form inconsistent data

(Ben-David and Jagerman, 1997). The main weakness of this model lies in the fact that

it does not make any accuracy checking during learning. The rule set depends on the

order in which objects are checked against it. Moreover, classification by the nearest

rules made for objects not covered by rules from rule set may lead to non-monotone

classifications.

1.2.2.4 Ordinal Stochastic Dominance Learner

Ordinal Stochastic Dominance Learner (OSDL) (Cao-Van, 2003) provides an alternative

to OLM since it is also an instance-based method. It uses the concept of ordinal stochas-

tic dominance (OSD) to solve ordinal classification with monotonicity constraints. More

specifically, the concept of dominance that is used in OSDL is first order stochastic

dominance (FOSD). Definition of FOSD is as follows: object y is first-order stochastic

dominating object x if for any class i, y has a higher probability of belonging to class i or

better than x (which can be denoted x ≤FOSD y). For more information on stochastic
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dominance definitions please see (Altendorf et al., 2005). The goal of OSDL learning

process is to find a mapping function F from the attribute space to class space such

that:

∀x ≤ y ⇒ F (x) ≤FOSD F (y).

OSDL constructs two mapping functions Fm and FM : one that is based on the objects

from the best class among those that are stochastically dominated by a given object

x, and the second that is based on the objects from the worst class among those that

stochastically dominate x. More precisely, for a given class i

Fm(x, i) = min
y∈(x]

F̂y(i), FM (x, i) = max
y∈[x)

F̂y(i),

where (x] is the set of objects stochastically dominated by x and [x) is the set of objects

stochastically dominating x and F̂y(i) is an estimate of probability that y belongs to class

at most i. Moreover, if (x] = ∅, then Fm(x, i) = 1 and if [x) = ∅, then FM (x, i) = 0.

During classification, an interpolation between class assignments by mapping func-

tions Fm and FM is returned as the result. This interpolation involves a scaling param-

eter s ∈ [0, 1]:

F̃ (x, i) = (1− s)Fm(x, i) + sFM (x, i).

Such interpolation has a drawback: to maintain the monotonicity of classification it is

required to use the same fixed value of s for all classified objects.

In case when the data is consistent, then Fm(x, i) ≥ FM (x, i) for each x. In order

to treat inconsistent data and to overcome problem with scaling parameter s a bal-

anced version of OSDL is proposed (Cao-Van, 2003). This version involves the following

interpolation between the mapping functions:

F̃ (x, i) =

{
(1− s)Fm(x, i) + sFM (x, i) if Fm(x, i) ≥ FM (x, i),

(1−s′)Nm(x,i)Fm(x,i)+s′NM (x,i)FM (x,i)
Nm(x,i)+NM (x,i) otherwise,

where s, s′ ∈ [0, 1], Nm(x, i) is the number of objects from (x] that belong to class

better than i and NM (x, i) is the number of objects from [x) that belong to class not

worse than i. Thus, the balanced version of OSDL introduces weighting by the number

of objects Nm(x, i) and NM (x, i) that is made for inconsistent objects. It is meant to

reduce the influence of inconsistent objects on classification. We should also remark that

this approach is similar to Variable Consistency DRSA (see chapter 3).

1.2.2.5 Monotone decision trees

Decision tree models are one of the most popular in machine learning (Quinlan, 1992;

Breiman et al., 1984). Decision tree models that are solving ordinal classification with
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monotonicity constraints include: Positive Decision Tree (P-DT), Monotone Decision

Trees (MDT), Variable Consistency Monotonic Decision Trees, and Rank Tree (RT).

Positive Decision Tree (P-DT) (Makino et al., 1996) is designed to solve two class

problems only. It builds a binary tree, meaning that each of nodes of the tree splits

in two sub nodes only. A slightly modified version of binary Shannon entropy measure

to select the best split in the nodes. This measure does not however guarantee that

the constructed tree classifies objects preserving monotonicity constraints. To achieve

this property, the tree needs to be constructed on learning data sets that are gradually

updated to be consistent by addition of new artificial objects (see (Cao-Van, 2003) for

details).

Monotone Decision Trees (MDT) (Potharst et al., 1988; Potharst and Bioch, 2000;

Potharst and Feelders, 2002), can be considered as a non-trivial extension of P-DT for

multiple-class ordinal classification with monotonicity constraints. MDT uses the well

known impurity measures such as Gini index and entropy to select the best splits in

nodes. It also uses a procedure for adding new objects to keep the learning data set

consistent. This procedure is called cornering technique. It consists in adding artificial

objects to the set of objects covered by each node, one in the lower left corner of the node,

and another in the upper right corner (notice that each node in the tree represents a

subset of the learning data set and has the form of hyperrectangle). The lower left object

obtains the highest possible class label which does not introduce additional inconsistency

to the data set, while the upper left object – lowest possible label, respectively.

Both P-DT and MDT can be applied on consistent data set only. However, model

that extends MDT for inconsistent data sets have been also proposed (Popova, 2004).

Variable Consistency Monotonic Decision Trees (Giove et al., 2002) are models that

allow to construct decision trees in Variable Consistency DRSA (VC-DRSA, see chap-

ter 3). Three variable consistency monotonic decision tree models were proposed:

1) single class decision tree that discriminates a union of decision classes only,

2) progressively ordered decision tree that is constructed again for a single union of

decision classes, however, the union for which nodes are created is progressively

changing as the tree is growing,

3) full range tree that is constructed for all unions of decision classes simultaneously.
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Variable Consistency Monotonic Decision Trees use a measure similar to rough mem-

bership 3.1 to select splits in nodes. Since they are defined within VC-DRSA, they can

handle inconsistent data sets.

Another model that constructs trees for ordinal classification with monotonic con-

straints problem is Rank Tree (RT) (Cao-Van, 2003). It is using an impurity measure

based on the ranking error (number of reversed ranks) and in using a specific procedure

for maintaining the monotonicity of the tree. It can handle inconsistent data sets.

1.2.2.6 Other approaches

There exist other approaches to the ordinal classification problem (with monotonicity

constraints) that mainly originate from statistical learning. We do not present them here

with care for details because they are harder to compare with the approach presented

in this thesis. These approaches include: isotonic regression (Brunk, 1955; Ayer et al.,

1955), isotonic separation (Ayer et al., 1955; Burdakov et al., 2006), monotone support

vector machines (Chu and Keerthi, 2005; Le et al., 2006), monotone neural networks (Sill

and Abu-Mostafa, 1997; Sill, 1998) and monotone ensembles of classifiers (Kotłowski and

Słowiński, 2008, 2009).

1.3 Goal and scope of the thesis

The overall goal of this thesis is improvement of predictive abilities of rule classifiers

used in ordinal classification with monotonicity constraints. Three objectives which are

given below are associated with this goal.

1) Definition of probabilistic lower approximations of sets of objects characterized by

consistency measures which have required properties.

2) Definition of decision rules and algorithms of their induction from probabilistic

lower approximations of sets.

3) Application of decision rules in classifiers that aggregate suggestions of object

assignments given by matching rules.

These objectives induce the structure of the chapters in the thesis. The objective 1)

is achieved in chapters 2 and 3. We define two related probabilistic extensions of rough

set approaches: Variable Consistency Indiscernibility-based Rough Set Approaches (VC-

IRSA) and Variable Consistency Dominance-based Rough Set Approaches (VC-DRSA).
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We chose to present these two approaches, the one that involves granules of knowledge

defined by indiscernibility and the one that involves dominance relation because we

want to show a general probabilistic extension of the rough set approaches. According

to our best knowledge, no such a general extension was proposed so far. Such a choice

seems also natural since the classical rough set approach was proposed for indiscernibility

relation (Pawlak, 1982). Then, classical rough set approach was extended to Dominance-

based Rough Set Approach (Greco et al., 1999a). Moreover, this structure of chapters

simplifies the way of introducing definitions: first of indiscernibility based rough sets

and then of dominance-based rough sets. Nevertheless, in the further chapters we focus

on VC-DRSA since VC-IRSA are not directly applicable to the subject of the thesis.

The probabilistic rough set approaches allow to extend lower approximation of a

set by objects with sufficient evidence for membership to the set. To quantify this

evidence, we propose different measures of the overlap between a granule of knowledge

based on a considered object and the approximated set or its complement. We call such

measures consistency measures. The advantage of proposed definition of probabilistic

lower approximation with consistency measure is that approaches proposed by other

researchers can be represented in this definition with specific consistency measures. This

allows us to compare other approaches to our proposals with respect to properties of the

respective consistency measures.

The consistency measures are meant to be easy in interpretation so that one can

directly specify properties of objects included in the probabilistic lower approximation.

Different consistency measures are used to express different view on the consistency of

objects. In this way, the lower approximation characterized by acceptable level of the

selected consistency measure can be used to distinguish objects which are considered

acceptably consistent from the selected point of view. Inspired by some basic proper-

ties of rough sets, we find it reasonable to require from consistency measures several

properties of monotonicity that correspond directly to monotonicity properties of the

lower approximation. These monotonicity properties guarantee that any object from a

monotonic lower approximation will belong to this lower approximation after the data

set is extended with respect to the set of attributes, set of objects or union of ordered

classes. The monotonicity properties guarantee the same behavior of objects from lower

approximation when improvement of evaluation of any object in the data set takes place.

We show monotonicity properties of some of the compared consistency measures. These

properties prove to be important in further stages of construction of the decision rules

classifiers.
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The objective 2) is achieved in chapter 4. Having defined the probabilistic lower

approximations specified by required properties, we consider decision rule models which

are induced on the basis of these lower approximations. The objective of rule induction

is thus to construct a set of decision rules that expresses dependencies observable in the

acceptably consistent part of the data set. Moreover, because we want the set of rules to

be traceable, each of rules is characterized by consistency measure that corresponds to

consistency measure used to define the probabilistic lower approximation. The induced

rules must satisfy consistency requirements that are transformable to those that are

imposed on objects included in the lower approximation. We show how to induce decision

rules on the basis of lower approximations that have monotonicity properties, and on

the basis lower approximations that don’t have these properties. We prove that it is

achievable to cover all objects form the probabilistic lower approximations in both cases.

We also show that it is possible to induce rules more effectively when it is known that

the consistency measure is monotonic.

Finally, the objective 3) is meet in chapter 5. We propose two types of classifiers that

employ set of decision rules defined in chapter 4. The first type includes single classifiers

whose results are easily interpretable while they may be not sufficiently accurate in

some of applications. We apply the standard classification scheme defined for DRSA.

We also propose a new classification scheme that is able to deal with imprecise and

contradictory suggestions given by the matching rules. The second type of classifiers is an

ensemble of classifiers that employ consistency measures and diversification between rule

component classifiers to provide more accurate classification. Due to their complexity,

these classifiers are, however, not as straightforward in interpretation as single classifiers.

We experimentally prove properties of the proposed decision rules classifiers in chap-

ter 6. We compare our classifiers learned on objects belonging to probabilistic lower

approximations characterized by consistency measures with well known methods pro-

posed by other researchers.

A more detailed summary of results, conclusions, and plans for further research can

be found in chapter 7.





CHAPTER 2
Variable Consistency

Indescerinbility-based Rough Set

Approaches (VC-IRSA)

2.1 Problem statement and basic definitions

Rough set theory in its classical definition (Pawlak, 1982, 1991), introduces a distinction

of objects in the considered universe U into two categories of consistent and inconsistent

objects. The objects in U are assigned to decision classes Xi, (i = 1, 2, . . . , n), according

to the value of decision attributes from set D. We assume here, without loss of generality,

that set of decision attributes D is a singleton D = {d}. The decision attribute d makes

a partition of set U into finite number n of disjoint decision classes. When considering a

single class Xi, we will drop index i, for simplicity, and thus the considered set of objects

will be denoted by X. For each Xi, a lower approximation and an upper approximation

are defined. In the classic definition of rough sets, the lower approximation is composed

of consistent objects only. The upper approximation, on the other hand, includes all of

objects from the approximated set and objects that are indiscernible with them. In other

words, objects which in view of available knowledge, certainly belong to Xi are assigned

to lower approximation of Xi and objects which possibly belong to Xi are assigned to

upper approximation of Xi.

The inconsistency in the sense of classical rough sets occurs when indiscernible object

are assigned by decision attribute d to different classes X. The indiscernibility relation,

as well as the definition of granules of knowledge that it yields are discussed in section 2.2.

15
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Inclusion of only consistent objects in lower approximation may lead to small lower

approximations and large upper approximations. Even if objects that cause inconsisten-

cies are in minority, they can affect lower approximations of all considered decision classes

For this reason, various approaches that extend lower approximations were introduced.

The extension is made by inclusion in a lower approximation of set X of those objects

for which there is enough evidence for their membership in X. In practice, a consistency

measure is used to quantify this evidence and a threshold on this measure permits to

make decision about the inclusion. The approaches that allow to extend lower approx-

imations include Variable Precision Rough Set (VPRS) model (Ziarko, 1993), Rough

Bayesian (RB) model (Ślęzak, 2005; Ślęzak and Ziarko, 2005), Parameterized Rough

Sets (Greco et al., 2005b) and Monotonic Variable Consistency Indiscernibility-based

Rough Approaches (VC-IRSA) (Błaszczyński et al., 2007b). In this chapter, the Mono-

tonic Variable Consistency Indiscernibility-based Rough Set Approaches are defined and

justified. In section 2.2, we define granules of knowledge that are produced by the in-

discernibility relation. Then in section 2.3, we focus on the domain knowledge that is

taken into account in various definitions of the consistency measures. Further, in sec-

tion 2.4, we define lower and upper approximations involving the consistency measures.

We investigate properties of these approximations in sections 2.5 and 2.6. Particularly,

monotonicity properties of rough approximations are of our special concern in section 2.5.

The chapter is summarized in section 2.7.

2.2 Granules of knowledge

One of the elementary features of rough sets is reasoning in terms of the granules of data

that are indistinguishable or indiscernible considering the knowledge that is available

(Yao, 2003). The knowledge considered in this reasoning is represented by the set of

attributes that describe objects and by the relation used for comparison of objects. It

follows that the selection of different sets of attributes will yield different granulations

of the analysed data. Similarly, the value set of considered attributes my affect the

granulation, because richer value sets induce, in general, finer granulation. The latter

is related to discretization of attributes. In other words, by projecting a data set U

(value-attribute system) onto different sets of attributes or the same set of attributes

but with more or less finer value sets, we get, in general, alternative sets of equivalence-

classes in the data. These different sets will influence the extraction of relationships and

regularities. It is common that the resolution of the attributes needs to be accustomed

in order to extract meaningful regularities.
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In this chapter, we do not consider the influence of discretization (Fayyad and Irani,

1993; Dougherty et al., 1995) on relationships between granules and decision classes.

This aspect has been extensively considered in (Chlebus and Nguyen, 1998; Nguyen and

Nguyen, 1998; Nguyen, 2006). In some cases it is assumed that the discretized data

set is consistent (Nguyen and Nguyen, 1998; Nguyen, 2006). This is however a strong

assumption, especially in the context of VC-IRSA. In our case it would suffice to assume

that discretization cuts do not change the granules that include objects from different

classes. Simply requiring that discretization maintains the quality of approximation

is not sufficient in this case. One may easily come with an example of cuts that do

not decrease the quality of approximation but changes the proportion of objects from

different classes in a granule.

In the rough set approach proposed by Pawlak (Pawlak, 1982), the objects are

compared using the indiscernibility relation. For this reason, we call this approach indiscern-
ibility
relation

Indiscernibility-based Rough Set Approach (IRSA). The indiscernibility relation is as-

sumed to be an equivalence relation (Pawlak, 2004). Let Vai be the value set of attribute

ai ∈ C and f : U×C → Vai be a total function, such that f(x, ai) ∈ Vai . Indiscernibility

relation IP is defined for a non-empty subset of attributes P ⊆ C as

IP = {(y, z) ∈ U × U : f(y, ai) = f(z, ai) for all ai ∈ P}.

Indiscernibility relation makes a partition of universe U into disjoint blocks of objects

that have the same description and are considered indiscernible. Such blocks are called

granules.

Example 2.2.1. Consider the set U described by means of set P of two condition

attributes a1 and a2, as presented in Figure 2.1. The indiscernibility granules are the

following:

G1 = {y1, y2, y3}, G2 = {y4, y5, y6}.

Thus, the three objects y1, y2, y3 within the first granule G1, cannot be distinguished

from one another based on the available attributes P , and the three objects y4, y5, y6

within the second granule G2, cannot be distinguished from one another based on the

available attributes P . It is also worth noting that the first granule G1 is consistent

since all the objects that belong to it are from X1. This is not the case for granule G2.

Object y4 belongs to X1 while the other objects y5, y6 belong to X2. Granule G2 shows

the type inconsistency that is handled by rough set theory.

Now, let us consider an extension of the set of attributes P by attribute a3. This

extension may result in situation shown in Figure 2.2. Introduction of a new attribute
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object a1 a2 class
y1 1 1 X1

y2 1 1 X1

y3 1 1 X1

y4 2 2 X1

y5 2 2 X2

y6 2 2 X2
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Figure 2.1: Exemplary set of objects described by means of set P of two condition at-
tributes a1 and a2. Objects marked with 1 and 2 belong to class X1 and X2, respectively.

represents additional knowledge introduced to the analysed data set U . Then we obtain

the following more precise structure of granules:

G1 = {y1, y3}, G2 = {y2}, G3 = {y4, y6}, G4 = {y5}.

object a1 a2 a3 class
y1 1 1 1 X1

y2 1 1 2 X1

y3 1 1 1 X1

y4 2 2 2 X1

y5 2 2 1 X2

y6 2 2 2 X2

a2
1 2
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Figure 2.2: Exemplary set of objects described by means of set P ′ of three condition
attributes a1, a2 and a3. Objects marked with 1 and 2 belong to class X1 and X2,
respectively.
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For the extended set of attributes P ′ = {a1, a2, a3} objects y1 and y3 as well as y4 and

y6 remain indiscernible. Objects y2 and y5 became incomparable with others and form

two new granules. It is also worth noting that, the number of objects in inconsistent

granules decreased. One can observe a tendency that with increase of precision, the

incomparability of objects in U does not decrease while inconsistency does not increase.

We will come back to this observation in sections 2.3 and 2.5.

Let us now consider a further extension of the set of attributes P ′ by attribute a4.

It may result in situation shown in Figure 2.3. This time, we obtain a fully consistent

data set with the following singleton granules:

G1 = {y1}, G2 = {y2}, G3 = {y3}, G4 = {y4}, G5 = {y5}, G6 = {y6}.

object a1 a2 a3 a4 class
y1 1 1 1 1 X1

y2 1 1 2 1 X1

y3 1 1 1 1 X1

y4 2 2 2 1 X1

y5 2 2 1 2 X2

y6 2 2 2 2 X2

a2 a2
1 2 1 2
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Figure 2.3: Exemplary set of objects described by means of set P ′′ of four condition
attributes a1, a2, a3 and a4. Objects marked with 1 and 2 belong to class X1 and X2,
respectively.

In practice, this type of precisiation is usually hard to obtain. That is why measures

of consistency in granules are necessary to distinguish meaningful consistency of the

objects in the analysed data.

2.3 Consistency principle and consistency measures

One of the ways in which inconsistencies in the data set can be handled is the precisiation

by extension of the set of attributes A that describe the objects. Obviously, not always
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this precisiation is desirable or achievable. That is why consistency measures are designed

to quantify the level of consistency or inconsistency in granules of knowledge. These

measures define how the inconsistencies discovered in the analyzed data are taken into

account in further reasoning. To be more precise, the inconsistency in a granule is

tested with respect to each of the classes that are represented by objects belonging to

this granule. Each of the classes needs to be characterized by a threshold of acceptable

consistency required for an object to be considered as sufficiently consistent member of

the class. The measure of consistency constitutes a type of domain knowledge that is

used in variable consistency rough set approaches.

Let us specify conditions that must be satisfied by consistency measures. We distin-consistency
measures guish gain-type and cost-type consistency measures. First, let us consider y1, y2 ∈ U ,

P ⊆ C, X ⊆ U . Given description of y1 and y2 by P :

• a gain-type consistency measure fPX(y) is any measure satisfying condition: fPX(y1) ≥
fPX(y2) ⇔ it is not less likely that y1 belongs to X, than that y2 belongs to X,

• a cost-type consistency measure gPX(y) is any measure satisfying condition: gPX(y1) ≤
gPX(y2) ⇔ it is not less likely that y1 belongs to X, than that y2 belongs to X.

Second, let us consider y ∈ U , P ⊆ C, X,Y ⊆ U , where Y has the same interpretation

as X (i.e., it denotes a class or a union of classes). Given description of y by P :

• a gain-type consistency measure fPX(y) is any measure satisfying condition: fPX(y) ≥
fPY (y) ⇔ it is not less likely that y belongs to X, than that it belongs to Y .

• a cost-type consistency measure gPX(y) is any measure satisfying condition: gPX(y) ≤
gPY (y) ⇔ it is not less likely that y belongs to X, than that it belongs to Y .

A consistency measure expresses the evidence for membership to set X. For a gain-

type measure, the higher the value, the more consistent is the given object. For a

cost-type measure, the lower the value, the more consistent is the given object. The

distinction between cost or gain type of consistency measure is important when the

measure is applied to define rough approximations. Thus, we will consider it more

thoroughly in sections 2.4 and 3.4.

Rough membership measure was introduced in (Wong and Ziarko, 1987) and itsµ measure

properties were further investigated in (Pawlak and Skowron, 1994; Yao, 2008). It is used

to control positive regions in Variable Precision Rough Set (VPRS) model (Ziarko, 1993)
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as well as in Bayesian Rough Set Model (Ślęzak and Ziarko, 2005). Rough membership

was also considered in the context of attribute reduction in rough sets (Inuiguchi, 2006).

In Indiscernibility-based Rough Set Approach (IRSA), rough membership of y ∈ U
to Xi ⊆ U w.r.t. P ⊆ C is defined as

µPXi(y) =
|IP (y) ∩Xi|
|IP (y)|

, (2.1)

where Ip(y) denotes a set of objects indiscernible with object y when considering set of

attributes P (i.e., granule of indiscernible objects). Rough membership is a gain-type

measure. It captures a ratio of the number of objects that belong to granule IP (y) and

to considered class Xi, to the number of all objects belonging to granule IP (y). For

example, in case of a medical diagnosis, the value of rough membership would express

the ratio of the number of patients that have the same medical signs and suffer from the

considered disease to the number of all patients that have the same signs. This measure

can also be treated as an estimate of conditional probability Pr(x ∈ Xi|x ∈ IP (y)).

Other measures than rough membership have been used in variable consistency rough

set approaches. For example, Bayesian confirmation measures (Fitelson, 2001; Greco

et al., 2004) were considered together with rough membership in Parameterized Rough confirmation
measuresSets (PRS) (Greco et al., 2005b). Bayesian confirmation measures quantify the degree to

which membership of object y to given granule IP (y) provides “evidence for or against”

or “support for or against” assignment to considered class Xi. They are thus gain-type

measures.

The Bayes factor is an consistency measure that has similar properties to Bayesian Bayes
factorconfirmation measures (in case of two class problems Bayesian confirmation measure l

is a natural logarithm of Bayes factor (Fitelson, 2001)). It is used in Rough Bayesian

(RB) model (Ślęzak, 2005; Ślęzak and Ziarko, 2005). Bayes factor for y ∈ U and Xi ⊆ U
w.r.t. P ⊆ C is defined as

BP
Xi(y) =

|IP (y) ∩Xi||¬Xi|
|IP (y) ∩ ¬Xi||Xi|

. (2.2)

Bayes factor is a gain-type consistency measure. Coming back to the example with

medical diagnosis, the Bayes factor would express, in this case, the ratio of the esti-

mate of probability that a patient has the considered signs on condition that he suf-

fers from the considered disease to the estimate of probability that he has these signs

on condition that he does not suffer from this disease. The Bayes factor can also be

seen as a ratio of estimates of two conditional probabilities Pr(x ∈ IP (y)|x ∈ Xi) and

Pr(x ∈ IP (y)|x ∈ ¬Xi).
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Measure εPXi(y) is a consistency measure which posses some properties of a con-ε measure

firmation measure. This measure has been used in monotonic Variable Consistency

Indiscernibility-based Rough Set Approaches (VC-IRSA) (Błaszczyński et al., 2007b).

For P ⊆ C,Xi,¬Xi ⊆ U , where ¬Xi = U −Xi, y ∈ U , it is defined as

εPXi(y) =
|IP (y) ∩ ¬Xi|
|¬Xi|

. (2.3)

In the numerator of (2.3) there is the number of objects in U that do not belong to

class Xi and are indiscernible with object y. In the denominator of (2.3) there is the

number of objects in U that do not belong to class Xi. Measure ε is an example of cost-

type consistency measure and for this reason it is also called a measure of inconsistency.

The ratio εPXi(y) is an estimate of conditional probability Pr(x ∈ IP (y)|x ∈ ¬Xi),

called also a catch-all likelihood (Fitelson, 2007). This measure is thus an estimate

of of probability that object y belongs to granule IP (y) given that it does not belong

to class Xi. It may result in low values of measure εPXi(y) for classes Xi that have

low cardinality. In the example of medical diagnosis, the ε measure would express the

ratio of the number of patients that have the same signs and does not suffer from the

considered disease to the number of all known patients that do not have the considered

disease. Even though it is easier to give intuition behind this measure by reference to

prior probability, knowledge of priors is not necessary to estimate catch-all likelihoods.

What is needed to use the ε measure is the conditional probability. This argument is

further considered by Fitelson (Fitelson, 2007).

Another consistency measure that we consider in VC-IRSA is a cost-type measureε
′

measure

ε
′ P
Xi

(y). For P ⊆ C,Xi,¬Xi ⊆ U , where ¬Xi = U −Xi, y ∈ U , it is defined as

ε
′ P
Xi (y) =

|IP (y) ∩ ¬Xi|
|Xi|

. (2.4)

In the numerator of (2.4) there is the number of objects in U that do not belong to

class Xi and are indiscernible with object y. In the denominator of (2.4) there is the

number of objects in U that belong to class Xi. This measure represents the ratio of

objects z ∈ U that are counterexamples to the implication z ∈ IP (y) implies z ∈ Xi to

the total number of objects in Xi. It lacks the likelihood interpretation that we give for

εPXi(y). It should be noticed that ε
′ P
Xi

(y) may have low values for classes Xi that have

high cardinality. In the example of medical diagnosis, the ε
′

measure would express the

ratio of the number of patients that have the same signs and does not suffer from the

considered disease to the number of all known patients that suffer from the considered

disease.
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A gain-type consistency measure that can be considered in VC-IRSA is (Błaszczyński µ measure

et al., 2007b) is µPXi(y). For P ⊆ C, Xi ⊆ U , y ∈ U , it is defined as

µPXi(y) = maxR⊆P
|IR(y) ∩Xi|
|IR(y)|

. (2.5)

Consistency measure µPXi(y) is calculated as a maximum rough membership to class

Xi over all subsets G of the set of attributes P . An interpretation of this measure in

the example of medical diagnosis would be that it expresses the maximal consistency

measured by rough membership for any subset of signs and considered disease. Thus,

this measure says which signs from all medical signs detected during examination of a

given patient are the most relevant for the diagnosis that the patient suffers from the

considered disease. The relevance is quantified by rough membership measure µ.

Example 2.3.1. To observe differences between ε measure and measures that employ

rough membership measure µ let us consider the example shown in Figure 2.4. There

are ten objects from three classes X1 = {y1, y2}, X2 = {y3, y4, y5, y6, y7, y8, y9} and

X3 = {y10}. These objects are described by attributes a1 and a2 (P = {a1, a2}) and

form the following four granules:

G1 = {y1, y2, y3, y4, y5, y10}, G2 = {y6}, G3 = {y7, y8}, G4 = {y9}.

When we calculate the values of ε in granule G1, we get the following values: εPX1
(y1) =

εPX1
(y2) = 4

8 , εPX2
(y3) = εPX2

(y4) = εPX2
(y5) = 1 and εPX3

(y10) = 5
9 . For the same

objects, we get the following values of rough membership: µPX1
(y1) = µPX1

(y2) = 2
6 ,

µPX2
(y3) = µPX2

(y4) = µPX2
(y5) = 3

6 and µPX3
(y10) = 1

6 . One can observe that according to

ε measure objects y3 and y4 are the most inconsistent in granule G1 while according to

rough membership measure µ they are the most consistent.

Rough membership takes into account local cardinalities in granule G1 and its value

reflects the fact that objects from class X2 are the most frequent in G1. Measure ε, on

the contrary, takes into account that objects from class X2 can be found in the granules

surrounding granule G1 while objects from classes X1 and X3 can be only found in

granule G1. Thus, in this sense, ε measure is global, while µ is local in the way in which

objects are compared.
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object a1 a2 decision class
y1 1 1 X1

y2 1 1 X1

y3 1 1 X2

y4 1 1 X2

y5 1 1 X2

y6 2 1 X2

y7 2 2 X2

y8 2 2 X2

y9 1 2 X2

y10 1 1 X3

Figure 2.4: Illustration of difference between measures µ and ε in VC-IRSA.

2.4 Definition of lower and upper rough approximations

using consistency measures

One of the most important features of the rough set reasoning about data is the sep-

aration of knowledge which is certainly consistent, from knowledge which is possibly

inconsistent. The concepts of certain and possible correspond to lower and upper ap-

proximation of decision classes. In variable consistency rough set approaches, a key point

is to find a sufficient evidence for assignment of objects to lower and upper approxima-

tions of a particular decision class.

Each set X, may include objects for which, due to inconsistency, we are unable to

find enough evidence for their membership to X. In such a case, we can approximate

set X by two sets, the P -lower approximation and the P -upper approximation of X,

where P ⊆ C. Let us give generic definitions of P -lower approximations of set X. These

definitions involve some consistency measures that express the evidence for membership

to set X. These measures can be of gain or cost type. For a gain-type measure, the

higher the value, the more consistent is the given object. For a cost-type measure, the

lower the value, the more consistent is the given object. In this thesis, we investigate

desirable properties of consistency measures.

For P ⊆ C,X ⊆ U, y ∈ U , given a gain-type consistency measure fPX(y) and a lowerP -lower
approxi-

mation
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threshold αX , we get the following definitions of P -lower approximation of set X:

PαX (X) = {y ∈ U : fPX(y) ≥ αX} (2.6)

or PαX (X) = {y ∈ X : fPX(y) ≥ αX}. (2.7)

Analogically, given a cost-type consistency measure gPX(y) and an upper threshold βX ,

we get the following definitions:

P βX (X) = {y ∈ U : gPX(y) ≤ βX} (2.8)

or P βX (X) = {y ∈ X : gPX(y) ≤ βX}. (2.9)

Let us remark a fundamental difference between definitions 2.6 and 2.7 as well as 2.8

and 2.9. This difference concerns the source of objects considered for inclusion in the

P -lower approximation of set X either from U or from X itself. This feature will be

more thoroughly discussed in section 2.5.

In the above definitions, gain-threshold αX ∈ [0, AX ] and cost-threshold βX ∈
[0, BX ]. These thresholds are parameters depending on the interpretation of the gain-

type or cost-type consistency measure, respectively. They play the role of technical

parameters influencing the degree of consistency of objects belonging to lower approxi-

mation of X.

Thus, the values of AX and BX also depend on the interpretation of the correspond-

ing consistency measure. For example, in case of probabilistic P -lower approximation

defined using the rough membership measure, AX = 1 and value of gain-threshold

αX ∈ [0, 1] can be calculated using method presented in (Greco et al., 2007; Yao, 2007).

This method is based on application of the Bayesian decision procedure in transformation

of risk into the value of αX .

The above definitions of P -lower approximations of set X relax the non-parametric

definitions. Precisely, the non-parametric definition is as follows:

P (X) = {y ∈ U : IP (y) ⊆ X} = {y ∈ X : IP (y) ⊆ X},

An obvious condition of this relaxation is:

P (X) ⊆ PαX (X), (2.10)

P (X) ⊆ P βX (X). (2.11)

The definition of P -upper approximation and of P -boundary of set X make use of

the complementarity property of rough approximations.
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For P ⊆ C,X,¬X ⊆ U , where ¬X = U − X, P -upper approximation of set X is

defined as

P
αX (X) = U − PαX (¬X), P

βX (X) = U − P βX (¬X), (2.12)

while P -boundary of set X is defined as

BnαXP (X) = P
αX (X)− PαX (X), BnβXP (X) = P

βX (X)− P βX (X). (2.13)

Let us remark that the notion of consistency was also used in IRSA, to measure

consistency of the whole decision table (Düntsch and Gediga, 1998; Hu et al., 2006; Qian

et al., 2008b,a). In this case, different instances of the entropy measure were applied

instead of the quality of approximation. Entropy measures were also applied to define

consistency of a granule composed of P -indiscernible objects (Qian et al., 2008a). In the

case of the whole decision table, as well as in the case of a single granule, consistency

was considered with respect to all possible classes from the decision table.

We understand consistency in a different way. We consider consistency of particular

objects with respect to the approximated sets. Latter, in chapter 4, we also consider

consistency of decision rules with respect to the approximated sets.

2.5 Monotonicity of Lower Approximations

Our motivation for proposing Variable Consistency Indiscernibility-based Rough Set

Approaches (VC-IRSA) comes from the need of ensuring monotonicity of lower approx-

imations of sets w.r.t. set of attributes (Błaszczyński et al., 2007b). Due to definition

of the upper approximation based on complementarity w.r.t. the lower approximation,

the monotonicity property also concerns the upper approximation. The main difference

between VC-IRSA and VPRS (Ziarko, 1993, 2006), RB model (Ślęzak, 2005; Ślęzak and

Ziarko, 2005), and PRS (Greco et al., 2005b) is that in VC-IRSA one considers for in-

clusion to P -lower approximations only these objects which belong to the approximated

set (definition (2.7) and (2.9)). In VPRS, RB model and PRS, whole granules of indis-

cernible objects are considered for inclusion to P -lower approximations (definition (2.6)

and (2.8)). Inclusion of whole granules to lower approximations leads to a disturbance

presented in the following example.

Example 2.5.1. Three objects presented in Figure 2.5 are described by set of condition

attributes P = {a1}. All these object are P -indiscernible (i.e., they belong to the same

granule), while y1, y2 belong to class X2 and y3 belongs to class X1. Let us assume that

objects y1, y2 and y3 have sufficient consistency of belonging to decision class X2. Thus,
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they all are included in P -lower approximation of X2 defined according to (2.6) or (2.8).

We note P (X2) = {y1, y2, y3}.

object a1 class
y1 0 X2

y2 0 X2

y3 0 X1

a1

●

●

●

●

●

●

y1

y2

y3

X1

X2

X2

Figure 2.5: Illustration of non-monotonicity of definitions (2.6) or (2.8) on attribute a1.
Exemplary set of objects described by means of set P of one condition attribute a1 as
well as decision attribute d.

object a1 a2 class
y1 0 0 X2

y2 0 0 X2

y3 0 1 X1

a1

a 2

●

●

●

●

●

●

y1

y2

y3

X1

X2

X2

Figure 2.6: Illustration of non-monotonicity of definitions (2.6) or (2.8) on attribute a1

and a2. Exemplary set of objects described by means of set R of two condition attributes
a1 and a2 as well as decision attribute d.

Now, the set of attributes is extended by attribute a2 so that R = {a1, a2}, R ⊃ P .

This situation is presented in Figure 2.6. Objects y1 and y2 are R-indiscernible with

objects y3. Nevertheless, to preserve monotonicity of P -lower approximation of class X2

it would be necessary that object y3 remains in R-lower approximation of X2, so that

R(X2) = {y1, y2, y3}.

Remark that, as it is shown in Example 2.5.1, a granule included in a P -lower approx-

imation may be composed of some inconsistent objects. Enlarging set P of attributes
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to R ⊃ P , some P -indiscernible and inconsistent objects may become R-discernible and

thus consistent. Monotonicity of lower approximation requires that if an object enters

P -lower approximation it must also enter R-lower approximation. If we would like to pre-

serve monotonicity of lower approximations defined according to (2.6) or (2.8), then we

should keep in the R-lower approximation the R-discernible objects that do not belong

to the approximated set. This, is not reasonable, however. Motivated by this remark,

we consider the monotonicity properties only for approximations defined according to

(2.7) or (2.9).

One can observe that properties of rough approximations defined in section 2.4 de-

pend on properties of consistency measures fPX(y) and gPX(y). Thus, it is possible to

formulate some properties with respect to these measures, which ensure desirable prop-

erties of rough approximations.

It is reasonable to require that measures fPX(y) and gPX(y) used to define the P -lower

approximation according to (2.7) or (2.9) fulfill the following properties of monotonicity

(henceforth called monotonicity properties):

(m1) Monotonicity with respect to (w.r.t.) set of attributes P ⊆ C. Formally, for

all P ⊆ P ′ ⊆ C, X ⊆ U , y ∈ U , a gain-type measure fPX(y) is monotonically

non-decreasing w.r.t. P , if and only if (iff)

fPX(y) ≤ fP ′X (y), (2.14)

and a cost-type measure gPX(y) is monotonically non-increasing w.r.t. P , iff

gPX(y) ≥ gP ′X (y). (2.15)

(m2) Monotonicity w.r.t. set of objects X ⊆ U , when set X is augmented by a set of

new objects X∆. Formally, for all P ⊆ C, X ⊆ U , X ′ = X ∪X∆, X∆ ∩ U = ∅,
y ∈ U , a gain-type measure fPX(y) is monotonically non-decreasing w.r.t. X, iff

fPX(y) ≤ fPX′(y), (2.16)

and a cost-type measure gPX(y) is monotonically non-increasing w.r.t. X, iff

gPX(y) ≥ gPX′(y). (2.17)

Monotonicity properties (m1) and (m2) relate to the basic properties of rough sets.

A rough set approach is called monotonic when the consistency measure used to define

its lower approximation fulfills these monotonicity properties.
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Property (m1) is particularly important. Property (m1) of measures fPX(y) and gPX(y)

ensures monotonicity of P -lower approximation w.r.t. set of attributes P ⊆ C, defined

according to (2.7) and (2.9), respectively. This property imposes that additional infor-

mation about objects from U can only give more evidence for the observed assignment

of objects to classes. In this case, additional information means a precisiation by more

detailed description of considered objects using an extended set of attributes. Property

(m1) is also concordant with the observation that additional attributes can only decrease

comparability in the set of objects. When less objects are comparable, then also less

inconsistent assignments to classes is observed.

Property (m2) of measures fPX(y) and gPX(y) ensures monotonicity of P -lower approx-

imation w.r.t. set of objects X ⊆ U . Property (m2) states that when we consider two

sets of objects X ′ ⊃ X, the evidence for membership to X ′ for objects from X should

not be worse than the evidence for their membership to X. In other words, extension

of class Xi by addition of new objects, should not negatively affect the evidence for

membership of the objects to the extended class or union of classes.

In the following part of this section, we will show which of the monotonicity properties

are held by measures defined in section 2.3.

2.5.1 Consistency measure µ

According to 2.1, gain-type measure rough membership µ is defined for Xi ⊆ U w.r.t.

P ⊆ C as

µPXi(y) =
|IP (y) ∩Xi|
|IP (y)|

.

Theorem 2.5.1. Measure µPXi(y) does not have property (m1), i.e., for all P ′ ⊆ P ′′ ⊆
C,Xi ⊆ U, y ∈ U .

Proof. 2.5.1. The proof will be made by checking the situation presented in Figure 2.7.

Measure µPXi(y) has property (m1) iff for all P ′ ⊆ P ′′ ⊆ C,Xi ⊆ U, y ∈ U , µPXi(y):

µP
′

Xi(y) ≤ µP ′′Xi (y)

First, we consider attribute a1 only, P ′ = {a1}. All objects have the same value on

that attribute (i.e., they all belong to the same granule). Thus, µP
′

X2
(y1) = µP

′
X2

(y2) =

µP
′

X2
(y3) = 0.66. Second, we consider set P ′′ = {a1, a2}. Then, we have two granules.

The first one consists of objects y1, y2 and the other one is composed of object y3. The

value of rough membership to class X2, µP
′′

Xi
(y1) = µP

′′
Xi

(y2) = 0.5. The value in the first

granule has dropped after the extension of the set of attributes.
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object a1 a2 decision class
y1 1 1 X1

y2 1 1 X2

y3 1 0 X2

Figure 2.7: Illustration of measure µ not having property (m1). Exemplary set of objects
described by means of set P of attributes. Objects marked with 1 and 2 belong to class
X1 and X2, respectively.

Even though property (m2) holds for rough membership (see proof 2.5.11), we refrain

from using it to define VC-IRSA P -lower approximations.

2.5.2 Bayes Factor

According to 2.2, gain-type measure Bayes factor is defined for y ∈ U and Xi ⊆ U w.r.t.

P ⊆ C as

BP
Xi(y) =

|IP (y) ∩Xi||¬Xi|
|IP (y) ∩ ¬Xi||Xi|

.

Theorem 2.5.2. Measure BP
Xi

(y) does not have property (m1), i.e., for all P ′ ⊆ P ′′ ⊆
C,Xi ⊆ U, y ∈ U , BP

Xi
(y).

Proof. 2.5.2. Let us come back to the example presented in Figure 2.7. For all P ′ ⊆
P ′′ ⊆ C,Xi ⊆ U, y ∈ U , measure BP

Xi
(y) has property (m1) iff

BP ′
Xi(y) ≤ BP ′′

Xi (y).

We can observe that B{a1}X2
(y2) = 1, while BP

X2
(y2) = 0.5.

Theorem 2.5.3. Measure BP
Xi

(y) does not have property (m2), i.e, for all P ⊆ C,

Xi ⊆ U , X ′i = Xi ∪X∆
i , X∆

i ∩ U = ∅, y ∈ U .
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Proof. 2.5.3. Measure BP
Xi

(y) has property (m2) iff for all P ⊆ C, Xi ⊆ U , X ′i =

Xi ∪X∆
i , X∆

i ∩ U = ∅, y ∈ U
BP
Xi(y) ≤ BP

X′i
(y).

In the example presented in Figure 2.7, we extend the set of objects by one new

object y4, which belongs to class X2 and has the following description: a1 = 0, a2 = 1.

We can notice that BP
X2

(y2) = 0.5 and BP
X′2

(y2) = 1
3 , where X ′2 = {y2, y3, y4}.

Therefore, we refrain from using Bayes Factor to define VC-IRSA P -lower approxi-

mations because it is neither (m1) nor (m2) monotonic.

2.5.3 Consistency measure ε

According to (2.3), cost-type consistency measure ε is defined for P ⊆ C,Xi,¬Xi ⊆ U ,

where ¬Xi = U −Xi, y ∈ U , as

εPXi(y) =
|IP (y) ∩ ¬Xi|
|¬Xi|

.

Theorem 2.5.4. Measure εPXi(y) has property (m1), i.e., for all P ′ ⊆ P ′′ ⊆ C,Xi ⊆
U, y ∈ U , εPXi(y):

εP
′

Xi(y) ≥ εP ′′Xi (y).

Proof. 2.5.4. From the definition of rough granules IP ′(y) and IP ′′(y), P ′ ⊆ P ′′ ⊆ C,

y ∈ U ,

IP ′(y) ⊇ IP ′′(y)

for Xi,¬Xi ⊆ U being both independent of sets of considered attributes P ′ and P ′′.

This implies:
|IP ′(y) ∩ ¬Xi|
|¬Xi|

≥ |IP
′′(y) ∩ ¬Xi|
|¬Xi|

⇔ εP
′

Xi(y) ≥ εP ′′Xi (y).

Theorem 2.5.5. Measure εPXi(y) has property (m2). More precisely, for all P ⊆ C,

Xi ⊆ U , X ′i = Xi ∪X∆
i , X∆

i ∩ U = ∅, y ∈ U :

εPXi(y) = εPX′i
(y).

Proof. 2.5.5. Since new objects are introduced to the universe U and to class Xi ⊆ U ,

thus for all sets of objects Xi ⊆ U , X ′i ⊆ U ′, where X ′i = Xi ∪X∆
i , X∆

i ∩ U = ∅,

¬Xi = ¬X ′i.
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For all P ⊆ C, y ∈ U , this implies:

|IP (y) ∩ ¬Xi|
|¬Xi|

=
|I ′P (y) ∩ ¬X ′i|
|¬X ′i|

⇔ εPXi(y) = εPX′i
(y),

where I ′P (y) denotes a set of objects indiscernible with object y when considering set of

attributes P and universe U ′.

Definition of a monotonic P -lower approximation of Xi using measure ε, requires

that (2.9) takes the following form:

P βXi (Xi) = {y ∈ Xi : εPXi(y) ≤ βXi}, (2.18)

where parameter βXi in [0, 1] reflects the greatest degree of consistency acceptable to

include object y in the P -lower approximation of set Xi.

Theorem 2.5.6. Lower approximation defined according to (2.18) satisfies condition

(2.11):

P (Xi) ⊆ P βXi (Xi).

Proof. 2.5.6. For each object y ∈ Xi, IP (y) ⊆ Xi iff εPXi(y) = 0.

2.5.4 Consistency measure ε
′

According to (2.4), cost-type consistency measure ε
′ P
Xi

(y) is defined for P ⊆ C,Xi,¬Xi ⊆
U , where ¬Xi = U −Xi, y ∈ U as:

ε
′ P
Xi (y) =

|IP (y) ∩ ¬Xi|
|Xi|

. (2.19)

Theorem 2.5.7. Measure ε
′ P
Xi

(y) has property (m1), i.e., for all P ⊆ P ′ ⊆ C,Xi ⊆
U, y ∈ U :

ε
′ P
Xi (y) ≥ ε′ P ′Xi (y).

Proof. 2.5.7. Analogous to proof 2.5.4 for measure εPXi(y) - only the common denomi-

nators in fractions are changed from |¬Xi| to |Xi|.

Theorem 2.5.8. Measure εPXi(y) has property (m2). More precisely, for all P ⊆ C,

Xi ⊆ U , X ′i = Xi ∪X∆
i , X∆

i ∩ U = ∅, y ∈ U :

ε
′ P
Xi (y) = ε

′ P
X′i

(y).
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Proof. 2.5.8. New objects are introduced to class Xi ⊆ U . Thus, for all sets of objects

Xi ⊆ U , X
′
i = Xi ∪X∆

i , where X∆
i ∩ U = ∅,

¬Xi = ¬X ′i , |Xi| < |X
′
i |.

This implies that for all P ⊆ C, y ∈ U :

|IP (y) ∩ ¬Xi|
|Xi|

>
|I ′P (y) ∩ ¬X ′i |

|X ′i |
⇔ ε

′ P
Xi (y) > ε

′ P
X
′
i

(y),

where I ′P (y) denotes a set of objects indiscernible with object y when considering set of

attributes P and universe U ∪X∆
i .

Using consistency measure ε
′ P
Xi

(y), definition (2.9) takes the form:

P
β′Xi (Xi) = {y ∈ Xi : ε

′ P
Xi (y) ≤ β′Xi}, (2.20)

where parameter β′Xi ∈
[
0, |¬Xi||Xi|

]
reflects the highest degree of consistency acceptable to

include object y to the P -lower approximation of class Xi.

Theorem 2.5.9. Lower approximation defined according to (2.20) satisfies condition

(2.11):

P (Xi) ⊆ P β
′
Xi (Xi).

Proof. 2.5.9. For each object y ∈ Xi, IP (y) ⊆ Xi iff ε
′ P
Xi

(y) = 0.

2.5.5 Consistency measure µ

According to (2.5), gain-type consistency measure µPXi(y) is calculated as a maximum

rough membership to class Xi over all subsets R of the set of attributes P . For P ⊆ C,

Xi ⊆ U , y ∈ U ,

µPXi(y) = maxR⊆P
|IR(y) ∩Xi|
|IR(y)|

.

Theorem 2.5.10. Measure µPXi(y) has property (m1), i.e., for all P ′ ⊆ P ′′ ⊆ C,Xi ⊆
U, y ∈ U :

µP
′

Xi(y) ≤ µP ′′Xi (y).

Proof. 2.5.10. For all P ′ ⊆ P ′′ ⊆ C,Xi ⊆ U, y ∈ U , obviously,

µP
′

Xi(y) = maxR⊆P ′
|IR(y) ∩Xi|
|IR(y)|

≤ maxR⊆P ′′
|IR(y) ∩Xi|
|IR(y)|

= µP
′′

Xi (y).
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Theorem 2.5.11. Measure µPXi(y) has property (m2), i.e., for all P ⊆ C, Xi ⊆ U ,

X ′i = Xi ∪X∆
i , U ′ = U ∪X∆

i , X∆
i ∩ U = ∅, y ∈ U :

µPXi(y) ≤ µPX′i(y).

Proof. 2.5.11. Let us consider all P ⊆ C, Xi ⊆ U , X ′i = Xi ∪ X∆
i , U ′ = U ∪ X∆

i ,

X∆
i ∩ U = ∅, y ∈ U . Since all new objects are added to class Xi, both numerator and

denominator of fraction
|IP (y) ∩Xi|
|IP (y)|

= µPXi(y)

can increase only with the same number k ≥ 0, equal to difference |I ′P (y)| − |IP (y)|:

|IP (y) ∩Xi|+ k

|IP (y)|+ k
=
|I ′P (y) ∩X ′i|
|I ′P (y)|

= µPX′i
(y),

where I ′P (y) denotes a set of objects indiscernible with object y when considering set

of attributes P and universe U ′. Further, let us introduce the following notation: a =

|IP (y) ∩Xi|, b = |IP (y)|, and let us notice that a ≤ b. We can observe that

µPXi(y) ≤ µPX′i(y), (2.21)

which is proved in the following way:

a

b
≤ a+ k

b+ k
⇔ a(b+ k) ≤ b(a+ k)⇔ ab+ ak ≤ ab+ bk ⇔ ak ≤ bk ⇔ a ≤ b.

Thus,

µPXi(y) = maxR⊆P µ
R
Xi(y) ≤ maxR⊆P µRX′i(y) = µPX′i

(y).

We define the P -lower approximation of class Xi by means of µPXi(y) and lower

threshold αXi ∈ [0, 1], as

PαXi (Xi) = {y ∈ Xi : µPXi(y) ≥ αXi}. (2.22)

Theorem 2.5.12. Lower approximation defined according to (2.22) satisfies condition

(2.10):

P (Xi) ⊆ PαXi (Xi).

Proof. 2.5.12. For each object y ∈ Xi, IP (y) ⊆ Xi iff µPXi(y) = 1.



2.6. PROPERTIES OF ROUGH APPROXIMATIONS FROM THE VIEWPOINT
OF RULE INDUCTION 35

2.6 Properties of rough approximations from the

viewpoint of rule induction

Distinction between P -lower and P -upper approximation of decision classes Xi, (i =

1, 2, . . . , n), constitutes the first step of rough set reasoning about data. The next step is

induction of decision rules discussed in chapter 4. In this step information contained in

approximations is transformed into knowledge represented by decision rules. From this

perspective, the properties of rough set approximations that allow to induce effectively

decision rules are of crucial importance.

In the definitions of P -lower approximations (2.7) and (2.9), that we used for mono-

tonic VC-IRSA, only objects y that belong to Xi are included to P -lower approximation

of class Xi. As it was already shown in Example 2.5.1 it is an important feature from

the viewpoint of monotonicity of lower approximations in VC-IRSA. This feature how-

ever results in not all objects belonging to granule IP (y) being included in P -lower

approximation.

A decision rule that assigns to a given class Xi, covers object y and objects that are

P -indiscernible with y, i.e., if it covers object y it also covers all objects from granule

IP (y). When we create a rule covering object y belonging to P -lower approximation of

Xi and IP (y) happens to be composed of objects that do not belong to Xi there is no

possibility to cover y while not covering objects from IP (y) that do not belong toXi. This

shows that P -lower approximations are not sufficient to define sets of objects covered by

rules in VC-IRSA. P -lower approximation of class Xi does not include all objects that

are covered by rule assigning to Xi. For this reason, we define P -positive, P -negative

and P -boundary regions of class Xi in P -evaluation space, i.e., in VP =
∏

j:aj∈P
Vaj .

In IRSA, rules are induced from three types of approximations: lower approxima-

tions (certain rules), upper approximations (possible rules) and boundaries (approximate

rules). In VC-IRSA, objects belonging to the P -positive regions are basis for induction

of decision rules.

For P ⊆ C,Xi,¬Xi ⊆ U , where ¬Xi = U −Xi, y ∈ U and αXi ∈ [0, 1], βXi ∈ [0, 1], P -positive
regionP -positive regions of a class Xi are defined as:

POS
αXi
P (Xi) =

⋃
y∈PαXi (Xi)

IP (y), (2.23)

POS
βXi
P (Xi) =

⋃
y∈PβXi (Xi)

IP (y), (2.24)
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where PαXi (Xi) is defined according to (2.7) and P βXi (Xi) is defined according to (2.9).

From (2.23 and 2.24), positive regions POS
αXi
P (Xi) and POS

βXi
P (Xi) are composed of

all objects y from P -lower approximation of Xi and objects that belong to granule IP (y)

(i.e., all objects indiscernible from y). This can be denoted as property of P -positive

regions:

POS
αXi
P (Xi) =

=
{
y ∈ Xi : fPXi(y) ≥ αXi

}
∪
{
y ∈ IP (x) : x ∈ PαXi (Xi) ∧ fPXi(y) ≥ αXi

}
=

= PαXi (Xi) ∪
{
y ∈ IP (x) : x ∈ PαXi (Xi) ∧ fPXi(y) ≥ αXi

}
, (2.25)

POS
βXi
P (Xi) =

=
{
y ∈ Xi : fPXi(y) ≤ βXi

}
∪
{
y ∈ IP (x) : x ∈ P βXi (Xi) ∧ gPXi(y) ≤ βXi

}
=

= P βXi (Xi) ∪
{
y ∈ IP (x) : x ∈ P βXi (Xi) ∧ gPXi(y) ≤ βXi

}
. (2.26)

Lemma 2.6.1. P -positive regions defined according to (2.23) and (2.24) differ in general

from P -lower approximations defined according to (2.6) and (2.8).

Let us observe that according to definitions (2.6) and (2.23), using property (2.25):

PαXi (Xi) =
{
y ∈ U : fPXi(y) ≥ αXi

}
=

=
{
y ∈ Xi : fPXi(y) ≥ αXi

}
∪
{
y ∈ ¬Xi : fPXi(y) ≥ αXi

}
, while

POS
αXi
P (Xi) =

⋃
y∈PαXi (Xi)

IP (y) =

=
{
y ∈ Xi : fPXi(y) ≥ αXi

}
∪
{
y ∈ IP (x) : x ∈ PαXi (Xi) ∧ fPXi(y) ≥ αXi

}
.

P -lower approximation defined according to (2.6) contains all objects satisfying con-

dition on consistency of belonging to a given class Xi. P -positive region contains only

these objects that satisfy the condition and are indiscernible from objects belonging to

the lower approximation of class Xi. The same can be shown for definitions (2.8) and

(2.24).

Moreover, from the same reason, if one would consider a P -positive regions composed

of objects indiscernible from object belonging to P -lower approximations defined by

(2.6), (2.8) would differ from (2.23), (2.24).
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We define P -negative and P -boundary regions of approximated sets, for P ⊆ C, Xi,

¬Xi ⊆ U , and αXi ∈ [0, 1], βXi ∈ [0, 1], as the following: P -
negative
regionNEG

αXi
P (Xi) = POS

αXi
P (¬Xi)− POS

αXi
P (Xi), (2.27)

NEG
βXi
P (Xi) = POS

βXi
P (¬Xi)− POS

βXi
P (Xi), (2.28)

P -
boundary
regionBND

αXi
P (Xi) = (U − POSαXiP (Xi))−NEG

αXi
P (Xi) (2.29)

BND
βXi
P (Xi) = (U − POSβXiP (Xi))−NEG

βXi
P (Xi). (2.30)

The following properties hold the P -positive, the P -negative and the P -boundary

regions of class Xi and its complement ¬Xi.

Theorem 2.6.1. For all P ⊆ C,Xi,¬Xi ⊆ U , where ¬Xi = U − Xi, y ∈ U and

αXi ∈ [0, 1], βXi ∈ [0, 1]:

BND
αXi
P (Xi) = BND

αXi
P (¬Xi),

BND
βXi
P (Xi) = BND

βXi
P (¬Xi).

Proof 2.6.1.

BND
αXi
P (Xi) = (U − POSαXiP (Xi))−NEG

αXi
P (Xi),

BND
αXi
P (¬Xi) = (U − POSαXiP (¬Xi))−NEG

αXi
P (¬Xi).

Since for any sets A,B

A−B = (A−B) ∪ (A−A) = A− (B ∩A),

then

NEG
αXi
P (Xi) = POS

αXi
P (¬Xi)− POS

αXi
P (Xi) =

= POS
αXi
P (¬Xi)− (POS

αXi
P (Xi) ∩ POS

αXi
P (¬Xi)),

and

NEG
αXi
P (¬Xi) = POS

αXi
P (Xi)− POS

αXi
P (¬Xi) =

= POS
αXi
P (Xi)− (POS

αXi
P (¬Xi) ∩ POS

αXi
P (Xi)).

Thus, if we consider that all together,

BND
αXi
P (Xi) = (U − POSαXiP (Xi))−

(
POS

αXi
P (¬Xi)− (POS

αXi
P (Xi) ∩ POS

αXi
P (¬Xi))

)
,
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BND
αXi
P (¬Xi) = (U − POSαXiP (¬Xi))−

(
POS

αXi
P (Xi)− (POS

αXi
P (¬Xi) ∩ POS

αXi
P (Xi))

)
,

and

BND
αXi
P (Xi) = BND

αXi
P (¬Xi).

The same can be shown for BND
βXi
P (Xi) and BND

βXi
P (¬Xi).

The boundary region of approximated set and the boundary region of its complement

are equal. This property seems natural since boundary regions consist of objects that

we are uncertain to assign either to lower approximation of considered set or to lower

approximation of its complement. The objects that lie in the boundary may be in general

covered by rules assigning to the set or to its complement.

Theorem 2.6.2. For all P ⊆ C,Xi,¬Xi ⊆ U , where ¬Xi = U − Xi, y ∈ U and

αXi ∈ [0, 1], βXi ∈ [0, 1]:

NEG
αXi
P (Xi) ∩NEG

αXi
P (¬Xi) = ∅, (2.31)

NEG
βXi
P (Xi) ∩NEG

βXi
P (¬Xi) = ∅. (2.32)

Proof 2.6.2.

NEG
αXi
P (Xi) = POS

αXi
P (¬Xi)− POS

αXi
P (Xi),

NEG
αXi
P (¬Xi) = POS

αXi
P (Xi)− POS

αXi
P (¬Xi),

and

NEG
βXi
P (Xi) = POS

βXi
P (¬Xi)− POS

βXi
P (Xi),

NEG
βXi
P (¬Xi) = POS

βXi
P (Xi)− POS

βXi
P (¬Xi).

Intersection of negative region of approximated set and negative region of its com-

plement is an empty set. This is an important property from both rough set theory

perspective and rule induction perspective. The negative region contains objects for

which we are sure that they don’t belong to the considered set. Thus, one should expect

that negative regions of complementary sets do not have any common part.

Once decision rules are learned, they can be applied by a classifier (see chapter 5) to

suggest assignment of objects to classes. The rules are learned from P -positive regions of

the decision classes. This type of structuring of the data involves an a priori restriction
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of the set of objects, on which the classifier is learned. The rough set analysis enables

estimation of the attainable predictive accuracy before learning of a classifier occurs. A

classifier learned on P -positive regions of decision classes may correctly assign object

y ∈ Xi to class Xi if y belongs to the P -positive region of Xi.

We define λ measure that estimates the predictive accuracy that may be attained by λ measure

the classifier:

λαXP =

⋃n
i=1

∣∣Xi ∩ POS
αXi
P (Xi)

∣∣
|U |

, (2.33)

λ
βX
P =

⋃n
i=1

∣∣Xi ∩ POS
βXi
P (Xi)

∣∣
|U |

, (2.34)

where n is the number of the decision classes. This measure estimates the ratio of objects

in U that may be learned by the classifier. It can be thus used to characterize the data

set on which the classifier is learned.

It is worth noting that in Ziarko and Ślęzak also defined positive, negative and

boundary regions in Variable Precision Rough Sets (Ziarko, 1993), Bayesian rough set

model (Ślęzak and Ziarko, 2005; Ziarko, 2006) and Bayesian Rough Sets (Ślęzak, 2005).

However, their definitions differ from those presented here. In their definitions, an object

that has a consistency of belonging to a given set X higher than a given threshold enters

positive region. An object that has the consistency lower than the threshold enters

negative region. The rest of objects (i.e., those that have the consistency equal the

threshold) are counted in the boundary region.

2.7 Summary

In this chapter, we presented definitions of several consistency measures that can be

used to define VC-IRSA. Two monotonicity properties (m1), (m2) were considered for

these measures. We have stressed the importance of some monotonicity properties of the

consistency measure used in the definition of a lower approximation. The monotonicity

properties of the considered measures are summarized in table 2.1. We have proposed

two types of measures enjoying the above monotonicity properties. The first type stems

from consistency measure ε, which is a catch-all likelihood measure. This consistency

measure has a comprehensible probabilistic explanation. It has also a close relation with

the Bayes factor and confirmation measure l. We proposed a kind of complementary

measure to ε denoted by ε
′
. One can observe that for ε, there is a tendency of including

relatively more objects to lower approximations when the approximated class or union

of classes has low cardinality. On the other hand, one can observe that for ε
′
, there
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Table 2.1: Monotonicity of consistency measures considered for VC-IRSA.

consistency measure (m1) (m2)

µPX(y) no yes

BP
X(y) no no

εPX(y) yes yes

ε
′ P
X (y) yes yes

µPX(y) yes yes

is a tendency of including relatively more objects to lower approximations when the

approximated class or union of classes has high cardinality.

Monotonic measures of the second type stem from consistency measure µ. They

require to take into account all subsets of the set of considered attributes. Computation

of lower approximations defined by means of monotonic measure µ is a computationally

intensive problem, equivalent to induction of a set of all rules. On the other hand,

computation of such approximations and rule induction can be combined, and thus the

total time would be of the same order as the time for induction of all rules.

We defined monotonic lower approximations for those of consistency measures. These

lower approximations have all considered monotonicity properties. Further, the mono-

tonic lower approximations were used to define positive, negative and boundary regions

which, as it was presented, are more desirable basis for the induction of the decision

rules. Moreover, we defined a measure that estimate the predictive accuracy attainable

to a classifier learned on positive regions.

As a conclusion, we can recommend using consistency measure ε or ε
′
. These mea-

sures have all required monotonicity properties and are much less computationally in-

tensive than the monotonic measures of the second type.



CHAPTER 3
Variable Consistency

Dominance-based Rough Set

Approaches (VC-DRSA)

3.1 Problem statement and basic definitions

Dominance-based rough set approach (DRSA) (Greco et al., 1995, 1999b; Słowiński

et al., 2009) has been proposed as an extension of the Indiscernibility-based rough set

approach (IRSA) reminded in chapter 2. The type of inconsistency handled by DRSA is

more general than inconsistency handled by IRSA. DRSA uses the dominance relation

where IRSA uses the indiscernibility relation. Application of the dominance relation

enables reasoning about data sets described by criteria (i.e., attributes with preference-

ordered domains (scales)). For example, a quality measure can be considered as a

gain-type criterion. If we consider this gain-type criterion and two objects y1 and y2,

where object y1 has “good” quality while object y2 has “poor” quality then object y1

dominates (i.e., is not worse than) object y2 taking into account the quality criterion. If

no order on quality scale is considered, as it is in case of IRSA, than we can only state

that objects y1 and y2 are discernible (i.e, different) on the quality attribute.

In classification problems considered by DRSA, analogously to IRSA, objects from

U are assigned to decision classes Xi, (i = 1, 2, . . . n), according to the value of decision

attribute d. For simplicity, we assume here, without loss of generality, that set of decision

attributes D is a singleton D = {d} and that the domain of decision attribute d is ordered

such that a higher level value is better than any lower level value. While in IRSA decision

41
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classes Xi, i = 1, . . . , n, are not necessarily ordered, in DRSA they are ordered, such

that if i < j, then class Xi is considered to be worse than Xj . Moreover, DRSA

takes into account monotonic relationships between evaluations of objects on particular

criteria and assignment of these objects into decision classes. For example, the better

the value of criterion qi ∈ C for object y, the better the decision class y may belong.

Approximations made in DRSA concern the following unions of decision classes: upward

unions X≥i =
⋃
t≥iXt, where i = 2, 3, . . . , n, and downward unions X≤i =

⋃
t≤iXt, where

i = 1, 2, . . . , n − 1. All objects from a particular upward or downward union of objects

X≥i and X≤i can also be referred to as set of objects X≥ and X≤. Also, for given unions

X≥i , X≤i , all objects belonging to the opposite unions of classes X≤i−1, X≥i+1 respectively,

are denoted as ¬X≥, ¬X≤.

The inconsistency detected by DRSA comes from the violation of the dominance

principle which says that if evaluations of object y1 on all considered criteria are not

worse than evaluations of object y2, then y1 should be assigned to a class not worse

than y2. The dominance principle, and more formally, the definition of the dominance

relation, as well as the definition of granules of knowledge that it implies, are discussed

in section 3.2.

DRSA makes distinction of objects from any set X≥ and X≤ into two disjoint sets

of objects: those consistently belonging to X≥ or X≤, and inconsistent objects. The

set of objects consistently belonging to X≥ or X≤ is called lower approximation of

X≥ or X≤. The upper approximation, on the other hand, includes all objects from

the approximated set and objects that are inconsistent. In other words, objects which,

according to available knowledge, certainly belong to X≥ or X≤ are assigned to lower

approximation of X≥ or to lower approximation of X≤. Objects which may possibly

belong to X≤ or X≥ are classified to upper approximation of X≤ or X≥.

The motivation for introduction of Variable Consistency Dominance-base Rough Set

Approaches (VC-DRSA) is the same as in case of Variable Consistency Indiscernibility-

based Rough Set Approaches (VC-IRSA). These approaches relax the definition of lower

approximation of a union of classes and admit those objects for which there is enough

evidence for their membership to the union of classes. The aim of this relaxation is

not to allow inconsistent objects to make further reasoning difficult when sufficient ev-

idence for their membership can be found. The evidence for membership is estimated

by consistency measures (see sections 2.3 and 3.3). The approaches that provide this

mechanism include Variable Consistency Dominance-based Rough Set Approaches (VC-

DRSA) (Greco et al., 2000b, 2005a; Błaszczyński et al., 2006, 2007b; Greco et al., 2008b;
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Błaszczyński et al., 2009a) and Variable-Precision Dominance-based Rough Set Analysis

(VP-DRSA) (Inuiguchi and Yoshioka, 2006).

A statistical approach to treatment of inconsistent objects within DRSA has also

been considered (Kotłowski et al., 2008; Kotłowski and Słowiński, 2008). This approach

originates from statistical learning and statistical decision theory (Hastie et al., 2009). It

uses the notion of stochastic dominance and probabilities of object belonging to unions

of classes which are further replaced by their maximum likelihood (ML) estimators.

Stochastic lower approximations are composed of objects for which values of estimators

are higher then a given threshold. In this sense, this approach is similar to probabilistic

approaches considered in the thesis. However, the ML estimation of the probabilities

involves solving optimization problems. It makes the whole approach not as traceable

as VC-DRSA, which, for the same purpose, employs relatively simple (and thus easy

to interpret) consistency measures. Moreover, statistical approach involves relabeling of

objects (i.e., change of class to which object belongs to the more probable one) which

further reduces traceability. Relabeling is not considered in VC-DRSA. The described

above features make statistical DRSA hard to comparable to the approaches considered

in this thesis.

In this chapter, the Monotonic Variable Consistency Dominance-based Rough Set

Approaches are defined and justified. In section 3.2, we define the granules of knowl-

edge that are implied by the dominance relation. Then, in section 3.3, we focus on the

consistency measures. Further, in section 3.4, we define the lower and the upper ap-

proximations. In sections 3.5 and 3.6, we investigate properties of these approximations.

In section 3.5, the monotonicity properties of rough approximations are of our special

concern. The chapter is summarized in section 3.7.

3.2 Granules of knowledge

As it was already mentioned, DRSA provides a mechanism for reasoning about data

through granules of knowledge that are more general than granules used in IRSA. Indis-

cernibility granules are bounded sets in the attribute space corresponding to condition

attributes C and decision attributes D (Słowiński et al., 2002b). An indiscernibility

granule is a point in the C space. When condition attributes from C and decision at-

tributes D have preference-ordered value sets, in order to make meaningful classification

decisions, one has to consider the dominance relation instead of the indiscernibility re- dominance
relationlation (Greco et al., 1999b, 2001a; Słowiński et al., 2005). Dominance relation makes a

partition of universe U into granules being dominance cones. The dominance relation
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DP is defined for a non-empty subset of criteria P ⊆ C as

DP = {(y, z) ∈ U × U : f(y, ai) � f(z, ai) for all ai ∈ P},

where f(y, ai) � f(z, ai) means “y is at least as good as z w.r.t. criterion ai”. Dominance

relation DP is a partial preorder (i.e. reflexive and transitive). For each object y ∈ U twodominance
cones dominance cones are defined with respect to subset P ⊆ C. The P -positive dominance

cone D+
P (y) is composed of all objects that are dominating y. The P -negative dominance

cone D−P (y) is composed of all objects that are dominated by y. Formal definitions of

dominance cones are as follows:

D+
p (y) = {z ∈ U : zDP y},

D−p (y) = {z ∈ U : yDP z}.

Dominance cones are open sets in the attribute spaces corresponding to condition at-

tributes C and decision attributes D. With each point in the C space two dominance

cones D+
P and D−P are associated. Both of these dominance cones have their origin in

the point of the space by which they are defined, but they are not bounded by any end.

Similarly as in case of VC-IRSA, we do not consider in this chapter discretization

of of attributes. Nevertheless, all assumptions made in this subject for VC-IRSA in

Section 2.2 are valid for VC-DRSA.

Example 3.2.1. Consider the following example of U described by means of set P of

two condition criteria q1 and q2 in in Table 3.1.

object q1 q2 d

y1 4 4 2
y2 4 8 2
y3 7 2 2
y4 2 7 1
y5 5 5 1
y6 2 2 1

Table 3.1: Exemplary set of objects described by means of set P of two gain-type
condition criteria q1 and q2 as well as decision gain-type criterion d.

First, let us consider criterion q1 alone. Further, let us consider P -positive domi-

nance conses only. This example is illustrated in Figure 3.1. The P -positive dominance

cones are the following:
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D+
q1(y4) = D+

q1(y6) = {y1, y2, y3, y4, y5, y6},

D+
q1(y1) = D+

q1(y2) = {y1, y2, y3, y5},

D+
q1(y5) = {y3, y5},

D+
q1(y3) = {y3}.

Positive dominance cones D+
q1 based on object y4 and object y6 are the same (Fig-

ure 3.1a). They contain all objects in the analysed data set. Positive dominance cones

cones D+
q1 based on indiscernible on criterion q1 objects y1 and y2 are also the same.

In general, this dependency holds for indiscernible objects. The following relation can

be observed: D+
q1(y4) = D+

q1(y6) ⊃ D+
q1(y1) = D+

q1(y2) ⊃ D+
q1(y5) ⊃ D+

q1(y3). It is worth

noting that inconsistency introduced by violation of the dominance principle between cri-

teria q1 and d occurs in case of cones D+
q1(y1) and D+

q1(y2) (Figure 3.1b). They contain

object y5 belonging to class X1 which is worse than X2.

The negative dominance cones are shown in Figure 3.2. They are the following:

D−q1(y4) = D−q1(y6) = {y4, y6},

D−q1(y1) = D−q1(y2) = {y1, y2, y4, y6},

D−q1(y5) = {y1, y2, y4, y5, y6},

D−q1(y3) = {y1, y2, y3, y4, y5, y6}.

For P -negative dominance conses in Figure 3.2 the following relation can be observed:

D−q1(y4) = D+
q1(y6) ⊂ D+

q1(y1) = D+
q1(y2) ⊂ D+

q1(y5) ⊂ D+
q1(y3). Violation of the domi-

nance principle occurs only in case of cone D+
q1(y5) (Figure 3.1c). Objects dominated by

y5 which belongs to class X1 include y1 and y2 which are belonging to class X2. Thus,

objects y1, y2 and y5 are inconsistent.

Example 3.2.2. When we consider both q1 and q2 condition criteria from Table 3.1,
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Figure 3.1: Dominance cones D+
q1 in exemplary set of objects described by means of one

gain-type condition criterion q1.

we get dominating cones illustrated in Figure 3.3. They are the following :

D+
q1,q2(y6) = {y1, y2, y3, y4, y5, y6},

D+
q1,q2(y1) = {y1, y2, y5},

D+
q1,q2(y4) = {y2, y4},

D+
q1,q2(y5) = {y5},

D+
q1,q2(y2) = {y2},

D+
q1,q2(y3) = {y3}.

Only object y6 remains dominated by all other objects. The inconsistency is observed

between objects y1 and y5. Object y1 remains dominated by object y5.
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Figure 3.2: Dominance cones D−q1 in exemplary set of objects described by means of one
condition gain-type criterion q1.

We get also the following negative cones illustrated in Figure 3.4:

D−q1,q2(y2) = {y1, y2, y4, y6},

D−q1,q2(y5) = {y1, y5, y6},

D−q1,q2(y4) = {y4, y6},

D−q1,q2(y1) = {y1, y6},

D−q1,q2(y3) = {y3, y6},

D−q1,q2(y6) = {y6},

In this case, shown in Figure 3.4, inconsistent objects are y1 and y5. The observed
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Figure 3.3: Dominance cones D+
q1,q2 in exemplary set of objects described by means of

one condition criteria q1 and q2.

inconsistency is caused by object y5 dominating object y1 which violates the dominance

principle.
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Figure 3.4: Dominance cones D−q1,q2 in exemplary set of objects described by means of
one condition criteria q1 and q2.

DRSA takes into account monotonic relationships between evaluations of objects

on particular criteria and assignment of these objects into decision classes which are

also ordered. From this follows the dominance principle which says that if evaluations

of object y on all considered criteria are not worse than evaluations of object z, then

y should be assigned to a class not worse than z. Violation of this principle causes
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inconsistency in the data table which is captured within DRSA by approximations of

sets.

3.3 Consistency principle and consistency measures

Analogously to IRSA, the inconsistencies detected in data can be handled by precisiation

(i.e., by extension of the set of attributes A). However, to treat data when precisiation

is not possible, measures of consistency are defined. These measures quantify the level

of inconsistency in granules of knowledge, so that this information can be taken into

account in further reasoning.

Following (Greco et al., 1995, 1998b, 1999b; Słowiński et al., 2005), we reformulate

definitions of monotonic approaches presented in section 2.3, replacing indiscernibility

relation by dominance relation. We also present measures specific for VC-DRSA.

In this case, gain-type rough membership measures are defined for P ⊆ C, X≥, X≤ ⊆ µ measure

U , y ∈ U , as

µPX≥(y) =

∣∣D+
P (y) ∩X≥

∣∣∣∣D+
P (y)

∣∣ , µPX≤(y) =

∣∣D−P (y) ∩X≤
∣∣∣∣D−P (y)

∣∣ , (3.1)

where X≥, X≤ denote upward and downward unions of decision classes, respectively.

Values of rough membership µP
X≥

(y) and µP
X≤

(y) can be interpreted as estimates of

conditional probability Pr(x ∈ X≥|xDP y) and Pr(x ∈ X≤|yDPx), respectively.

We presented a modification of rough membership measures that has desirable prop- µ
′

measureerties in VC-DRSA (Błaszczyński et al., 2006). The resulting gain-type consistency

measures are defined for P ⊆ C, X≥, X≤ ⊆ U , y ∈ U , as

µ
′ P
X≥(y) = max

x∈D−P (y)

∣∣D+
P (x) ∩X≥

∣∣∣∣D+
P (x)

∣∣ , µ
′ P
X≤(y) = max

x∈D+
P (y)

∣∣D−P (x) ∩X≤
∣∣∣∣D−P (x)

∣∣ . (3.2)

Values of rough membership µP
X≥

(y) and µP
X≤

(y) can be interpreted as maximal es-

timates of probability Pr(x ∈ X≥|xDP y) in dominance cone D−P (y) and probability

Pr(x ∈ X≤|yDPx) in dominance cone D+
P (y), respectively.

Formulation of the gain-type Bayes factors for P ⊆ C, X≥, X≤ ⊆ U , y ∈ U , is as Bayes
factorfollows:

BP
X≥(y) =

|D+
P (y) ∩X≥||¬X≥|

|D+
P (y) ∩ ¬X≥||X≥|

, BP
X≤(y) =

|D−P (y) ∩X≤||¬X≤|
|D−P (y) ∩ ¬X≤||X≤|

. (3.3)

The Bayes factor can be seen as a ratio of two conditional probabilities Pr(x ∈ D+
P (y)|x ∈ X≥)

and Pr(x ∈ D−P (y)|x ∈ ¬X≥) or Pr(x ∈ D−P (y)|x ∈ X≤) and Pr(x ∈ D+
P (y)|x ∈ ¬X≤),

respectively.
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Another gain-type consistency measures called β precisions are introduced for Variable-β
precision Precision Dominance-based Rough Set Analysis (VP-DRSA) in (Inuiguchi and Yoshioka,

2006). These measures are defined for P ⊆ C, X≥, X≤ ⊆ U , y ∈ U , as follows:

βPX≥(y) =
|D−P (y) ∩X≥|

|D−P (y) ∩X≥|+ |D+
P (y) ∩ ¬X≥|

, (3.4)

βPX≤(y) =
|D+

P (y) ∩X≤|
|D+

P (y) ∩X≤|+ |D−P (y) ∩ ¬X≤|
. (3.5)

Precisions βP
X≥

(y) (or βP
X≤

(y)) are defined as a ratio of the number of objects that

belonging to dominance cone D−P (y) (or D+
P (y)) and to union of classes X≥ (or X≤)

to the number of these objects increased by the number of objects from the opposite

dominance cone D+
P (y) (or D−P (y)) that belong to the the opposite union ¬X≥ (or ¬X≤).

We introduce cost-type consistency measures εP
X≥

(y) and εP
X≤

(y), for P ⊆ C, X≥,ε measure

X≤ ⊆ U , y ∈ U , that are defined as

εPX≥(y) =
|D+

P (y) ∩ ¬X≥|
|¬X≥|

, εPX≤(y) =
|D−P (y) ∩ ¬X≤|
|¬X≤|

. (3.6)

Consistency measure εP
X≥

(y) (or εP
X≤

(y)) is defined as a ratio of the number of objects

that belong to dominance cone D+
P (y) (D−P (y)) and to ¬X≥ (¬X≤) to the number of

objects belonging to ¬X≥ (¬X≤). It can be interpreted as an estimate of conditional

probability Pr(x ∈ D+
P (y))|x ∈ ¬X≥) (or Pr(x ∈ D−P (y))|x ∈ ¬X≤)), that any ob-

ject x ∈ U belongs to the considered dominance cone based on y given that it does

not belong to the considered union. In other words, this is the number of objects in

the dominance cone of object y that do not belong to the considered union of classes,

divided by the number of all those objects that do not belong to the considered union

of classes. Measures εP
X≥

(y) and εP
X≤

(y) can be interpreted as catch-all likelihoods (Fi-

telson, 2007). For all x ∈ U , probability Pr(x ∈ D+
P (y))|x ∈ ¬X≥) can be rewritten

as Pr(x∈D+
P (y)∧x∈¬X≥)

Pr(x∈¬X≥)
. Logically, implication x ∈ D+

P (y) → x ∈ X≥ can be rewritten

as ¬(x ∈ D+
P (y) ∧ x ∈ ¬X≥). Thus, the intuition of calculating measure εP

X≥
(y) is

that we can see how far the implication, i.e., rule, stating that any x from dominance

cone based on y belongs to X≥ is not supported by objects from data table. Analogous

interpretation can be formulated for εP
X≤

(y).

Definition 3.6 can be extended to cost-type consistency measures ε∗P
X≥

(y) and ε∗P
X≤

(y), ε∗

measurefor P ⊆ C, X≥, X≤ ⊆ U , y ∈ U , are defined as

ε∗PX≥(y) = max
X≥

εPX≥(y), (3.7)

ε∗PX≤(y) = max
X≤

εPX≤(y). (3.8)
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Measure ε∗P
X≥

(y) (or ε∗P
X≤

(y)) is defined as a maximal value of measure εP
X≥

(y) (εP
X≤

(y))

over all unions of decision classes which contain considered union X≥ (X≤).

Another type of cost-type consistency measures are ε
′ P
X≥

(y) and ε
′ P
X≤

(y). For P ⊆ C, ε
′

measure

X≥, X≤ ⊆ U , y ∈ U , which are defined as

ε
′ P
X≥(y) =

|D+
P (y) ∩ ¬X≥|
|X≥|

, ε
′ P
X≤(y) =

|D−P (y) ∩ ¬X≤|
|X≤|

. (3.9)

Consistency measure ε
′ P
X≥

(y) (or ε
′ P
X≤

(y)) is defined as a ratio of the number of objects

that belong both to dominance cone D+
P (y) (D−P (y)) and ¬X≥ (¬X≤), to the num-

ber of objects belonging to union X≥ (X≤). In other words, this measure divides the

number of objects in the dominance cone of object y that do not belong to consid-

ered union of classes X≥ (or X≤) by the cardinality of that union of classes. Mea-

sure ε
′ P
X≥i

(y) (or ε
′ P
X≤i

(y)) has different interpretation from consistency measures εP
X≥i

(y)

(εP
X≤i

(y)) and ε∗P
X≥i

(y) (ε∗P
X≤i

(y)). It lacks likelihood explication that is appropriate for

the other two measures. However, the intuition associated with implication implication

x ∈ D+
P (y)→ x ∈ X≥ remains valid. According to the definition, the number of objects

in the dominance cone of considered object y that do not belong to the considered union

of classes is divided by the cardinality of the considered union of classes. This may

result in low values of consistency measure ε
′ P
X≥i

(y) (ε
′ P
X≤i

(y)) for those unions of classes

X≥i (X≤i ) that have a high cardinality.

We consider, moreover, the following gain-type consistency measures µP
X≥

(y) and µ measure

µP
X≤

(y) . They are defined for P ⊆ C, X≥, X≤ ⊆ U , y ∈ U , as:

µPX≥(y) = max
R⊆P,

z∈D−R(y)∩X≥

|D+
R(z) ∩X≥|
|D+

R(z)|
, (3.10)

µPX≤(y) = max
R⊆P,

z∈D+
R(y)∩X≤

|D−R(z) ∩X≤|
|D−R(z)|

.

Measure µP
X≥

(y) (or µP
X≤

(y)) is defined as a maximum rough membership to union X≥

(X≤) over all subsets R of the set of attributes P and over all objects z dominated by

y (dominating y) and belonging to X≥ (X≤). Comparing definitions of µP
X≥

(y) (and

µP
X≤

(y)) with the analogous definition presented for VC-IRSA, one can easily observe

that they have a new ingredient - the maximum is calculated not only for all subsets R

of P but also for all objects belonging to the intersection of the particular dominance

cone of object y and the considered union of decision classes.

Example 3.3.1. Let us consider the example in Figure 3.5 to show differences between

measures that employ µ measure, β precision and ε, ε′ measures. There are eight objects
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from three classes X1 = {y5}, X2 = {y4} and X3 = {y1, y2, y3, y6, y7, y8}. The classes

are gain-ordered (i.e., X1 is the worst class and X3 is the best).
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y1 8 1 X3

y2 9 1 X3

y3 3 3 X3

y4 5 5 X2

y5 6 6 X1

y6 8 7 X3

y7 8 8 X3

y8 9 9 X3

Figure 3.5: Illustration of difference between measures µ, β and ε, ε′ in VC-DRSA.

First, we consider evidence supporting hypothesis that object y3 belongs to union X≥3 .

We get the following values of consistency measures: µP
X≥3

(y3) = 4
6 , βP

X≥3
(y3) = 1

3 and

εP
X≥3

(y3) = 2
2 = 1, ε

′ P
X≥3

(y3) = 2
6 . Value of µ is the one that supports the most belonging

of object y3 to union X≥3 . Value of ε expresses the highest inconsistency of object y3

belonging to union X≥3 .

Then, we consider evidence behind object y4 belonging to union X≥2 . We get the

following values: µP
X≥2

(y4) = 4
5 , βP

X≥2
(y4) = 2

3 and εP
X≥2

(y4) = 1
1 = 1, ε

′ P
X≥2

(y4) = 1
7 .

Values of µ and β support object y4 belonging to union X≥2 . Value of ε expresses the

highest inconsistency of object y4 belonging to union X≥2 .

Finally, we consider evidence behind object y5 belonging to union X≤1 . We get the

following values: µP
X≤1

(y5) = 1
3 , βP

X≤1
(y5) = 1

3 and εP
X≤1

(y5) = 2
7 , ε

′ P
X≤1

(y5) = 2
1 . Value of

ε′ express high inconsistency of object y5 belonging to union X≤1 .

This example allows for a following explanation of properties of considered measures.

Measure µ for a given union reflects the ration of cardinality of objects from this union

to cardinality of all objects in a granule. In this sense this measure is local as it does

not take into account objects outside the granule. Precision β is also local in this sense,

but it express a ratio of cardinality of objects supporting object belonging to the union to

cardinality of object that neglect this belonging. On the other hand, measures ε and ε′

express a global evidence of object belonging to a given union. They relate the cardinality
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of inconsistent objects in a granule to the cardinality of the complement of the union or

to the union. Values of ε tend to favor small unions while values of ε′ tend to favor large

unions.

3.4 Definition of lower and upper approximations using

consistency measures

In Variable Consistency Dominance-based Rough Set Approaches (VC-DRSA), a key

point is to find a sufficient evidence for assignment of objects to lower and upper ap-

proximations of a particular union of decision classes.

Let X≥ be a set of object belonging to a given upward union of classes and X≤

be a set of objects belonging to downward union of classes. Considering objects from

universe U and a subset P ⊆ C of attributes and criteria, from the viewpoint of the

evidence of their membership to X≥ and X≤, one can approximate sets X≥ and X≤

by two sets, the P -lower approximation and the P -upper approximation. The P -lower

approximation of X≥ and X≤ is thus composed of objects for which there is enough

evidence of membership to the approximated set. The P -upper approximation of X≥

and X≤ is composed of those objects that possibly belong to the approximated set (i.e.,

includes also those objects for which there is not enough evidence of membership). The

P -boundary of X≥ and X≤ is the set of objects for which there is not enough evidence

of membership to the approximated set.

In VC-DRSA, consistency measures (see definition in section 2.3) are used to measure P -lower
approxi-
mation

evidence of membership of particular objects to union of classes X≥ or X≤. For P ⊆ C,

X≥ ⊆ U , X≤ ⊆ U , y ∈ U , given gain-type consistency measures fP
X≥

(y), fP
X≤

(y) and

gain-thresholds αX≥ , αX≤ , one can consider two variants of the definition of P -lower

approximation of union X≥ and X≤:

PαX≥ (X≥) = {y ∈ U : fPX≥(y) ≥ αX≥},

PαX≤ (X≤) = {y ∈ U : fPX≤(y) ≥ αX≤} (3.11)

or PαX≥ (X≥) = {y ∈ X≥ : fPX≥(y) ≥ αX≥},

PαX≤ (X≤) = {y ∈ X≤ : fPX≤(y) ≥ αX≤}. (3.12)

Analogically, given cost-type consistency measures gP
X≥

(y), gP
X≤

(y) and gain-thresholds
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βX≥ , βX≤ , the two variants are:

P βX≥ (X≥) = {y ∈ U : gPX≥(y) ≤ βX≥},

P βX≤ (X≤) = {y ∈ U : gPX≤(y) ≤ βX≤} (3.13)

or P βX≥ (X≥) = {y ∈ X≥ : gPX≥(y) ≤ βX≥},

P βX≤ (X≤) = {y ∈ X≤ : gPX≤(y) ≤ βX≤}. (3.14)

In the above definitions, gain-thresholds αX≥ ∈ [0, AX ], αX≤ ∈ [0, AX ] and cost-

thresholds βX≥ ∈ [0, BX ], βX≤ ∈ [0, BX ]. These thresholds are parameters depending on

the interpretation of the gain-type or cost-type consistency measure, respectively. They

play the role of technical parameters influencing the degree of consistency of objects

belonging to lower approximation of X≥ and X≤.

Thus, the values of AX and BX also depend on the interpretation of the correspond-

ing consistency measure. For example, in case of probabilistic P -lower approximation

defined using the rough membership measure, AX = 1 and values of gain-thresholds

αX≥ , αX≤ ∈ [0, 1] can be calculated using method presented in (Greco et al., 2007;

Yao, 2007). This method is based on application of the Bayesian decision procedure in

transformation of risk into the value of αX≥ or αX≤ .

Let us remark a fundamental difference between definitions (3.11) and (3.12) as

well as (3.13) and (3.14). This difference concerns the source of objects considered for

inclusion in the P -lower approximation of set X≥ or X≤ either from U or from X≥ or

X≤ itself. This feature will be more thoroughly discussed in section 3.5.

The above definitions of P -lower approximations relax the original non-parametric

definitions. Precisely, the non-parametric definition for DRSA, and unions of classes

X≥, X≤, it is as follows:

P (X≥) = {y ∈ U : D+
P (y) ⊆ X≥} = {y ∈ X≥ : D+

P (y) ⊆ X≥},

P (X≤) = {y ∈ U : D−P (y) ⊆ X≤} = {y ∈ X≤ : D−P (y) ⊆ X≤}.

An obvious condition of this relaxation is:

P (X≥) ⊆ PαX≥ (X≥), P (X≤) ⊆ PαX≤ (X≤), (3.15)

P (X≥) ⊆ P βX≥ (X≥), P (X≤) ⊆ P βX≤ (X≤). (3.16)

The definition of P -upper approximation and of P -boundary of set X≥ and X≤ make

use of the complementarity property of rough approximations.
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For P ⊆ C,X≥, X≤ ⊆ U , P -upper approximation of sets X≥ and X≤ is defined as

P
α≥X (X≥) = U − Pα

≥
X (¬X≥), P

α≤X (X≤) = U − Pα
≤
X (¬X≤), (3.17)

P
β≥X (X≥) = U − P β

≥
X (¬X≥), P

β≤X (X≤) = U − P β
≤
X (¬X≤), (3.18)

where ¬X≥ = U −X≥ and ¬X≤ = U −X≤.

P -boundary of X≥ and X≤ is defined as

Bn
α≥X
P (X≥) = P

α≥X (X≥)− Pα
≥
X (X≥), Bn

α≤X
P (X≤) = P

α≤X (X≤)− Pα
≤
X (X≤), (3.19)

Bn
β≥X
P (X≥) = P

β≥X (X≥)− P β
≥
X (X≥), Bn

β≤X
P (X≤) = P

β≤X (X≤)− P β
≤
X (X≤). (3.20)

3.5 Monotonicity of VC-DRSA lower approximations

Lower approximations of unions of classes can be defined in VC-DRSA according to

formulas (3.11) and (3.13) or (3.12) and (3.14). To ensure monotonicity of lower ap-

proximation it is reasonable to use definitions (3.12) and (3.14). Monotonicity of lower

approximation requires that when an object is once included to lower approximation it

must remain in it after specific transformations of the data set (i.e., change of set of

attributes and/or objects). Let us consider the following example to show why we do

not consider definitions (3.11) and (3.13) for monotonic VC-DRSA.

Example 3.5.1. We have four objects, three of them: y1, y2, y3 belonging to class X2

and one object y4 belonging to a worse class X1. The objects are described by set of

criteria P = {q1}. As, it is illustrated in Figure 3.6, objects y1, y2, y3 are dominated

by object y4. Let us assume that all object y1, y2, y3 and y4 have sufficient consistency

of belonging to union of classes X≥2 . Thus, all of these objects are included in P -lower

approximation of union X≥2 , which is defined according to (3.11) or (3.13). We denote

this fact as: P (X≥2 ) = {y1, y2, y3, y4}.

Now, let us consider that the set of criteria is extended by criterion q2, and thus

R = {q1, q2}, R ⊃ P . This results in the example illustrated in Figure 3.7.

Objects y1, y2, y3 are incomparable with object y4 on criteria R (i.e., on q1 and q2).

Nevertheless, to preserve monotonicity of P -lower approximation of union X≥2 defined

according to (3.11) or (3.13) it would be necessary that object y4 remains in R-lower

approximation of X≥2 . So, it should be R(X≥2 ) = {y1, y2, y3, y4}.

Note that it is impossible to include object y4 to a lower approximation defined ac-

cording to (3.12) or (3.14).
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Figure 3.6: Illustration of non-monotonicity of definitions (3.11) and (3.13) on criterion
q1. Exemplary set of objects described by means of set P of one gain-type condition
criterion q1.

object q1 q2 class
y1 4 4 X2

y2 5 6 X2

y3 7 8 X2

y4 8 1 X1
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Figure 3.7: Illustration of non-monotonicity of definitions (3.11) and (3.13) on criteria q1

and q2. Exemplary set of objects described by means of set R of two gain-type condition
criteria q1 and q2.

One can observe that properties of rough approximations defined above depend on

properties of consistency measures fPX(y) and gPX(y). Thus, it is possible to formu-

late some properties with respect to these measures, which ensure desirable properties

of rough approximations. To ensure that monotonicity properties of consistency mea-

sures are reflected by monotonicity of probabilistic lower approximation it is required to

use them in definitions (3.12) and (3.14). In this sense, we postulate to use measures

fP
X≥

(y), fP
X≤

(y) and gP
X≥

(y), gP
X≤

(y) that fulfill the following properties of monotonicity

(henceforth called monotonicity properties).

The following two properties are analogous to properties (m1) and (m2) defined in

section 2.5 for VC-IRSA:
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(m1) Monotonicity with respect to (w.r.t.) set of attributes P ⊆ C. Formally, for all

P ⊆ P ′ ⊆ C, X≥, X≤ ⊆ U , y ∈ U , a gain-type measure fPX(y) is monotonically

non-decreasing w.r.t. P , if and only if (iff)

fPX≥(y) ≤ fP ′X≥(y), fPX≤(y) ≤ fP ′X≤(y), (3.21)

and a cost-type measure gPX(y) is monotonically non-increasing w.r.t. P , iff

gPX≥(y) ≥ gP ′X≥(y), gPX≤(y) ≥ gP ′X≤(y). (3.22)

(m2) Monotonicity w.r.t. set of objects X ⊆ U , when new objects are introduced into

U . Formally, for all P ⊆ C, X≥, X≤ ⊆ U , X ′≥ = X≥ ∪ X∆, X ′≤ = X≤ ∪ X∆,

U ′ = U ∪ X∆, X∆ ∩ U = ∅, y ∈ U , a gain-type measure fPX(y) is monotonically

non-decreasing w.r.t. X≥ and X≤, iff

fPX≥(y) ≤ fPX′≥(y), fPX≤(y) ≤ fPX′≤(y), (3.23)

and a cost-type measure gPX(y) is monotonically non-increasing w.r.t. X, iff

gPX≥(y) ≥ gPX′≥(y), gPX≤(y) ≥ gPX′≤(y). (3.24)

Moreover, for DRSA, it is reasonable to require that measures fP
X≥i

(y) (or fP
X≤i

(y))

and gP
X≥i

(y) (or gP
X≤i

(y)) fulfill the following monotonicity properties:

(m3) Monotonicity w.r.t. union of classes X≥i ⊆ U and X≤k ⊆ U . Formally, for all

P ⊆ C, X≥i ⊆ X≥j ⊆ U , j ≤ i, X≤k ⊆ X≤l ⊆ U , l ≥ k, y ∈ U , gain-type

measures fP
X≥i

(y) and fP
X≤k

(y) are monotonically non-decreasing w.r.t. X≥i and

X≤k , respectively, iff

fP
X≥i

(y) ≤ fP
X≥j

(y), fP
X≤k

(y) ≤ fP
X≤l

(y). (3.25)

Analogously, a cost-type measures gP
X≥i

(y) and gP
X≤k

(y) are monotonically non-

increasing w.r.t. X≥i and X≤k , respectively, iff

gP
X≥i

(y) ≥ gP
X≥j

(y), gP
X≤k

(y) ≥ gP
X≤l

(y). (3.26)

(m4) Monotonicity w.r.t. P -dominance relation, P ⊆ C. Formally, for all P ⊆ C,

X≥i , X
≤
i ⊆ U , y ∈ U , and ∗ standing for either ≥ or ≤ in every instance, a gain-

type measure fPX∗i (y) is monotonically non-decreasing w.r.t. P -dominance relation,

iff

∀y1, y2 ∈ U : y1DP y2 ⇒ fPX∗i (y1) ≥ fPX∗i (y2), (3.27)
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and a cost-type measure gPX∗i (y) is monotonically non-increasing w.r.t. P -dominance

relation, iff

∀y1, y2 ∈ U : y1DP y2 ⇒ gPX∗i (y1) ≤ gPX∗i (y2). (3.28)

Monotonicity properties (m1) and (m2) are related to the basic properties of rough

sets. Monotonicity properties (m3) and (m4) are specific to DRSA. A rough set approach

is called monotonic when the consistency measure used to define its lower approximation

fulfills relevant monotonicity properties. For IRSA, relevant properties are (m1) and

(m2), while for DRSA, relevant properties are (m1), (m2), (m3) and (m4).

Property (m1) is particularly important. Property (m1) of measures fP
X≥

(y), fP
X≤

(y)

and gP
X≥

(y), gP
X≤

(y) ensures monotonicity of P -lower approximation w.r.t. set of at-

tributes P ⊆ C, defined according to (3.12) and (3.14), respectively. This property

imposes that additional information about objects from U can only give more evidence

for the observed assignment of objects to classes. In this case, additional information

means, of course, more detailed description of considered objects by an extended set

of attributes. Property (m1) is also concordant with the observation that additional

attributes can only decrease comparability in the set of objects. When less objects are

comparable, then also less inconsistent assignments into classes is observed.

Property (m2) of measures fP
X≥

(y) and gP
X≥

(y) or fP
X≤

(y) and gP
X≤

(y) ensures mono-

tonicity of P -lower approximation w.r.t. set of objects X≥, X≤ ⊆ U . Property (m2)

states that when we consider two sets of objects X ′≥ ⊃ X≥ and X ′≤ ⊃ X≤, the evidence

for membership to X ′≥ and X ′≤ for objects from X≥ and X≤should not be worse than

the evidence for their membership to X≥ and X≤. In other words, extension of class Xi

or union of classes X≥i (X≤i ) with new objects, should not negatively affect the evidence

for membership of the objects to the extended class or union of classes.

In DRSA, property (m3) of measures fP
X≥i

(y) (or fP
X≤i

(y)) and gP
X≥i

(y) (or gP
X≤i

(y))

ensures monotonicity of P -lower approximation w.r.t. union X≥i ⊆ U (or X≤i ⊆ U).

This property states that value of a gain-type consistency measure for a union that is a

superset should not decrease, while value of a cost-type consistency measure should not

increase. For example, for object y which belongs to upward unions X≥i and X≥j , where

X≥i ⊆ X≥j ⊆ U , value of gain-type consistency measure fP
X≥j

(y) should not be worse

than the value of this measure calculated for union X≥i .

The importance of property (m4) in Variable Consistency DRSA (VC-DRSA) was

already discussed in (Błaszczyński et al., 2006), however, under the name of monotonic-

ity of membership to lower approximation. Monotonicity w.r.t. P -dominance relation,



3.5. MONOTONICITY OF VC-DRSA LOWER APPROXIMATIONS 59

P ⊆ C, is a very desirable property for a measure used in the definition of P -lower

approximation of union X∗i , where ∗ is either ≥ or ≤. In case of definitions based on

formula (3.12), where it is checked if fPX∗i (y) ≥ αX∗i , a consistency measure defined for

X≥i should satisfy (3.27), while a consistency measure defined for X≤i should satisfy

(3.28). For definitions based on formula (3.14), where it is checked if gPX∗i (y) ≤ βX∗i , a

consistency measure defined for X≥i should satisfy (3.28), while a consistency measure

defined for X≤i should satisfy (3.27). This ensures continuity of lower approximations

- as soon as some object y ∈ X≥i is included into P -lower approximation of union X≥i ,

every object z ∈ X≥i , which P -dominates y, will also be included into this approxima-

tion. Analogically, if some object y ∈ X≤i is included into P -lower approximation of

union X≤i , then every object z ∈ X≤i , which is P -dominated by y, will also belong to

the considered approximation.

3.5.1 Consistency measure µ

According to (3.1), gain-type rough membership measures are defined for P ⊆ C,

X≥, X≤ ⊆ U , y ∈ U , as

µPX≥(y) =

∣∣D+
P (y) ∩X≥

∣∣∣∣D+
P (y)

∣∣ , µPX≤(y) =

∣∣D−P (y) ∩X≤
∣∣∣∣D−P (y)

∣∣ ,

Rough membership µ used within VC-DRSA in definition (3.12). It is expected to

have properties (m1), (m2), (m3) and (m4). It can be shown that measure µP
X≥

(y) (and

µP
X≤

(y)) has properties (m2) and (m3). Unfortunately, measure µP
X≥

(y) (or µP
X≤

(y))

does not have property (m1) nor (m4).

Theorem 3.5.1. Measures µP
X≥i

(y) and µP
X≤i

(y) do not have property (m1), i.e., for all

P ⊆ P ′ ⊆ C, X≥i , X
≤
i ⊆ U, y ∈ U , µP

X≥i
(y) and µP

X≤i
(y) are not (m1) monotonically

non-decreasing w.r.t. sets of attributes P and P ′.

Proof. 3.5.1. The proof will be presented by study of situation presented in Figure 3.8.

Measures µP
X≥i

(y) and µP
X≤i

(y) have property (m1) iff for all P ⊆ P ′ ⊆ C, X≥i , X
≤
i ⊆ U ,

y ∈ U :

µP
X≥i

(y) ≤ µP ′
X≥i

(y), µP
X≤i

(y) ≤ µP ′
X≤i

(y).

We can notice that µ{q2}
X≥3

(y2) = 3
4 , while µ{q1,q2}

X≥3
(y2) = 2

3 .

Theorem 3.5.2. Measures µP
X≥i

(y) and µP
X≤i

(y) do not have property (m4), i.e., for all

P ⊆ C, X≥i , X
≤
i ⊆ U, y ∈ U , measures µP

X≥i
(y) and µP

X≤i
(y) are not (m4) monotonically

non-decreasing w.r.t. P -dominance relation.
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object q1 q2 decision class
y1 3 3 X3

y2 2 2 X3

y3 1 3 X3

y4 3 1 X2

y5 4 4 X1

Figure 3.8: Illustration of measure µ not having property (m4). Exemplary set of objects
described by means of set P of gain-type criteria q1 and q2.

Proof. 3.5.2. Measures µP
X≥i

(y) and µP
X≤i

(y) have property (m4) iff for all P ⊆ C,

X≥i , X
≤
i ⊆ U , y ∈ U :

∀y1, y2 ∈ U : y1DP y2 ⇒ µP
X≥i

(y1) ≥ µP
X≥i

(y2),

∀y1, y2 ∈ U : y1DP y2 ⇒ µP
X≤i

(y1) ≤ µP
X≤i

(y2).

If we analyze situation presented in Figure 3.8, we can notice µP
X≥3

(y1) = 1
2 and µP

X≥3
(y2) = 2

3 .

However, as it is shown in (Błaszczyński et al., 2006), the lack of property (m4) can

be overcome by modification of definition of measure µ resulting in measure µ
′
.

3.5.2 Consistency measure µ
′

According to (3.2), formulation of the gain-type Consistency measure µ
′

for P ⊆ C,

X≥, X≤ ⊆ U , y ∈ U , is as follows:

µ
′ P
X≥(y) = max

x∈D−P (y)

∣∣D+
P (x) ∩X≥

∣∣∣∣D+
P (x)

∣∣ , µ
′ P
X≤(y) = max

x∈D+
P (y)

∣∣D−P (x) ∩X≤
∣∣∣∣D−P (x)

∣∣ . (3.29)

Consistency measure µ
′

used within VC-DRSA in definition (3.12). It is expected

to have properties (m1), (m2), (m3) and (m4). As it was noted before, this measure

is proposed as modification of rough membership measure µ having property (m4).
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It can be shown that measure µ
′ P
X≥

(y) (and µ
′ P
X≤

(y))) has properties (m2) and (m3).

Unfortunately, this measure does not have property (m1). It can be useful in some

applications not requiring property (m1).

Theorem 3.5.3. Measures µ
′ P
X≥i

(y) and µ
′ P
X≤i

(y) have property (m4), i.e., for all P ⊆ C,

X≥i , X
≤
i ⊆ U , y ∈ U :

∀y1, y2 ∈ U : y1DP y2 ⇒ µ
′ P
X≥i

(y1) ≥ µ′ P
X≥i

(y2),

∀y1, y2 ∈ U : y1DP y2 ⇒ µ
′ P
X≤i

(y1) ≤ µ′ P
X≤i

(y2).

Proof. 3.5.3. It results directly from definition of measure µ
′
.

Monotonic, in sense of having properties (m2), (m3) and (m4), P -lower approxima-

tion of union of classes X≥i , X≤i defined according to (2.7) takes the form:

P
α
′

X
≥
i (X≥i ) = {y ∈ X≥i : µ

′ P
X≥i

(y) ≥ α′
X≥i
}, (3.30)

P
α
′

X
≤
i (X≤i ) = {y ∈ X≤i : µ

′ P
X≤i

(y) ≥ α′
X≤i
}, (3.31)

where gain-thresholds α
′

X≥i
, α
′

X≤i
∈ [0, 1] reflects the lowest degree of consistency ac-

ceptable to include object y in the P -lower approximation of union of classes X≥i , X≤i ,

respectively.

Theorem 3.5.4. Lower approximations defined according to (3.30) and (3.31) satisfy

condition (3.15):

P (X≥i ) ⊆ P
α
′

X
≥
i (X≥i ),

P (X≤i ) ⊆ P
α
′

X
≤
i (X≤i ).

Proof. 3.5.4. For each object y ∈ X≥i , D+
P (y) ⊆ X≥i iff µ

′ P
X≥i

(y) = 1. For each object

y ∈ X≤i , D−P (y) ⊆ X≤i iff µ
′ P
X≤i

(y) = 1.

3.5.3 Bayes Factor

According to (3.3), formulation of the gain-type Bayes factors for P ⊆ C, X≥, X≤ ⊆ U ,

y ∈ U , is as follows:

BP
X≥(y) =

|D+
P (y) ∩X≥||¬X≥|

|D+
P (y) ∩ ¬X≥||X≥|

, BP
X≤(y) =

|D−P (y) ∩X≤||¬X≤|
|D−P (y) ∩ ¬X≤||X≤|

.
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Unfortunately, measure BP
X≥

(y) (or BP
X≤

(y)) has none of the considered monotonicity

properties.

Theorem 3.5.5. Measures BP
X≥i

(y) and BP
X≤i

(y) do not have property (m1), i.e., for

all P ⊆ P ′ ⊆ C, X≥i , X
≤
i ⊆ U, y ∈ U , BP

X≥i
(y) and BP

X≤i
(y) are not (m1) monotonically

non-decreasing w.r.t. sets of attributes P and P ′.

Proof. 3.5.5. Measures BP
X≥i

(y) and BP
X≤i

(y) have property (m1) iff for all P ⊆ P ′ ⊆ C,

X≥i , X
≤
i ⊆ U , y ∈ U :

BP
X≥i

(y) ≤ BP ′

X≥i
(y), BP

X≤i
(y) ≤ BP ′

X≤i
(y).

If we analyze situation presented in Figure 3.8, we can notice thatB{a2}
X≥3

(y2) = 2, while

B
{a1,a2}
X≥3

(y2) = 4
3 .

Theorem 3.5.6. Measures BP
X≥i

(y) and BP
X≤i

(y) do not have property (m2), i.e., for all

P ⊆ C, X≥i ⊆ U , X
′≥
i = X≥i ∪X

∆≥
i , U ′ = U ∪X∆≥

i , X∆≥
i ∩ U = ∅, X≤i ⊆ U , X

′≤
i =

X≤i ∪ X
∆≤
i , U ′ = U ∪ X∆≤

i , X∆≤
i ∩ U = ∅, y ∈ U , they are not (m2) monotonically

non-decreasing w.r.t sets of objects X≥ and X≤ when they are augmented by new objects.

Proof. 3.5.6. Measures BP
X≥i

(y) and BP
X≤i

(y) have property (m2) iff for all P ⊆ C, X≥i ⊆

U , X
′≥
i = X≥i ∪ X

∆≥
i , U ′ = U ∪ X∆≥

i , X∆≥
i ∩ U = ∅, X≤i ⊆ U , X

′≤
i = X≤i ∪ X

∆≤
i ,

U ′ = U ∪X∆≤
i , X∆≤

i ∩ U = ∅, y ∈ U :

BP
X≥i

(y) ≤ BP

X
′ ≥
i

(y),

BP
X≤i

(y) ≤ BP

X
′ ≤
i

(y).

Let us consider situation presented in Figure 3.8. In order to show that measure BP
X≥i

(y)

does not have property (m2), let us assume that object y3 is not originally present in

the considered data set and is added as a new object. We can observe that BP
X≥3

(y2) =

2 > BP

X
′ ≥
3

(y2) = 4
3 , for X≥3 = {y1, y2} and X

′≥
3 = {y1, y2, y3}

Theorem 3.5.7. Measures BP
X≥i

(y) and BP
X≤i

(y) do not have property (m3), i.e., for

all P ⊆ C, X≥i , X
≤
i ⊆ U, y ∈ U , BP

X≥i
(y) and BP

X≤i
(y) are not (m3) monotonically

non-decreasing w.r.t. unions X≥i ⊆ U and X≤i ⊆ U .

Proof. 3.5.7. Measures BP
X≥i

(y) and BP
X≤i

(y) have property (m3) iff for all P ⊆ C,

X≥i , X
≤
i ⊆ U , y ∈ U , BP

X≥i
(y) and BP

X≤i
(y) are not (m3) monotonically non-decreasing
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w.r.t. unions X≥i ⊆ U and X≤i ⊆ U :

∀y1, y2 ∈ U : y1DP y2 ⇒ BP
X≥i

(y1) ≥ BP
X≥i

(y2),

∀y1, y2 ∈ U : y1DP y2 ⇒ BP
X≤i

(y1) ≤ BP
X≤i

(y2).

Let us now calculate Bayes factors for situation in Figure 3.8. Let us consider object y2

and unions of classes X≥2 , X≥3 . We have BP
X≥3

(y2) = 4
3 > BP

X≥2
(y2) = 1

2 .

Theorem 3.5.8. Measures BP
X≥i

(y) and BP
X≤i

(y) do not have property (m4), i.e., for all

P ⊆ C, X≥i , X
≤
i ⊆ U, y ∈ U , measures BP

X≥i
(y) and BP

X≤i
(y) are not (m4) monotonically

non-decreasing w.r.t. P -dominance relation.

Proof. 3.5.8. Measures BP
X≥i

(y) and BP
X≤i

(y) have property (m4) iff for all P ⊆ C,

X≥i , X
≤
i ⊆ U , y ∈ U :

∀y1, y2 ∈ U : y1DP y2 ⇒ BP
X≥i

(y1) ≥ BP
X≥i

(y2),

∀y1, y2 ∈ U : y1DP y2 ⇒ BP
X≤i

(y1) ≤ BP
X≤i

(y2).

We analyze situation presented in Figure 3.8, let us notice thatBP
X≥3

(y2) = 4
3 > BP

X≥3
(y1) = 2

3 .

3.5.4 β precision measure

According to (3.4), gain-type consistency measures called β precisions were introduced

for Variable-Precision Dominance-based Rough Set Analysis (VP-DRSA) in (Inuiguchi

and Yoshioka, 2006). These measures are defined for P ⊆ C, X≥, X≤ ⊆ U , y ∈ U , as

follows:

βPX≥(y) =
|D−P (y) ∩X≥|

|D−P (y) ∩X≥|+ |D+
P (y) ∩ ¬X≥|

,

βPX≤(y) =
|D+

P (y) ∩X≤|
|D+

P (y) ∩X≤|+ |D−P (y) ∩ ¬X≤|
.

β precisions are used within VC-DRSA in definition (3.12). It does not have property

(m1), while it appears to have properties (m2), (m3) and (m4).

Theorem 3.5.9. Measures βP
X≥i

(y) and βP
X≤i

(y) do not have property (m1), i.e., for all

P ⊆ P ′ ⊆ C, X≥i , X
≤
i ⊆ U , y ∈ U , βP

X≥i
(y) and βP

X≤i
(y) are not (m1) monotonically

non-decreasing w.r.t. sets of attributes P and P ′.
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Proof. 3.5.9. The proof will be presented by study of situation presented in Figure 3.9.

Measures βP
X≥i

(y) and βP
X≤i

(y) have property (m1) iff for all P ⊆ P ′ ⊆ C, X≥i , X
≤
i ⊆ U ,

y ∈ U :

βP
X≥i

(y) ≤ βP ′
X≥i

(y), βP
X≤i

(y) ≤ βP ′
X≤i

(y).
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Figure 3.9: Illustration of measure β not having property (m1). Exemplary set of objects
described by means of set P of gain-type criteria q1 and q2.

We can notice that β{q1}
X≥2

(y1) = 1
2 , while β{q1,q2}

X≥2
(y1) = 1

3 .

3.5.5 Consistency measure ε

According to (3.6), cost-type consistency measures εP
X≥i

(y) and εP
X≤i

(y), for P ⊆ C, X≥i ,

X≤i , X≤i−1, X≥i+1 ⊆ U , y ∈ U , are defined as

εP
X≥i

(y) =
|D+

P (y) ∩X≤i−1|
|X≤i−1|

, εP
X≤i

(y) =
|D−P (y) ∩X≥i+1|
|X≥i+1|

.

Theorem 3.5.10. Measures εP
X≥i

(y) and εP
X≤i

(y) have property (m1), i.e., for all P ⊆

P ′ ⊆ C, X≥i , X
≤
i ⊆ U , y ∈ U :

εP
X≥i

(y) ≥ εP ′
X≥i

(y), εP
X≤i

(y) ≥ εP ′
X≤i

(y).

Proof. 3.5.10. From the definition of dominance cones D+
P (y) and D+

P ′(y), P ⊆ P ′ ⊆ C,

y ∈ U ,

D+
P (y) ⊇ D+

P ′(y)
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for X≥i , X
≤
i−1 ⊆ U being both independent of sets of considered attributes P and P ′.

This implies:

|D+
P (y) ∩X≤i−1|
|X≤i−1|

≥
|D+

P ′(y) ∩X≤i−1|
|X≤i−1|

⇔ εP
X≥i

(y) ≥ εP ′
X≥i

(y).

The proof for downward union X≤i is analogical, but starts from the observation that

for negative dominance cones D−P (y) and D−P ′(y), P ⊆ P ′ ⊆ C, y ∈ U ,

D−P (y) ⊇ D−P ′(y).

Theorem 3.5.11. Measure εP
X≥i

(y) has property (m2), i.e., for all P ⊆ C, X≥i ⊆ U ,

X
′≥
i = X≥i ∪X

∆≥
i , U ′ = U ∪X∆≥

i , X∆≥
i ∩ U = ∅, y ∈ U :

εP
X≥i

(y) = εP
X
′ ≥
i

(y).

Proof. 3.5.11. New objects are introduced to union of classes X≥i ⊆ U . Thus, for all sets

of objects X≥i ⊆ U , X
′≥
i ⊆ U ′, where X

′≥
i = X≥i ∪X

∆≥
i , U ′ = U ∪X∆≥

i , X∆≥
i ∩U = ∅,

X≤i−1 = X
′≤
i−1.

For all P ⊆ C, y ∈ U , this implies:

|D+
P (y) ∩X≤i−1|
|X≤i−1|

=
|D′+P (y) ∩X

′≤
i−1|

|X ′≤i−1|
⇔ εP

X≥i
(y) = εP

X
′ ≥
i

(y),

where D
′+
P (y) denotes P -positive dominance cone of object y when considering universe

U ′.

Theorem 3.5.12. Measure εP
X≤i

(y) has property (m2), i.e., for all P ⊆ C, X≤i ⊆ U ,

X
′≤
i = X≤i ∪X

∆≤
i , U ′ = U ∪X∆≤

i , X∆≤
i ∩ U = ∅, y ∈ U :

εP
X≤i

(y) = εP
X
′ ≤
i

(y).

Proof. 3.5.12. Analogous to proof 3.5.11 which is carried out for sets of objects X≥i and

X
′≥
i . In this case, sets of objects X≥i+1 and X

′≥
i+1 are considered instead of sets X≤i−1 and

X
′≤
i−1, respectively.

Theorem 3.5.13. Measure εP
X≥i

(y) and εP
X≤i

(y) do not have property (m3), i.e., for all

P ⊆ C, X≥i ⊆ X≥j ⊆ U , j ≤ i, y ∈ U , measure εP
X≥i

(y) is not monotonically non-

increasing w.r.t. sets of objects X≥i , and for all P ⊆ C, X≤i ⊆ X≤j ⊆ U , j ≥ i, y ∈ U ,

measure εP
X≤i

(y) is not monotonically non-increasing w.r.t. sets of objects X≤i .
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Proof. 3.5.13. The lack of property (m3) of εP
X≥i

(y) and εP
X≤i

(y) can be illustrated by

the following example. We have P = {a1}, X1 = {y1}, X2 = {y2}, X3 = {y3}, where

f(y1, a1) = 3, f(y2, a1) = 1, f(y3, a1) = 2. Moreover, let us assume that attribute a1 is

gain-type and decision classes are ordered such that class X3 is better than X2, which

is better than X1. We have, εP
X≥3

(y3) = 1
2 < εP

X≥2
(y3) = 1. The same can be shown for

downward unions.

In order to ensure property (m3), we introduce two possible modifications of measures

εP
X≥i

(y) and εP
X≤i

(y).

Theorem 3.5.14. Measures εP
X≥i

(y) and εP
X≤i

(y) have property (m4), i.e., for all P ⊆ C,

X≥i , X
≤
i ⊆ U , y ∈ U :

∀y1, y2 ∈ U : y1DP y2 ⇒ εP
X≥i

(y1) ≤ εP
X≥i

(y2),

∀y1, y2 ∈ U : y1DP y2 ⇒ εP
X≤i

(y1) ≥ εP
X≤i

(y2).

Proof. 3.5.14. Let us consider y1, y2 ∈ U such that y1DP y2, P ⊆ C. From the definition

of dominance cone D+
P (y), y ∈ U ,

D+
P (y1) ⊆ D+

P (y2).

For X≥i , X
≤
i−1 ⊆ U , this implies:

D+
P (y1) ∩X≤i−1 ⊆ D

+
P (y2) ∩X≤i−1 ⇒ |D

+
P (y1) ∩X≤i−1| ≤ |D

+
P (y2) ∩X≤i−1| ⇒

⇒
|D+

P (y1) ∩X≤i−1|
|X≤i−1|

≤
|D+

P (y2) ∩X≤i−1|
|X≤i−1|

⇔ εP
X≥i

(y1) ≤ εP
X≥i

(y2).

The proof for downward union X≤i is analogical, but starts from the observation that

for negative dominance cone D−P (y), y ∈ U ,

D−P (y1) ⊇ D−P (y2).

3.5.6 Consistency measure ε∗

According to (3.7), cost-type consistency measures ε∗P
X≥i

(y) and ε∗P
X≤i

(y), for P ⊆ C,

X≥i , X
≤
i ⊆ U , y ∈ U , are defined as

ε∗P
X≥i

(y) = max
j≤i

εP
X≥j

(y),

ε∗P
X≤i

(y) = max
j≥i

εP
X≤j

(y).
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Theorem 3.5.15. Measures ε∗P
X≥i

(y) and ε∗P
X≤i

(y) have property (m1), i.e., for all P ⊆

P ′ ⊆ C, X≥i , X
≤
i ⊆ U , y ∈ U :

ε∗P
X≥i

(y) ≥ ε∗P ′
X≥i

(y), ε∗P
X≤i

(y) ≥ ε∗P ′
X≤i

(y).

Proof. 3.5.15. As it was already proved in proof 3.5.10, for all P ⊆ P ′ ⊆ C, X≥i , X
≤
i ⊆

U , y ∈ U ,

εP
X≥i

(y) ≥ εP ′
X≥i

(y)

and

εP
X≤i

(y) ≥ εP ′
X≤i

(y).

Thus,

ε∗P
X≥i

(y) = max
j≤i

εP
X≥j

(y) ≥ max
j≤i

εP
′

X≥j
(y) = ε∗P

′

X≥i
(y)

and

ε∗P
X≤i

(y) = max
j≥i

εP
X≤j

(y) ≥ max
j≥i

εP
′

X≤j
(y) = ε∗P

′

X≤i
(y).

Theorem 3.5.16. Measure ε∗P
X≥i

(y) has property (m2), i.e., for all P ⊆ C, X≥i ⊆ U ,

X
′≥
i = X≥i ∪X

∆≥
i , U ′ = U ∪X∆≥

i , X∆≥
i ∩ U = ∅, y ∈ U :

ε∗P
X≥i

(y) = ε∗P
X
′ ≥
i

(y).

Proof. 3.5.16. New objects are introduced to union of classes X≥i ⊆ U . Thus, for all sets

of objects X≥i ⊆ U , X
′≥
i ⊆ U ′, where X

′≥
i = X≥i ∪X

∆≥
i , U ′ = U ∪X∆≥

i , X∆≥
i ∩U = ∅,

X≤i−1 = X
′≤
i−1.

For all P ⊆ C, y ∈ U , this implies:

ε∗P
X≥i

(y) = max
j≤i

|D+
P (y) ∩X≤j−1|
|X≤j−1|

= max
j≤i

|D′+P (y) ∩X
′≤
j−1|

|X ′≤j−1|
= ε∗P

X
′ ≥
i

(y),

where D
′+
P (y) denotes P -positive dominance cone of object y when considering universe

U ′.

Theorem 3.5.17. Measure ε∗P
X≤i

(y) has property (m2), i.e., for all P ⊆ C, X≤i ⊆ U ,

X
′≤
i = X≤i ∪X

∆≤
i , U ′ = U ∪X∆≤

i , X∆≤
i ∩ U = ∅, y ∈ U :

ε∗P
X≤i

(y) = ε∗P
X
′ ≤
i

(y).
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Proof. 3.5.17. Analogous to proof 3.5.16 which is carried out for sets of objects X≥i and

X
′≥
i . In this case, sets of objects X≥i+1 and X

′≥
i+1 are considered instead of sets X≤i−1 and

X
′≤
i−1, respectively.

Theorem 3.5.18. Measure ε∗P
X≥i

(y) has property (m3), i.e., for all P ⊆ C, X≥i ⊆ X
≥
j ⊆

U , j ≤ i, y ∈ U :

ε∗P
X≥i

(y) ≥ ε∗P
X≥j

(y).

Proof. 3.5.18. Let us consider P ⊆ C, X≥i ⊆ X
≥
j ⊆ U , j ≤ i, y ∈ U . Since j ≤ i,

ε∗P
X≥i

(y) = max
k≤i

|D+
P (y) ∩X≤k−1|
|X≤k−1|

≥ max
k≤j

|D+
P (y) ∩X≤k−1|
|X≤k−1|

= ε∗P
X≥j

(y).

Theorem 3.5.19. Measure ε∗P
X≤i

(y) has property (m3), i.e., for all P ⊆ C, X≤i ⊆ X
≤
j ⊆

U , j ≥ i, y ∈ U :

ε∗P
X≤i

(y) ≥ ε∗P
X≤j

(y).

Proof. 3.5.19. Analogous to proof 3.5.18. Let us consider P ⊆ C, X≤i ⊆ X
≤
j ⊆ U , j ≥ i,

y ∈ U . Since j ≥ i,

ε∗P
X≤i

(y) = max
k≥i

|D−P (y) ∩X≥k+1|
|X≥k+1|

≥ max
k≥j

|D−P (y) ∩X≥k+1|
|X≥k+1|

= ε∗P
X≤j

(y).

Theorem 3.5.20. Measures ε∗P
X≥i

(y) and ε∗P
X≤i

(y) have property (m4), i.e., for all P ⊆ C,

X≥i , X
≤
i ⊆ U , y ∈ U :

∀y1, y2 ∈ U : y1DP y2 ⇒ ε∗P
X≥i

(y1) ≤ ε∗P
X≥i

(y2),

∀y1, y2 ∈ U : y1DP y2 ⇒ ε∗P
X≤i

(y1) ≥ ε∗P
X≤i

(y2).

Proof. 3.5.20. Let us consider y1, y2 ∈ U such that y1DP y2, P ⊆ C. From the definition

of dominance cone D+
P (y), y ∈ U ,

D+
P (y1) ⊆ D+

P (y2).

For X≥i , X
≤
i−1 ⊆ U , this implies:

D+
P (y1) ∩X≤i−1 ⊆ D

+
P (y2) ∩X≤i−1 ⇒

|D+
P (y1) ∩X≤i−1|
|X≤i−1|

≤
|D+

P (y2) ∩X≤i−1|
|X≤i−1|

⇒

⇒ max
k≤i

|D+
P (y1) ∩X≤k−1|
|X≤k−1|

≤ max
k≤i

|D+
P (y2) ∩X≤k−1|
|X≤k−1|

⇔ ε∗P
X≥i

(y1) ≤ ε∗P
X≥i

(y2).
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The proof for downward union X≤i is analogical, but starts from the observation that

for negative dominance cone D−P (y), y ∈ U ,

D−P (y1) ⊇ D−P (y2).

Monotonic P -lower approximation of union of classes X≥i , X≤i defined according

to (2.9) takes the form:

P
β∗
X
≥
i (X≥i ) = {y ∈ X≥i : ε∗P

X≥i
(y) ≤ β∗

X≥i
}, (3.32)

P
β∗
X
≤
i (X≤i ) = {y ∈ X≤i : ε∗P

X≤i
(y) ≤ β∗

X≤i
}, (3.33)

where cost-threshold β∗
X≥i

, β∗
X≤i
∈ [0, 1] reflects the highest degree of consistency ac-

ceptable to include object y in the P -lower approximation of union of classes X≥i , X≤i ,

respectively.

Theorem 3.5.21. Lower approximations defined according to (3.32) and (3.33) satisfy

condition (3.16):

P (X≥i ) ⊆ P
β∗
X
≥
i (X≥i ),

P (X≤i ) ⊆ P
β∗
X
≤
i (X≤i ).

Proof. 3.5.21. For each object y ∈ X≥i , D+
P (y) ⊆ X≥i iff ε∗P

X≥i
(y) = 0. For each object

y ∈ X≤i , D−P (y) ⊆ X≤i iff ε∗P
X≤i

(y) = 0.

3.5.7 Consistency measure ε
′

Another way to overcome the lack of property (m3) is to consider cost-type consistency

measures ε
′ P
X≥i

(y) and ε
′ P
X≤i

(y). For P ⊆ C, X≥i , X≤i , X≤i−1, X≥i+1 ⊆ U , y ∈ U , they are

defined, according to (3.9), as

ε
′ P
X≥i

(y) =
|D+

P (y) ∩X≤i−1|
|X≥i |

, ε
′ P
X≤i

(y) =
|D−P (y) ∩X≥i+1|

|X≤i |
.

Theorem 3.5.22. Measures ε
′ P
X≥i

(y) and ε
′ P
X≤i

(y) have property (m1), i.e., for all P ⊆

P ′ ⊆ C, X≥i , X
≤
i ⊆ U, y ∈ U :

ε
′ P
X≥i

(y) ≥ ε′ P ′
X≥i

(y), ε
′ P
X≤i

(y) ≥ ε′ P ′
X≤i

(y).
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Proof. 3.5.22. Analogous to proof 3.5.10 for measures εP
X≥i

(y) and εP
X≤i

(y) - only the

common denominators in fractions are changed from |X≤i−1| and |X≥i+1| to |X≥i | and

|X≤i |, respectively.

Theorem 3.5.23. Measure ε
′ P
X≥i

(y) has property (m2), i.e., for all P ⊆ C, X≥i ⊆ U ,

X
′≥
i = X≥i ∪X

∆≥
i , U ′ = U ∪X∆≥

i , X∆≥
i ∩ U = ∅, y ∈ U :

ε
′ P
X≥i

(y) > ε
′ P

X
′ ≥
i

(y).

Proof. 3.5.23. New objects are introduced to union of classes X≥i ⊆ U . Thus, for all

sets of objects X≥i ⊆ U , X
′≥
i = X≥i ∪X

∆≥
i , where X∆≥

i ∩ U = ∅,

X≤i−1 = X
′≤
i−1, |X≥i | < |X

′≥
i |.

This implies that for all P ⊆ C, y ∈ U :

|D+
P (y) ∩X≤i−1|
|X≥i |

>
|D′+P (y) ∩X

′≤
i−1|

|X ′≥i |
⇔ ε

′ P
X≥i

(y) > ε
′ P

X
′ ≥
i

(y),

where D
′+
P (y) denotes P -positive dominance cone of object y when considering universe

U ∪X∆≥
i .

Theorem 3.5.24. Measure ε
′ P
X≤i

(y) has property (m2), i.e., for all P ⊆ C, X≤i ⊆ U ,

X
′≤
i = X≤i ∪X

∆≤
i , U ′ = U ∪X∆≤

i , X∆≤
i ∩ U = ∅, y ∈ U :

ε
′ P
X≤i

(y) > ε
′ P

X
′ ≤
i

(y).

Proof. 3.5.24. Analogous to proof 3.5.23, carried out for sets of objects X≥i , X
′≥
i . Here,

sets of objects X≥i+1, X
′≥
i+1 and cardinalities of sets |X≤i |, |X

′≤
i | are taken into account

instead of sets X≤i−1, X
′≤
i−1 and cardinalities |X≥i |, |X

′≥
i |, respectively.

Theorem 3.5.25. Measure ε
′ P
X≥i

(y) has property (m3), i.e., for all P ⊆ C, X≥i ⊆ X
≥
j ⊆

U , j ≤ i, y ∈ U :

ε
′ P
X≥i

(y) ≥ ε′ P
X≥j

(y).

Proof. 3.5.25. Let us consider P ⊆ C, X≥i ⊆ X
≥
j ⊆ U , j ≤ i, y ∈ U . Since j ≤ i,

X≥i ⊆ X
≥
j and X≤i−1 ⊇ X

≤
j−1.

This implies:

|D+
P (y) ∩X≤i−1|
|X≥i |

≥
|D+

P (y) ∩X≤j−1|
|X≥j |

⇔ ε
′ P
X≥i

(y) ≥ ε′ P
X≥j

(y).
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Theorem 3.5.26. Measure ε
′ P
X≤i

(y) has property (m3), i.e., for all P ⊆ C, X≤i ⊆ X
≤
j ⊆

U , j ≥ i, y ∈ U :

ε
′ P
X≤i

(y) ≥ ε′ P
X≤j

(y).

Proof. 3.5.26. Analogous to proof 3.5.25. Let us consider P ⊆ C, X≤i ⊆ X
≤
j ⊆ U , j ≥ i,

y ∈ U . Since j ≥ i,
X≤i ⊆ X

≤
j and X≥i+1 ⊇ X

≥
j+1.

This implies:

|D−P (y) ∩X≥i+1|
|X≤i |

≥
|D−P (y) ∩X≥j+1|

|X≤j |
⇔ ε

′ P
X≤i

(y) ≥ ε′ P
X≤j

(y).

Theorem 3.5.27. Measures ε
′ P
X≥i

(y) and ε
′ P
X≤i

(y) have property (m4), i.e., for all P ⊆

C, X≥i , X
≤
i ⊆ U, y ∈ U :

∀y1, y2 ∈ U : y1DP y2 ⇒ ε
′ P
X≥i

(y1) ≤ ε′ P
X≥i

(y2),

∀y1, y2 ∈ U : y1DP y2 ⇒ ε
′ P
X≤i

(y1) ≥ ε′ P
X≤i

(y2).

Proof. 3.5.27. Analogous to proof 3.5.14 for measures εP
X≥i

(y) and εP
X≤i

(y) - only the

common denominators in fractions are changed from |X≤i−1| and |X≥i+1| to |X≥i | and

|X≤i |, respectively.

Monotonic P -lower approximation of union of classes X≥i , X≤i defined according to

(2.9) takes the form:

P
β
′

X
≥
i (X≥i ) = {y ∈ X≥i : ε

′ P
X≥i

(y) ≤ β′
X≥i
}, (3.34)

P
β
′

X
≤
i (X≤i ) = {y ∈ X≤i : ε

′ P
X≤i

(y) ≤ β′
X≤i
}, (3.35)

where cost-threshold β
′

X≥i
∈
[
0,
|X≤i−1|
|X≥i |

]
, β

′

X≤i
∈
[
0,
|X≥i+1|
|X≤i |

]
reflects the highest degree

of consistency acceptable to include object y in the P -lower approximation of union of

classes X≥i , X≤i , respectively.

Theorem 3.5.28. Lower approximations defined according to (3.34) and (3.35) satisfy

condition (2.11):

P (X≥i ) ⊆ P
β
′

X
≥
i (X≥i ),

P (X≤i ) ⊆ P
β
′

X
≤
i (X≤i ).
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3.5.28. For each object y ∈ X≥i , D+
P (y) ⊆ X≥i iff ε

′ P
X≥i

(y) = 0. For each object y ∈ X≤i ,

D−P (y) ⊆ X≤i iff ε
′ P
X≤i

(y) = 0.

3.5.8 Consistency measure µ

For P ⊆ C, X≥i , X
≤
i ⊆ U , y ∈ U , we also consider the following gain-type consistency

measures, defined according to (3.10), as:

µP
X≥i

(y) = max
R⊆P,

z∈D−R(y)∩X≥i

|D+
R(z) ∩X≥i |
|D+

R(z)|
,

µP
X≤i

(y) = max
R⊆P,

z∈D+
R(y)∩X≤i

|D−R(z) ∩X≤i |
|D−R(z)|

.

Theorem 3.5.29. Measures µP
X≥i

(y) and µP
X≤i

(y) have property (m1), i.e., for all P ⊆

P ′ ⊆ C, X≥i , X
≤
i ⊆ U, y ∈ U :

µP
X≥i

(y) ≤ µP ′
X≥i

(y),

µP
X≤i

(y) ≤ µP ′
X≤i

(y).

Proof. 3.5.29. For all P ⊆ P ′ ⊆ C, X≥i ⊆ U , y ∈ U ,

µP
X≥i

(y) = max
R⊆P,

z∈D−R(y)∩X≥i

|D+
R(z) ∩X≥i |
|D+

R(z)|
≤ max

R⊆P ′,
z∈D−R(y)∩X≥i

|D+
R(z) ∩X≥i |
|D+

R(z)|
= µP

′

X≥i
(y).

The same can be proved for measure µP
X≤i

(y).

Theorem 3.5.30. Measure µP
X≥i

(y) has property (m2), i.e., for all P ⊆ C, X≥i ⊆ U ,

X
′≥
i = X≥i ∪X

∆≥
i , U ′ = U ∪X∆≥

i , X∆≥
i ∩ U = ∅, y ∈ U :

µP
X≥i

(y) ≤ µP
X
′ ≥
i

(y).

Proof. 3.5.30. Analogous to proof 2.5.11. Let us consider P ⊆ C, X≥i ⊆ U , X
′≥
i =

X≥i ∪X
∆≥
i , X∆≥

i ∩ U = ∅, y ∈ U . Since all new objects are added to union of classes

X≥i , both numerator and denominator of fraction∣∣∣D+
P (y) ∩X≥i

∣∣∣∣∣D+
P (y)

∣∣ = µP
X≥i

(y)
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can increase only with the same number k ≥ 0, equal to difference |D′+P (y)| − |D+
P (y)|:∣∣∣D+

P (y) ∩X≥i
∣∣∣+ k∣∣D+

P (y)
∣∣+ k

=

∣∣∣D′+P (y) ∩X
′≥
i

∣∣∣∣∣∣D′+P (y)
∣∣∣ = µP

X
′ ≥
i

(y),

where D
′+
P (y) denotes the set of objects dominating object y when considering set of

attributes P and universe U ∪ X∆≥
i . Using the same reasoning as in proof 2.5.11, we

can show that

µP
X≥i

(y) ≤ µP
X
′ ≥
i

(y). (3.36)

Thus,

µP
X≥i

(y) = max
R⊆P,

z∈D−R(y)∩X≥i

µR
X≥i

(z) ≤ max
R⊆P,

z∈D
′ −
R (y)∩X

′ ≥
i

µR
X
′ ≥
i

(z) = µP
X
′ ≥
i

(y).

Theorem 3.5.31. Measure µP
X≤i

(y) has property (m2), i.e., for all P ⊆ C, X≤i ⊆ U ,

X
′≤
i = X≤i ∪X

∆≤
i , U ′ = U ∪X∆≤

i , X∆≤
i ∩ U = ∅, y ∈ U :

µP
X≤i

(y) ≤ µP
X
′ ≤
i

(y).

Proof. 3.5.31. Analogous to proof 3.5.30 - only the upward unions are changed to down-

ward unions and positive dominance cones are changed to negative dominance cones,

respectively.

Theorem 3.5.32. Measure µP
X≥i

(y) has property (m3), i.e., for all P ⊆ C, X≥i ⊆ X
≥
j ⊆

U , j ≤ i, y ∈ U :

µP
X≥i

(y) ≤ µP
X≥j

(y).

Proof. 3.5.32. Let us consider P ⊆ C, X≥i ⊆ X
≥
j ⊆ U , j ≤ i, y ∈ U . Since X≥i ⊆ X

≥
j ,

µP
X≥i

(y) = max
R⊆P,

z∈D−R(y)∩X≥i

|D+
R(z) ∩X≥i |
|D+

R(z)|
≤ max

R⊆P,
z∈D−R(y)∩X≥j

|D+
R(z) ∩X≥j |
|D+

R(z)|
= µP

X≥j
(y).

Theorem 3.5.33. Measure µP
X≤i

(y) has property (m3), i.e, for all P ⊆ C, X≤i ⊆ X
≤
j ⊆

U , j ≥ i, y ∈ U :

µP
X≤i

(y) ≤ µP
X≤j

(y).
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Proof. 3.5.33. Analogous to proof 3.5.32. Unions of classes X≤i ⊆ X≤j ⊆ U are consid-

ered.

Theorem 3.5.34. Measures µP
X≥i

(y) and µP
X≤i

(y) have property (m4), i.e., for all P ⊆

C, X≥i , X
≤
i ⊆ U, y ∈ U :

∀y1, y2 ∈ U : y1DP y2 ⇒ µP
X≥i

(y1) ≥ µP
X≥i

(y2),

∀y1, y2 ∈ U : y1DP y2 ⇒ µP
X≤i

(y1) ≤ µP
X≤i

(y2).

Proof. 3.5.34. Let us consider y1, y2 ∈ U such that y1DP y2, P ⊆ C. From the definitions

of dominance cones D+
P (y) and D−P (y), y ∈ U ,

D+
P (y1) ⊆ D+

P (y2) and D−P (y1) ⊇ D−P (y2).

For X≥i , X
≤
i ⊆ U , this implies:

∀R ⊆ P : D−R(y1) ⊇ D−R(y2)⇒ ∀R ⊆ P : D−R(y1) ∩X≥i ⊇ D
−
R(y2) ∩X≥i ⇒

⇒ {(R, z) : R ⊆ P, z ∈ D−R(y1) ∩X≥i } ⊇ {(R, z) : R ⊆ P, z ∈ D−R(y2) ∩X≥i } ⇒

⇒ max
R⊆P,

z∈D−R(y1)∩X≥i

|D+
R(z) ∩X≥i |
|D+

R(z)|
≥ max

R⊆P,
z∈D−R(y2)∩X≥i

|D+
R(z) ∩X≥i |
|D+

R(z)|
⇔

⇔ µP
X≥i

(y1) ≥ µP
X≥i

(y2),

∀R ⊆ P : D+
R(y1) ⊆ D+

R(y2)⇒ ∀R ⊆ P : D+
R(y1) ∩X≤i ⊆ D

+
R(y2) ∩X≤i ⇒

⇒ {(R, z) : R ⊆ P, z ∈ D+
R(y1) ∩X≤i } ⊆ {(R, z) : R ⊆ P, z ∈ D+

R(y2) ∩X≤i } ⇒

⇒ max
R⊆P,

z∈D+
R(y1)∩X≤i

|D−R(z) ∩X≤i |
|D−R(z)|

≤ max
R⊆P,

z∈D+
R(y2)∩X≤i

|D−R(z) ∩X≤i |
|D−R(z)|

⇔

⇔ µP
X≤i

(y1) ≤ µP
X≤i

(y2).

Monotonic P -lower approximation of union of classes X≥i , X≤i defined according to

(2.7) takes the form:

P
α
X
≥
i (X≥i ) = {y ∈ X≥i : µP

X≥i
(y) ≥ α

X≥i
}, (3.37)

P
α
X
≤
i (X≤i ) = {y ∈ X≤i : µP

X≤i
(y) ≥ α

X≤i
}, (3.38)

where gain-threshold α
X≥i

, α
X≤i
∈ [0, 1] reflects the lowest degree of consistency accept-

able to include object y in the P -lower approximation of union of classes X≥i , X≤i ,

respectively.
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Theorem 3.5.35. Lower approximations defined according to (3.37) and (3.38) satisfy

condition (3.15):

P (X≥i ) ⊆ P
α
X
≥
i (X≥i ),

P (X≤i ) ⊆ P
α
X
≤
i (X≤i ).

Proof. 3.5.35. For each object y ∈ X≥i , D+
P (y) ⊆ X≥i iff µP

X≥i
(y) = 1. For each object

y ∈ X≤i , D−P (y) ⊆ X≤i iff µP
X≤i

(y) = 1.

3.6 Properties of rough approximations from the

viewpoint of rule induction

As we already showed in section 2.6, P -lower approximations defined as (2.7) and (2.9)

are not sufficient to define sets of objects covered by rules in VC-IRSA. For this reason,

we used the concept of P -positive region of approximated set. This situation also holds

for P -lower approximations defined as (3.12) and (3.14) for VC-DRSA. Let us explain

this point in detail.

A decision rule that assigns to a given upward union of classes X≥i , covers object y

and objects P -dominating object y, i.e., if it covers object y it also covers all objects

from granule D+
P (y). Analogously, a decision rule that assigns to a given downward

union of classes X≤i , covers object y and objects that are P -dominated by y, i.e., if it

covers object y it also covers all objects from granule D−P (y). When we create a rule

covering object y that belong to P -lower approximation of X≥i and D+
P (y) happens to

be composed of objects that do not belong to X≥i there may be no possibility to cover

y while not covering objects from D+
P (y) that do not belong to X≥i . For object y that

belong to union of classes X≤i and granule D−p (y) the situation may be the same. For

this reason, we define P -positive, P -negative and P -boundary regions of unions of classes

X≥i and X≤i in P -evaluation space, i.e., in VP =
∏

j:aj∈P
Vaj .

For P ⊆ C,X≥i , X
≤
i ⊆ U , where y ∈ U and αXi ∈ [0, AX ], βXi ∈ [0, BX ], P -positiveP -positive

region regions of a unions of classes X≥i and X≤i are defined as:

POS
α
X
≥
i

P (X≥i ) =
⋃

y∈P
α
X
≥
i (X≥i )

D+
P (y), POS

α
X
≤
i

P (X≤i ) =
⋃

y∈P
α
X
≤
i (X≤i )

D−P (y), (3.39)

POS
β
X
≥
i

P (X≥i ) =
⋃

y∈P
β
X
≥
i (X≥i )

D+
P (y), POS

β
X
≤
i

P (X≤i ) =
⋃

y∈P
β
X
≤
i (X≤i )

D−P (y), (3.40)
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where P
α
X
≥
i (X≥i ) and P

α
X
≤
i (X≤i ) are defined according to (3.12) and P

β
X
≥
i (X≥i ) and

P
β
X
≤
i (X≤i ) are defined according to (3.14). From (3.39 and 3.40), positive regions are

composed of all objects y from P -lower approximation of X≥i or X≤i and objects that

belong to dominance cone D+
P (y) or D−P (y) (i.e., all objects from respective dominance

cone starting in y). This can be denoted as property of P -positive regions:

POS
α
X
≥
i

P (X≥i ) =

=
{
y ∈ X≥i : fP

X≥i
(y) ≥ α

X≥i

}
∪
{
y ∈ D+

P (x) : x ∈ P
α
X
≥
i (X≥i ) ∧ fP

X≥i
(y) ≥ α

X≥i

}
=

= P
α
X
≥
i (X≥i ) ∪

{
y ∈ D+

P (x) : x ∈ P
α
X
≥
i (X≥i ) ∧ fP

X≥i
(y) ≥ α

X≥i

}
,

POS
α
X
≤
i

P (X≤i ) =

=
{
y ∈ X≤i : fP

X≤i
(y) ≥ α

X≤i

}
∪
{
y ∈ D−P (x) : x ∈ P

α
X
≤
i (X≤i ) ∧ fP

X≤i
(y) ≥ α

X≤i

}
=

= P
α
X
≤
i (X≤i ) ∪

{
y ∈ D−P (x) : x ∈ P

α
X
≤
i (X≤i ) ∧ fP

X≤i
(y) ≥ α

X≤i

}
, (3.41)

POS
β
X
≥
i

P (X≥i ) =

=
{
y ∈ X≥i : gP

X≥i
(y) ≤ β

X≥i

}
∪
{
y ∈ D+

P (x) : x ∈ P
β
X
≥
i (X≥i ) ∧ gP

X≥i
(y) ≤ β

X≥i

}
=

= P
β
X
≥
i (X≥i ) ∪

{
y ∈ D+

P (x) : x ∈ P
β
X
≥
i (X≥i ) ∧ gP

X≥i
(y) ≤ β

X≥i

}
,

POS
β
X
≤
i

P (X≤i ) =

=
{
y ∈ X≤i : gP

X≤i
(y) ≤ β

X≤i

}
∪
{
y ∈ D−P (x) : x ∈ P

β
X
≤
i (X≤i ) ∧ gP

X≤i
(y) ≤ β

X≤i

}
=

= P
β
X
≤
i (X≤i ) ∪

{
y ∈ D−P (x) : x ∈ P

β
X
≤
i (X≤i ) ∧ gP

X≤i
(y) ≤ β

X≤i

}
, (3.42)

Lemma 3.6.1. P -positive regions defined according to (3.39) and (3.40) differ in general

from P -lower approximations defined according to (3.11) and (3.13).

Let us observe that according to definitions (3.11) and (3.39), using property (3.41):

P
α
X
≥
i (X≥i ) =

{
y ∈ U : fP

X≥i
(y) ≥ α

X≥i

}
=

=
{
y ∈ X≥i : fP

X≥i
(y) ≥ α

X≥i

}
∪
{
y ∈ X≤i−1 : fP

X≥i
(y) ≥ α

X≥i

}
, while

POS
α
X
≥
i

P (X≥i ) =
⋃

y∈P
α
X
≥
i (X≥i )

D+
P (y) =

{
y ∈ X≥i : fP

X≥i
(y) ≥ α

X≥i

}
∪
{
y ∈ D+

P (x) : x ∈ P
α
X
≥
i (X≥i ) ∧ fP

X≥i
(y) ≥ α

X≥i

}
.
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P -lower approximation defined according to (3.11) contains all objects satisfying

condition on consistency of belonging to a given upward union of classes X≥i . P -positive

region contains only these objects that satisfy the condition and are dominating objects

that belong to the P -lower approximation of X≥i . Analogous propriety can be shown for

the P -lower approximation and P -positive region of a downward union of classes X≤i .

The same can be also shown for definitions (3.13) and (3.40).

Moreover, from the same reason, if one would consider a P -positive region of X≥i
that is composed of objects dominating objects that belong to P -lower approximation of

X≥i defined by (3.11), (3.13), it would differ from the P -positive region defined according

to (3.39), (3.40).

We define P -negative and P -boundary regions of approximated sets, for P ⊆ C,X≥i , X
≤
i ⊆

U , and αXi ∈ [0, 1], βXi ∈ [0, 1], as the following:P -
negative

region
NEG

α
X
≥
i

P (X≥i ) = POS
α
X
≥
i

P (X≤i−1)− POS
α
X
≥
i

P (X≥i ),

NEG
α
X
≤
i

P (X≤i ) = POS
α
X
≤
i

P (X≥i+1)− POS
α
X
≤
i

P (X≤i ), (3.43)

NEG
β
X
≥
i

P (X≥i ) = POS
β
X
≥
i

P (X≤i−1)− POS
β
X
≥
i

P (X≥i ),

NEG
β
X
≤
i

P (X≤i ) = POS
β
X
≤
i

P (X≥i+1)− POS
β
X
≤
i

P (X≤i ). (3.44)

P -
boundary

region
BND

α
X
≥
i

P (X≥i ) = (U − POS
α
X
≥
i

P (X≥i ))−NEG
α
X
≥
i

P (X≥i ),

BND
α
X
≤
i

P (X≤i ) = (U − POS
α
X
≤
i

P (X≤i ))−NEG
α
X
≤
i

P (X≤i ), (3.45)

BND
β
X
≥
i

P (X≥i ) = (U − POS
β
X
≥
i

P (X≥i ))−NEG
β
X
≥
i

P (X≥i ),

BND
β
X
≤
i

P (X≤i ) = (U − POS
β
X
≤
i

P (X≤i ))−NEG
β
X
≤
i

P (X≤i ). (3.46)

Analogously as in case of VC-IRSA, once decision rules are learned, they can be

applied by a classifier (see chapter 5) to suggest assignment of objects to classes. The

rules are learned from P -positive regions of the unions of decision classes. This type of

structuring of the data involves an a priori restriction of the set of objects, on which the

classifier is learned. The rough set analysis enables estimation of the attainable predictive

accuracy before learning of a classifier occurs. A classifier learned on P -positive regions

of unions of decision classes may correctly assign object y ∈ Xi to class Xi if y belongs

to the P -positive region of X≥i or X≤i .
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The following two measures estimate the predictive accuracy that may be attained

by the classifier. The first, λ measure, estimates the ratio of objects in the data tableλ measure

that may be learned by the classifier:

λαXP =

∣∣X1 ∩ POS
α
X
≤
1

P (X≤1 )
∣∣

|U |
+ (3.47)

+

⋃n−1
i=2

∣∣Xi ∩ (POS
α
X
≥
i

P (X≥i ) ∪ POS
α
X
≤
i

P (X≤i ))
∣∣

|U |
+

∣∣Xn ∩ POS
α
X
≥
n

P (X≥n )
∣∣

|U |
,

λ
βX
P =

∣∣X1 ∩ POS
β
X
≤
1

P (X≤1 )
∣∣

|U |
+ (3.48)

+

⋃n−1
i=2

∣∣Xi ∩ (POS
β
X
≥
i

P (X≥i ) ∪ POS
β
X
≤
i

P (X≤i ))
∣∣

|U |
+

∣∣Xn ∩ POS
β
X
≥
n

P (X≥n )
∣∣

|U |
,

where n is the number of the decision classes.

The second, δ measure, estimates the average minimal absolute difference between δ measure

index of the class to which an object may be assigned and index of the class to which

the object belongs. For i : yj ∈ Xi, it is defined as:

δαXP =
1

|U |

|U |∑
j=1

min

k : yj∈POS
α
X
≥
k

P (X≥k )∨ yj∈POS
α
X
≤
k

P (X≤k )

|i− k|, (3.49)

δ
βX
P =

1

|U |

|U |∑
j=1

min

k : yj∈POS
β
X
≥
k

P (X≥k )∨ yj∈POS
β
X
≤
k

P (X≤k )

|i− k|. (3.50)

Both these measures can be used to characterize the data set on which the classifier

is learned.

3.7 Summary

In this chapter, we considered consistency measures for VC-DRSA. Their properties

are summarized in Table 3.2. Remark that εP
X≥i

(y) and εP
X≤i

(y) are missing desirable

property (m3). Therefore, two possible modifications of these measures, denoted by

ε∗P
X≥i

(y), ε∗P
X≤i

(y) and ε
′ P
X≥i

(y), ε
′ P
X≤i

(y), were further investigated.

We defined monotonic lower approximations for those of consistency measures. These

lower approximations have all considered monotonicity properties. Further, the mono-

tonic lower approximations were used to define positive, negative and boundary regions

which, as it was presented, are more desirable basis for the induction of the decision



3.7. SUMMARY 79

rules. Moreover, we defined measures that estimate the predictive accuracy attainable

to a classifier learned on positive regions.

As a conclusion, we can recommend using consistency measure ε∗ or ε
′
. These mea-

sures have all required monotonicity properties and are much less computationally in-

tensive than monotonic measures µ.

Table 3.2: Monotonicity of consistency measures considered for VC-DRSA.

consistency measure (m1) (m2) (m3) (m4)

µP
X≥i

(y), µP
X≤i

(y) no yes yes no

µ
′ P
X≥i

(y), µ
′ P
X≤i

(y) no yes yes yes

BP
X≥i

(y), BP
X≤i

(y) no no no no

βP
X≥i

(y), βP
X≤i

(y) no yes yes yes

εP
X≥i

(y), εP
X≤i

(y) yes yes no yes

ε∗P
X≥i

(y), ε∗P
X≤i

(y) yes yes yes yes

ε
′ P
X≥i

(y), ε
′ P
X≤i

(y) yes yes yes yes

µP
X≥i

(y), µP
X≤i

(y) yes yes yes yes





CHAPTER 4
Rule Models

4.1 Introduction

In VC-IRSA and VC-DRSA, induction of decision rules is subsequent to computation of

probabilistic rough approximations. In computation of rough approximations of a set,

objects are divided into lower and upper approximations based on their consistency cal-

culated with respect to (w.r.t.) this set (see sections 2.4 and 3.5). Since it is impossible to

induce decision rules directly from rough approximations (see sections 2.6 and 3.6), they

are induced from positive regions. The purpose of computation of rough approximations

and positive regions is to identify sufficiently consistent objects. This process can be

viewed as a kind of preprocessing of data. Objects identified as sufficiently consistent

are a good basis for induction of decision rules. The purpose of induction of decision

rules is to discover strong relationships between description of these objects and their

membership to a set. If the rules are intended to be used in classification, then the goal

of the induction procedure is to find a preferably small set of rules with high predictive

accuracy.

Induction of ordinal decision rules for VC-DRSA is a more general problem than

induction of decision rules for VC-IRSA. In VC-IRSA, elementary conditions of decision

rules have the form: attribute = value. In VC-DRSA, the elementary conditions have

a more general form: attribute ≥ value or attribute ≤ value. Moreover, in VC-IRSA

decision rules assign to decision classes while in VC-DRSA they assign to unions of

decision classes. In this chapter, the rule induction algorithms are presented from VC-

DRSA perspective. Nevertheless, they can be easily adopted to VC-IRSA.

81
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First, we define the syntax and semantics of decision rules. Then, we follow with

specification of characteristics of decision rules induced in variable consistency rough

set approaches. We present VC-DomLEM, which is an algorithm to induce decision

rules by sequential covering (Han and Kamber, 2006), also called separate and con-

quer (Fürnkranz, 1999). VC-DomLEM is applied general learning framework of bagging

(Breiman, 1996). The resulting algorithm, which uses information about object consis-

tency is called variable consistency bagging (VC-bagging). It constructs an ensemble of

decision rules classifiers.

4.2 The syntax and semantics of decision rules

In the variable consistency rough set approaches, we consider decision rules of the type:

if Φ then Ψ,

where Φ and Ψ denote condition and decision part of the rule, called also premise and

conclusion, respectively. The condition part of the rule is a conjunction of elementary

conditions concerning individual attributes / criteria, and the decision part of the rule

suggests an assignment to a set or to a union of decision classes. A precise syntax

of decision rules will be given later. Decision rules are induced so as to cover objects

from probabilistic lower approximations of sets being classes or unions of decision classes.

However, in some cases it is impossible for a rule to cover only objects from a probabilistic

lower approximation. To handle these cases, the P -positive region of the considered set

is computed.

In order to avoid repetition of the same definitions and properties for VC-IRSA and

VC-DRSA, from now on we will use a unique symbol X to denote a set of all objects

belonging to class Xi, in the context of IRSA, or to union of classes X≥i , X≤i , in the

context of DRSA. Further, let us denote by Θ a consistency measure used to compute the

lower approximation of any X. Let us denote by θX the consistency threshold on measure

Θ w.r.t. set X. Then, for a given P ⊆ C and X ⊂ U , we can denote probabilistic lower

approximation of X by P θX (X). The set of objects belonging to P θX (X) is the basis

for induction of a set of decision rules Rθ̂XX , i.e., rules assigning objects to set X. The

elementary conditions (selectors) in decision rules belonging to Rθ̂XX are taking values

from objects belonging to lower approximation P θX (X). Each induced rule rθ̂XX ∈ Rθ̂XX
is supported by at least one object from P θX (X), it covers object(s) from POSθXP (X),

and it suggest an assignment to X. The elementary conditions (selectors) that form the

decision rules from Rθ̂XX are built using evaluations of objects belonging to P θX (X) only.
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Moreover, rule rθ̂XX is characterized by a value Θ̂(rθ̂XX ) of considered rule consistency

measure Θ̂, not worse than threshold value θ̂X . Rule consistency measures are adequate

to consistency measures used in the definition of probabilistic P -lower approximation.

Different rule consistency measures are discussed in section 4.3. The value of threshold

θ̂X depends on the value of threshold θX , which is also shown in section 4.3.

Below, we define a syntax of decision rule rθ̂XX ∈ R
θ̂X
X for ordinal classification problem

with monotonicity constraints:

if qi1(y) � ri1 ∧ . . . ∧ qip(y) � rip ∧ gip+1(y) = rip+1 ∧ . . . ∧ giz(y) = riz

then y ∈ X≥, (4.1)

if qi1(y) � ri1 ∧ . . . ∧ qip(y) � rip ∧ gip+1(y) = rip+1 ∧ . . . ∧ giz(y) = riz

then y ∈ X≤, (4.2)

where qj , j ∈ {i1, i2, . . . , ip} denotes criterion and gj , j ∈ {ip+1, ip+2, . . . , iz} denotes

regular attribute. Moreover, rj ∈ Vj , j = {i1, i2, . . . , ip, ip+1, ip+2, . . . , iz} are values

from the domain of criterion qj or regular attribute gj . We use symbols � and � to

indicate weak preference w.r.t. single criterion and inverse weak preference, respectively.

If qj ∈ Q is a gain (cost) criterion, then elementary condition qj(y) � rj means that the

value on criterion qj(y) is not smaller (not greater) than value rj . Elementary conditions

for regular attributes are of type gj(y) = rj .

Decision rule rθ̂XX covers objects that fulfill its condition part and suggest their assign-

ment to set X. The condition part of rθ̂XX rule can be denoted by Φ
r
θ̂X
X

while its decision

part can be denoted by Ψ
r
θ̂X
X

(Greco et al., 2008c). Moreover, we denote by ‖Φ
r
θ̂X
X

‖ or

‖Ψ
r
θ̂X
X

‖ the set of objects fulfilling condition or decision part of the rule, respectively.

Decision rule rθ̂XX ∈ R
θ̂X
X is characterized by the following basic measures: basic rule

measures

support of rθ̂XX : supp(rθ̂XX ) =
∣∣∣‖Φ

r
θ̂X
X

‖ ∩ ‖Ψ
r
θ̂X
X

‖
∣∣∣, (4.3)

strength of rθ̂XX : σ(rθ̂XX ) =
supp(rθ̂XX )

|U |
, (4.4)

certainty of rθ̂XX : cer(rθ̂XX ) =
supp(rθ̂XX )∣∣‖Φ

r
θ̂X
X

‖
∣∣ , (4.5)

coverage of rθ̂XX : cov(rθ̂XX ) =
supp(rθ̂XX )∣∣‖Ψ

r
θ̂X
X

‖
∣∣ , (4.6)

where | · | denotes cardinality of a set.
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Objects that support rule rθ̂XX are those that satisfy both condition and decision part

of the rule. The strength of a rule is defined as a ratio of its support and the number of

all objects in the data set. The certainty of a rule is defined as a ratio of the number of

objects that support the rule to the number of objects that satisfy condition part of the

rule. Coverage of a rule is defined as a ratio of the number of objects that support the

rule to the number of objects that satisfy decision part of the rule.

4.3 Characteristics and properties of decision rules

Decision rules should be short and accurate. Shorter decision rules are easier to un-

derstand. Shorter rules also allow to avoid overfitting the training data. Overfitting

occurs when the learned model fits training data perfectly but is not performing well on

new data. Rules induced in variable consistency rough set approaches avoid overfitting

because they are not required to classify training data perfectly. Such a relaxation is

typical for other machine learning rule induction algorithms (Clark and Niblett, 1989;

Clark and Boswell, 1991; Cohen, 1995; Weiss and Indurkhya, 2000). It allows to induce

more general rules with less elementary conditions. The difference to other rule induc-

tion algorithms proposed in machine learning is that in case of the algorithms defined

within variable consistency rough set approaches, it is known a priori which objects in

the data set can be classified incorrectly, i.e., which objects from the P -positive region of

X do not belong to the P -lower approximation of X. Relaxation of the requirement to

cover only consistent objects involves a trade-off between accuracy and simplicity (Iba

et al., 1988).

Induced rules must satisfy similar constraints on consistency as objects from the lower

approximation which serve as a base for rule induction. Thus, in addition to the measures

specified in the previous section, a VC-DRSA decision rule rθ̂XX can be characterized by

a value of chosen rule consistency measure Θ̂. We consider the following three rulerule con-
sistency

measures
consistency measures:

ε-consistency of rθ̂XX : ε(rθ̂XX ) =

∣∣‖Φ
r
θ̂X
X

‖ ∩ ¬P θX (X)
∣∣

|¬P θX (X)|
, (4.7)

ε′-consistency of rθ̂XX : ε′(rθ̂XX ) =

∣∣‖Φ
r
θ̂X
X

‖ ∩ ¬P θX (X)
∣∣

|P θX (X)|
, (4.8)

µ-consistency of rθ̂XX : µ(rθ̂XX ) =

∣∣‖Φ
r
θ̂X
X

‖ ∩ P θX (X)
∣∣∣∣‖Φ

r
θ̂X
X

‖
∣∣ , (4.9)
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where θ̂X = |¬X|
|¬P θX (X)|θX in definition (4.7), θ̂X = |X|

|P θX (X)|θX in definition (4.8), and

θ̂X = θX in definition (4.9).

ε-consistency measure is related to cost-type consistency measure ε defined as (2.3)

and as (3.6). ε′-consistency measure is related to cost-type consistency measure ε′ defined

as (2.4) and as (3.9). µ-consistency measure is related to gain-type rough membership

measure µ used in definitions (2.1) and as (3.1). It can be shown that each of the

defined above rule consistency measures derives monotonicity properties from the cor-

responding object consistency measure. We do not apply other measures concerned in

chapters 2 and 3. Consistency measure µ (see section 2.5.5 and section 3.5.8) has too

high computational complexity.

As it will be shown in section 4.4, ε-consistency measure can be used to induce de-

cision rules from positive regions computed using object consistency measure ε∗. As it

will be also shown in section 4.4, it is possible, with some additional steps, to induce

rules satisfying constraints on µ-consistency from positive regions computed using con-

sistency measure µ′. It should be noticed that there is a difference in the definitions of

ε-consistency, ε′-consistency and µ-consistency, comparing to the corresponding defini-

tions of consistency measures ε, ε′ and µ. In the definitions of rule consistency measures,

P θX (X) is used instead of X. This way covered objects from X that do not belong to

POSθXP (X) worsen the value of considered rule consistency measure. This is especially

important when such objects belong to NEGθXP (X).

It is possible to induce decision rules from monotonic or non-monotonic lower ap-

proximations (see sections 2.5 and 3.5), i.e., probabilistic lower approximations com-

puted using object consistency measures that have properties (m1), (m2), (m3), and

(m4) or probabilistic lower approximations computed using measures that lack some

of these properties, respectively. Monotonicity of rule consistency measure Θ̂ that is

used in induction of set Rθ̂XX affects the process of induction. Induction of rules from

non-monotonic lower approximations requires additional steps to ensure desirable con-

sistency of induced rules. As it will be shown in section 4.4, it is computationally less

expensive to induce rules from monotonic probabilistic lower approximations. Moreover,

the rules induced from monotonic lower approximations may be more general since they

explore larger elementary condition space, i.e., the set of possible elementary conditions

that can be used in a rule is larger than in the non-monotonic case.

Now, let us introduce several concepts characteristic for machine learning and deci-

sion support approaches that apply a set of (decision) rules as a data model. We will

also show how some of these concepts are adapted in rough set approaches, when one
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takes into account rough approximations of considered sets of objects.

Decision rule assigning to set X is discriminant if it covers only objects belonging todiscriminant
decision

rule
X. In IRSA and DRSA, a certain decision rule is discriminant if it covers only objects

from P (X), while possible decision rule is discriminant if it covers only objects from

P (X). Moreover, in variable consistency rough set approaches considered in this thesis,

rule is discriminant if it covers only objects belonging to positive region POSθXP (X) from

its complement. Rule is minimal if removing any of its elementary conditions causesminimal
decision

rule
that it is no more discriminant. We consider also minimality of a rule in the context of

all rules from given set R. In this context, rule r is minimal if there is no other rule

r′ with not less general conditions and not less specific decision. Using the notation

introduced in section 4.2, rθ̂XX is minimal if there does not exist other rule rθ̂YY ∈ R,

Y ⊆ U , such that ‖Φ
r
θ̂Y
Y

‖ ⊇ ‖Φ
r
θ̂X
X

‖ and ‖Ψ
r
θ̂Y
Y

‖ ⊆ ‖Ψ
r
θ̂X
X

‖. Set of rules assigning tocomplete
set of
rules

X is complete iff each object y ∈ X is covered by at least one rule from this set. In

the rough set approaches, however, we consider completeness of the set of rules from

the view point of lower and/or upper approximation of X. In particular, in VC-IRSA

and VC-DRSA, set of rules Rθ̂XX is complete iff each object y ∈ P θX (X) is covered by at

least one rule rθ̂XX ∈ R
θ̂X
X . Finally, rule r belonging to the set of rules assigning to X isnon-

redundant
decision

rule

non-redundant, if removing r causes that this set ceases to be complete.

According to the rule induction strategy used in AQ (Michalski, 1993; Michalski

and Kaufman, 1998), as well as in FOIL (Quinlan, 1990; Quinlan and Cameron-Jones,

1993), induced rules should be minimal and discriminant and the set of rules should

be complete. These requirements are satisfied by most of decision rule induction algo-

rithms proposed for rough set approaches, in particular, LEM2 (Grzymała-Busse, 1992;

Grzymała-Busse and Lakshmanan, 1996; Grzymała-Busse and Wang, 1997; Grzymała-

Busse, 1997; Grzymała-Busse and Zou, 1998; Grzymała-Busse and Stefanowski, 2001),

and DomLEM (Greco et al., 2000a, 2001b). The requirement of completeness is how-

ever softened in case of pruned sets of rules induced by IREP (Fürnkranz and Widmer,

1994), RIPPER (Cohen, 1995) or SLIPPER (Cohen and Singer, 1999). In other cases,

like Lightweight Rule Induction (LRI) (Weiss and Indurkhya, 2000), a given number of

rules is induced for each set X which also leads to softening the requirement of complete-

ness. This is also true for statistical approach to rule learning (Rückert and Kramer,

2006), where it is assumed that the number of induced rules is parametrized. Moreover,

the requirement to use discriminant rules is usually softened in a voting setting. In this

setting, a set of rules is typically seen as an ensemble of rules, i.e., one assigns a weight

to each rule and uses a voting scheme for prediction. This is the case, e.g., for SLIPPER,
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LRI and a statistical approach to rule learning (Rückert and Kramer, 2006).

Rule induction methods that do not require discrimination of rules and/or complete-

ness of the set of rules proved to be successful in classification. Thus, these features

do not seem to be necessary to build an accurate classifier. On the other hand, classi-

fiers that skip these requirements are less useful when it comes to comprehensibility or

transparency of their responses. Inclination towards “glass-box” methods, as opposed

to “black-box” approaches, is frequently postulated by researchers in many fields of ar-

tificial intelligence (Friedman, 2006; Friedman and Popescu, 2008; Greco et al., 2008a).

Not only a precise response of a classifier but also interpretable justification of presented

suggestion is considered to be important.

4.4 Induction of decision rules by sequential covering in

VC-DomLEM

So far, we have given the description of decision rules together with their charac-

teristics and properties. The remaining task is to describe the algorithm for induc-

ing rules. The proposed algorithm, called VC-DomLEM, is inspired by LEM2 algo-

rithm (Grzymała-Busse, 1992) and its adaptation to ordinal data called DomLEM (Greco

et al., 2000a). VC-DomLEM induces rules for classification problems addressed in VC-

IRSA and ordinal classification problems considered in VC-DRSA (Błaszczyński et al.,

2009c; Błaszczyński et al., accepted for publication 2010). It can be also easily adapted

to induce certain, possible and approximate rules in IRSA, as well as certain and pos-

sible rules in DRSA. This algorithm heuristically searches for rules whose consistency

measures (4.7), (4.8) or (4.9) satisfy a specified threshold value. The applied heuristic

strategy is called sequential covering (Han and Kamber, 2006) or separate and conquer

(Michalski, 1969; Pagallo and Haussler, 1990; Fürnkranz, 1999). It constructs a rule

that covers a subset of training objects, removes the covered objects from the training

set and iteratively learns another rule that covers some of the remaining objects, until

no uncovered objects remain. This strategy has been previously applied in AQ family

of algorithms, CN2, LEM2, IREP, RIPPER and DomLEM.

VC-DomLEM induces a minimal set R of minimal decision rules. This algorithm

is composed of two parts. The first part is presented as Algorithm 1, while the second

one is presented as Algorithm 2. In the following, we describe both parts, referring to

numbered lines of the algorithms.

In Algorithm 1, set of rules Rθ̂XX is induced for each set of objects X by method
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V C-SequentialCoveringmix, which is presented as Algorithm 2. V C-SequentialCoveringmix

is inducting rules using elementary conditions constructed on attributes from set P ⊆
C (line 4). Value of chosen rule consistency measure Θ̂ has to be not worse than

given threshold value θ̂X . Moreover, each rule from set Rθ̂XX is allowed to cover only

those objects which belong to set AOθXP (X). This set is calculated according to one

of three options coded by parameter s ∈ {1, 2, 3} (line 3). We consider three reason-

able options, indicated by the value of s: 1) AOθXP (X) = POSθXP (X), 2) AOθXP (X) =

POSθXP (X) ∪ BNDθX
P (X), and 3) AOθXP (X) = U . Option 1) implies induction of rules

covering the positive region only. Option 3) implies induction of rules that may cover

any object in the data set. Such rules, in general, may be composed of fewer elementary

conditions than those induced according to option 1). Option 2) is intermediate between

option 1) and option 3) – it does not allow rules to cover objects from the negative re-

gion. Set of rules Rθ̂XX is added to set R in line 5. Minimality of set R is checked after

each addition in line 6. In fact, minimality check is necessary only for VC-DRSA, where

unions of ordered classes can overlap. Moreover, this step can be simplified if in line 2

upward or downward unions are considered from the most specific (i.e., containing the

smallest number of objects) to the most general (i.e., containing the largest number of

objects). In such a case, only rules from set Rθ̂XX can be non-minimal.

Algorithm 1: V C-DomLEM

Input : set X of classes Xi ∈ U , upward unions of classes X≥i ∈ U or downward
unions of classes X≤i ∈ U ,
set P ⊆ C of attributes,
rule consistency measure Θ̂,
set {θ̂X : X ∈ X} of rule consistency measure thresholds,
object covering option s.

Output: set of rules R.
1 R := ∅;
2 foreach element X ∈ X do
3 AOθXP (X) := AllowedObjects (X,P, θX , s);

4 Rθ̂XX := V C-SequentialCoveringmix (P θX (X), AOθXP (X), P , Θ̂, θ̂X);

5 R := R ∪Rθ̂XX ;
6 RemoveNonMinimalRules (R);

In Algorithm 2, rules for a given set X are induced by V C-SequentialCoveringmix

method, presented as Algorithm 2. These rules consist of elementary conditions that are

constructed using evaluations of objects from P θX (X) on attributes from set P (line 5).

The word mix in the name of the algorithm is used to indicate that each elementary
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condition can be constructed from among evaluations of different positive objects (i.e.,

objects from set P θX (X)). For regular attributes, elementary conditions involve relation

=. In case of criteria, elementary conditions involve relation � or �, for an upward

or downward union of classes, respectively. The induction of rules is carried out as

long as there are still some positive objects to be covered, i.e., there are uncovered

objects from P θX (X) that can be used to construct elementary conditions (line 3). Each

rule is constructed in a greedy search by adding new elementary conditions as long as

consistency threshold θ̂X is not satisfied by the chosen rule consistency measure Θ̂, or

rule rθ̂XX covers objects not belonging to set AOθXP (X) (line 6). The elementary condition

added to rule rθ̂XX in line 8 is a new condition from set EC (i.e., condition that is not

already present in the constructed rule) that is evaluated as the best in line 7. In order

to evaluate elementary condition ec ∈ EC, the following two quality measures are used:

1) one of rule consistency measures (4.7), (4.8) or (4.9) of rule rθ̂XX ∪ ec,

2)
∣∣‖Φ

r
θ̂X
X ∪ec

‖ ∩ P θX (X)
∣∣,

where rθ̂XX ∪ ec denotes a rule resulting from extension of rule rθ̂XX by new elementary

condition ec.

The best elementary condition according to 1) is selected. In case of a tie between

compared elementary conditions, the best one according to 2) is chosen. If this is not

sufficient to determine the best condition, the order in which elementary conditions are

checked decides. It is worth noting that it is possible to add a new elementary condition

on an attribute which is already present in the rule. When such a new elementary

condition is added, previous elementary condition on that attribute becomes redundant

and is removed in line 10. This allows to start with a rule as general as possible, and

then specialize it to meet constraint on rule consistency measure checked in line 6.

After elementary condition is added to the rule (line 8), the set of candidate elementary

conditions EC is updated (line 9). All elementary conditions that come from objects that

are not covered by the constructed rule are removed from EC. In this way, the search for

new elementary conditions is narrowed to only these conditions that can be constructed

from objects in supp(rθ̂XX ). This also causes that addition of a new elementary condition

on the attribute already present in the rule can only result in a more specific rule (i.e.,

a rule that covers a subset of objects covered so far).

After the constructed rule satisfies necessary constraints from line 6, elementary

conditions that became redundant are removed from that rule (line 10). This can be
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done in different ways (e.g., elementary conditions can be considered from the oldest

to the newest ones). However, it needs to be assured that after this step the rule still

satisfies constraints from line 6. Next, the rule is added to the set of rules induced so

far (line 11). Objects that are covered by the rule are removed from set B, which is the

base for building candidate elementary conditions (line 12).

Constructed set of rules Rθ̂XX is checked for redundancy in line 13. The rules con-

sidered as redundant are removed. They are removed in an iterative procedure which

consists of three steps. First, each rule that can be removed is put on a list. If the

list is non-empty, then one of the rules can be removed without loosing completeness of

Rθ̂XX . Otherwise, the checking is stopped. Second, one rule rθ̂XX is selected from the list

according to the following measures, considered lexicographically:

1) the worst (i.e., the smallest) value of
∣∣‖Φ

r
θ̂X
X

‖ ∩ P θX (X)
∣∣,

2) the worst value of Θ̂(rθ̂XX ),

3) the smallest index of rθ̂XX on the constructed list of rules.

Third, the selected rule is removed from set Rθ̂XX .
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Algorithm 2: V C-SequentialCoveringmix

Input : set P θX (X) ⊆ U of positive objects,
set AOθXP (X) ⊆ U , AOθXP (X) ⊇ P θX (X) of objects that can be covered,
set P ⊆ C of attributes,
rule consistency measure Θ̂,
rule consistency measure threshold θ̂X .

Output: set Rθ̂XX of rules assigning objects to X.
1 B := P θX (X);

2 Rθ̂XX := ∅;
3 while B 6= ∅ do

4 rθ̂XX := ∅;
5 EC := ElementaryConditions (B, P );

6 while (Θ̂(rθ̂XX ) does not satisfy θ̂X) or (‖Φ
r
θ̂X
X

‖ * AOθXP (X)) do

7 ec := BestElementaryCondition (EC, rθ̂XX , Θ̂, P θX (X));

8 rθ̂XX := rθ̂XX ∪ ec;
9 EC := ElementaryConditions (B ∩ supp(rθ̂XX ), P );

10 RemoveRedundantElementaryConditions (rθ̂XX , Θ̂, θ̂X , AOθXP (X));

11 Rθ̂XX := Rθ̂XX ∪ r
θ̂X
X ;

12 B := B \ supp(rθ̂XX );

13 RemoveRedundantRules (Rθ̂XX , Θ̂, P θX (X));

4.4.1 Induction of rules satisfying ε-consistency and ε
′-consistency

condition

Monotonicity properties of rule consistency measures: ε-consistency (4.7) and ε′-consistency

(4.8), allow to increase efficiency of rule induction in V C-SequentialCoveringmix algo-

rithm. These properties are derived from corresponding consistency measures ε (see

definitions (2.3) and (3.6)) and ε′ (see definitions (2.4) and (3.9)).

There are two scenarios defined for V C-SequentialCoveringmix algorithm:

α) application of ε-consistency measure in order to induce rules covering objects from

P θX (X) calculated using ε or ε∗ object consistency measure,

β) application of ε′-consistency measure in order to induce rules covering objects from

P θX (X) calculated using ε′ object consistency measure.

Moreover,
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γ) elementary condition ec is selected according to the following two measures, con-

sidered lexicographically:

a) the best (i.e., the smallest) value of rule consistency measure Θ̂ of rule rθ̂XX ∪ec
being ε-consistency in scenario α) or ε′-consistency in scenario β)

b) the best (i.e., the greatest) value of
∣∣‖Φ

r
θ̂X
X ∪ec

‖ ∩ P θX (X)
∣∣.

Theorem 4.4.1. For V C-SequentialCoveringmix, in scenario α) or β), and subject

to γ), sequential addition of the best elementary condition always leads to decision rule

rθ̂XX that has value of chosen rule consistency measure Θ̂ not worse than threshold θ̂X ,

where θ̂X = |¬X|
|¬P εX (X)|εX (or θ̂X = |¬X|

|¬P ε
∗
X (X)|

ε∗X , respectively) in the first scenario or

θ̂X = |X|

|P ε
′
X (X)|

ε′X in the second scenario.

Proof. Let us assume that induced rule rθ̂XX does not satisfy yet the constraint on rule

consistency measure from line 6 of Algorithm 2. Elementary conditions from set EC

are constructed, in line 9, using evaluations of objects that belong to the set of positive

objects B and that are covered by rθ̂XX . Thus, in the worst case, this method constructs

rθ̂XX that is composed of elementary conditions that use all evaluations from one object

y belonging to B. This results in rθ̂XX that corresponds to the P -dominance cone based

on y. Since y belongs to P θX (X), y has value of Θ not worse than θX . This implies that

rule rθ̂XX has value of Θ̂ not worse than threshold θ̂X .

According to theorems 2.5.4, 3.5.10 and theorems 2.5.7, 3.5.22 both ε and ε′ share

property (m1). This property is also satisfied by related rule consistency measures ε-

consistency and ε′-consistency. When combined with the greedy nature of the presented

algorithm, it allows to consider for addition to rule rθ̂XX being constructed only new ele-

mentary conditions constructed on attributes that are not already present in elementary

conditions of the rule. New elementary condition constructed on an attribute already

present in the rule decreases the quality of the rule, measured by its consistency and

the number of covered objects from the P -lower approximation of X, as shown by the

following theorem.

Theorem 4.4.2. For V C-SequentialCoveringmix, subject to one of the scenarios: α)

or β) and applying γ) condition quality measures, addition of a new (more specific)

elementary condition on some attribute that is already present in the induced rule rθ̂XX
does not change the value of rule consistency measure while it decreases support of that

rule.
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Proof. Let us assume that induced rule rθ̂XX does not satisfy yet the constraint on rule

consistency measure from line 6 of Algorithm 2. Moreover, let us assume that it already

involves elementary conditions constructed on attributes from set R, R ⊂ P ⊆ C, R 6= ∅.
At each step, best elementary condition ec was selected to extend the rule so that the

resulting rule covered the lowest number of objects not belonging to P θX (X) (i.e., value

of ε-consistency or ε′-consistency measure of the resulting rule was minimized) and, in

case of a tie between considered elementary conditions, the highest number of objects

from P θX (X). For attribute ai ∈ R, next (more specific) elementary condition on that

attribute has to decrease support of the induced rule. In order to prove that the new

elementary condition on attribute ai ∈ R can not change the value of rule consistency

measure, let us denote by ec1 the first elementary condition on the considered attribute,

and by ec2 the new (more specific) elementary condition on that attribute. Let us observe

that due to the greedy nature of the algorithm, at the time when ec1 was chosen, ec2

had to be evaluated as not better than ec1 according to the value of rule consistency

measure. This means that at that time the difference DF between the set of objects

covered by rule rθ̂XX ∪ec1 and the set of objects covered by rule rθ̂XX ∪ec2 could not contain

any object not belonging to P θX (X). According to Algorithm 2, removal of elementary

conditions from a rule is not permitted until it satisfies constraints from line 6. Thus,

at any time after the rule has been extended with elementary condition ec1, we have

‖Φ
r
θ̂X
X

‖ − ‖Φ
r
θ̂X
X ∪ec2

‖ ⊆ DF . Because DF ∩ ¬P θX (X) = ∅, value of rule consistency

measure is not altered by addition of ec2.

Theorem 4.4.2 shows that during rule induction by Algorithm 2, elementary condi-

tions constructed on attributes that are already present in the rule are redundant from

the viewpoint of ε-consistency and ε′-consistency measures. Moreover, such elementary

conditions decrease the support of the rule. Thus, we can reduce the number of el-

ementary conditions considered to be added to the constructed rule to only those on

attributes that are not already present in the rule. The computational benefit coming

from this reduction is hard to estimate. Anyway, this improvement does not involve any

additional cost (i.e., it does not involve any additional steps to reduce the number of

considered elementary conditions).

Measures ε and ε′ both have property (m4) (according to theorems 3.5.14 and 3.5.27).

This allows us to further increase the efficiency of the rule induction algorithm. We can

sort elementary conditions on each criterion q ∈ Q, where Q ⊆ C, according to the

preference order on its values. Property (m4) assures that the order of elementary

conditions after sorting reflects the order of values of consistency measures ε and ε
′
.
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The remaining processing after the sorting is simple because we search for elementary

conditions with the best value of consistency measure. The additional computational

cost of a one-time sort of each attribute is a fixed cost that is almost inconsequential when

compared to the overall computational cost of induction of the rules. This improvement

considerably reduces computational cost of rule induction. As it was shown in (Weiss

and Indurkhya, 2000), a similar improvement resulted in computational complexity of

induction approximately linear in the number of rules or objects.

ε-consistency measure can be used to induce decision rules for objects belonging

to P
ε∗
X
≥
i (X≥i ) (or P

ε∗
X
≤
i (X≤i )). From definition (3.7), ε∗P

X≥i
(y) ≥ εP

X≥i
(y), ∀y ∈ U,X≥i ⊆

U,P ⊆ C. If some object y ∈ U belongs to P
ε∗
X
≥
i (X≥i ), then it also belongs to P

ε
X
≥
i (X≥i ),

with ε
X≥i

= ε∗
X≥i

. In other words, for given consistency measure threshold value θ
X≥i

,

probabilistic P -lower approximation of union X≥i calculated w.r.t. measure ε is a su-

perset of probabilistic P -lower approximation of union X≥i calculated w.r.t. measure

ε∗. Since it is possible to cover by rules all objects belonging to the former, it is also

possible to cover by rules all objects belonging to the latter.

4.4.2 Induction of rules satisfying µ-consistency condition

VC-DomLEM algorithm needs some modifications to enable induction of rules satisfy-

ing a constraint on µ-consistency measure. These modifications are caused by lack of

monotonicity property (m4) of µ-consistency measure, resulting from lack of monotonic-

ity property (m4) of rough membership measure µ (see theorem 3.5.2). Notice that

µ-consistency measure is also missing property (m1) (see theorems 2.5.1 and to 3.5.1),

however, this is already handled in VC-DomLEM algorithm by the possibility of adding

a new elementary condition on the attribute which is already present in the induced

rule. If an elementary condition covering too many objects not belonging to P -positive

region of X is selected in some iteration, it can always be narrowed down later to cover

fewer of them. Nevertheless, if this possibility is used in the algorithm frequently, it can

increase the computational cost considerably.

Now, let us consider induction of rules which satisfy constraint on µ-consistency

measure, from probabilistic P -lower approximations calculated using consistency mea-

sure µ
′

defined as (3.30) or (3.31). The problem that can be faced by VC-DomLEM

during induction of rules is presented in the following Example 4.4.1 and Figure 4.1.

Example 4.4.1. Applying in equation (3.12) consistency measure µ′ defined as (3.30),

and choosing gain-threshold θ
X≥2

= 0.75, we obtain P 0.75(X≥2 ) = {y1, y2, y3}, where
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P = {q1, q2}. One can observe that objects belonging to union X≥2 are characterized

by the following values of rough membership measure: µ(y1) = 0.75, µ(y2) = 0.66,

µ(y3) = 0.5. Objects y2 and y3 belong to P 0.75(X≥2 ) because they dominate object y1.

Moreover, according to definition (3.39), POS0.75
P (X≥2 ) = {y1, y2, y3, y6}.

Now, we intend to construct decision rules assigning to union of classes X≥2 . For

this purpose, we apply rule µ-consistency measure, defined as (4.9). We take θ̂
X≥2

=

θ
X≥2

= 0.75 and construct elementary conditions using evaluations of objects belong-

ing to P 0.75(X≥2 ), in order to cover objects from POS0.75
P (X≥2 ) only (i.e., we assume

the most restrictive object covering option, corresponding to s = 1). For attribute q1,

considered elementary conditions have the following values of µ-consistency measure:

0.6 for q1(y) ≥ 2, 0.6(6) for q1(y) ≥ 4 and 0.5 for q1(y) ≥ 5. It is visible that µ-

consistency measure does not have property (m4) since it is a gain-type measure and its

value for q1(y) ≥ 5 is lower than for q1(y) ≥ 4. The first elementary condition selected

by VC-DomLEM for rule r0.75
X≥2

is q1(y) ≥ 4. This elementary condition has value of

µ-consistency measure equal to 0.6(6). The constraint on rule consistency from line 6 of

V C-SequentialCoveringmix is not satisfied. Unfortunately, any elementary condition

that can be further added to the induced rule does not help to satisfy that constraint. The

best elementary condition that can be added in the second iteration is q2(y) ≥ 4, resulting

in a rule if q1(y) ≥ 4 ∧ q2(y) ≥ 4 then y ∈ X≥2 , with µ-consistency of 0.6(6). Thus, in

the current form, it is impossible to construct by VC-DomLEM algorithm a rule that

satisfies threshold on µ-consistency measure. Such rule would be if q1(y) ≥ 2∧ q2(y) ≥ 2

then y ∈ X≥2 , with µ-consistency 0.75.

Note that the possibility to add elementary condition on a criterion already present

in the rule does not solve the problem resulting from the lack of property (m4). It

allows only to specialize elementary conditions already present in the rule. To overcome

the lack of property (m4) of µ-consistency measure, we propose to reduce of the set of

objects considered when creating elementary conditions by using edge regions of unions

of classes X≥i and X≤i .

We define P -edge regions of unions of classes X≥i and X≤i . For P ⊆ C,X≥i , X
≤
i ⊆ U , P -edge

regiony, z ∈ U , θ
X≥i
∈ [0, A

X≥i
], θ

X≤i
∈ [0, A

X≤i
], P -edge regions are defined as follows:

EDGE
θ
X
≥
i

P (X≥i ) = {y ∈ P
θ
X
≥
i (X≥i ) : z ∈ D−P (y) ∩ P

θ
X
≥
i (X≥i )⇒ z ∈ D+

P (y)}, (4.10)

EDGE
θ
X
≤
i

P (X≤i ) = {y ∈ P
θ
X
≤
i (X≤i ) : z ∈ D+

P (y) ∩ P
θ
X
≤
i (X≤i )⇒ z ∈ D−P (y)}. (4.11)
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Figure 4.1: Illustration of VC-DomLEM problems with induction of rules satisfying
µ-consistency condition, caused by lack of property (m4).

It should be noticed that the P -edge region of union X≥i is a subset of probabilistic

P -lower approximation of that union. This subset contains only objects that do not (at

least) weakly dominate any other object belonging to P
θ
X
≥
i (X≥i ). Analogically, the P -

edge region of union X≤i contains only objects that are not (at least) weakly dominated

by any other object belonging to P
θ
X
≤
i (X≤i ). We say that object y weakly dominates

object z iff y is not worse than z on each criterion qi ∈ P , for at least one criterion

qi ∈ P is strictly better, and for each regular attribute qi ∈ P is indifferent to z. We say

that object y is weakly dominated by object z iff y is not better than z on each criterion

qi ∈ P , for at least one criterion qi ∈ P is strictly worse, and for each regular attribute

qi ∈ P is indifferent to z.

Let us consider the following scenario for V C-SequentialCoveringmix algorithm:

α′) application of µ-consistency measure in order to induce rules covering objects from

P θX (X) calculated using µ′ object consistency measure.

In order to adjust V C-SequentialCoveringmix algorithm for µ-consistency measure,

we need the following modifications:

γ′) elementary condition ec is selected according to the following two measures, con-

sidered lexicographically:

a) µ-consistency measure of rule rθ̂XX ∪ ec,
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b)
∣∣‖Φ

r
θ̂X
X ∪ec

‖ ∩ P θX (X)
∣∣,

δ) P -edge region of set X is used instead of the probabilistic P -lower approximation

of X.

Theorem 4.4.3. For V C-SequentialCoveringmix method, in scenario α′), and subject

to γ′) and δ), sequential addition of the best elementary condition always leads to decision

rule rθ̂XX that has value of µ-consistency measure not lower than threshold θ̂X = θX .

Proof. Because of the definition of object consistency measure µ′, the objects that are

included in the P -edge region of X are only those that have value of rough membership

not lower than the specified threshold θX . Proposed reduction of the set of objects,

together with the possibility to add next elementary condition on an attribute that is

already present in the induced rule, guarantee that each rule induced for set X can finally

reach the value of µ-consistency measure not worse than threshold θ̂X = θX . It is true

because one can always construct a rule that has all elementary conditions generated

from exactly one of the objects belonging to the P -edge region of X.

In order to adjust VC-DomLEM algorithm for µ-consistency measure, we need to

modify line 1 of method V C-SequentialCoveringmix. This modification consists in

substituting the P -edge region of set X for the P -lower approximation X of this set. In

this way, the set of objects for which elementary conditions are constructed is reduced.

Presented modification of VC-DomLEM algorithm implies additional computational

cost because P -edge regions must be calculated. On the other hand, an edge region

is smaller than the corresponding lower approximation, thus the number of potential

elementary conditions to be checked by VC-DomLEM is also smaller. Moreover, as we

have shown in Example 4.4.1, without this modification it might be impossible to induce

rules having value of µ-consistency measure not lower than specified threshold θ̂X . If the

reduction of the set of objects is considerable, significantly smaller space of elementary

conditions is searched.

4.4.3 Induction of random rules satisfying ε-consistency and

ε
′-consistency condition

VC-DomLEM, when it is inducing rules satisfying ε-consistency and ε
′
-consistency con-

dition, can be used in a setting inspired by Random Forests (Breiman, 2001). In this

setting, in V C-SequentialCoveringmix method, elementary conditions constructed on
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the basis of a random subsets of attributes P ⊆ C of fixed size are considered when se-

lecting the best elementary condition that is added to the rule in line 7. The cardinality

of set P is parametrized. The rest of the induction algorithm is the same as described

in section 4.4.1.

This version of VC-DomLEM is intended to be used in ensembles of classifiers. It is

expected to increase the diversity of such ensembles due to randomization of the set of

attributes on which elementary conditions are constructed.

4.5 Induction of ensembles of decision rule classifiers in

VC-bagging

We propose a generalization of the bagging scheme, called variable consistency bagging

(VC-bagging) (Błaszczyński et al., accepted for publication 2009, 2009b), where the

sampling of objects is controlled by consistency measures. This extension of bagging

shares some of its motivations with VC-IRSA and VC-DRSA but can be easily used

with almost any learning algorithm. The only requirement is unstability of the algorithm,

which is also postulated by standard bagging scheme (see section 4.5.1).

Let us remark that the main idea of the standard version of bagging method (Breiman,

1996) is that several classifiers, called component or base classifiers, are induced by the

same learning algorithm over several different distributions of input objects, which are

bootstrap samples obtained by uniformly sampling with replacement. Bagging method

has been extended in a number of ways in attempt to improve the predictive accuracy

of the constructed ensemble. These extensions focused mainly on increasing diversity

of component classifiers. Random forest (Breiman, 2001) is a well known example of

such extension. It uses feature subset randomized decision tree component classifiers

(Breiman, 2001). Other extensions of bagging profit from random selection of features.

In some cases, several random subspaces of features are selected along with the idea pre-

sented as the random subspaces method (Ho, 1998). In other cases, the random selection

of features is combined with standard bootstrap sampling. Examples of such ensembles

of classifiers were considered by different researchers (Patrice et al., 2000; Stefanowski

and Kaczmarek, 2004; Panov and Dzeroski, 2007).

By introducing VC-bagging, we also have motivation to increase diversity by chang-

ing sampling phase. However, we take into account the postulate saying that base

classifiers used in bagging are expected to have sufficiently high predictive accuracy

apart from being diversified (Breiman, 2001). In our opinion, this requirement is par-
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ticularly important for processing input data containing inconsistent objects. Usually,

these inconsistent objects are source of difficulties that may lead to overfitting of the

base classifies and decrease their classification performance. Although bagging is known

to be less sensitive to overfitting than boosting, we intend to show that it is possible to

change input sampling in such a way that component classifiers could be less influenced

by inconsistent objects.

Our key concept is to change the standard bootstrap sampling, where each object is

assigned the same probability of being sampled, into more focused variable consistency

bootstrap sampling, where consistent objects are more likely to be selected than incon-

sistent ones. To identify consistent objects we can use the same consistency measures

that were chosen to define probabilistic lower approximations. The intuition here is that

decreasing a chance for selecting inconsistent objects should lead to creating more accu-

rate and still sufficiently diversified base classifiers in the bagging scheme. Moreover, we

also consider consistency of objects with respect to partial description by the attributes.

This results in the consistency being measured in granules on knowledge constructed

on random subsets of the set of attributes that describe the problem. When these in-

consistent objects are identified on subsets of attributes the intuition is the same but

it is expressed with respect to objects that can be basis for construction of consistent

patterns.

We would like to stress that we want to identify consistent objects and change their

sampling probability in a pre-processing phase before learning base classifiers in a similar

manner as probabilistic lower approximations are computed. In this way, we modify the

standard bootstrap sampling with uniform probability distribution into more focused

distribution where consistent objects are more likely to be selected than inconsistent

ones. The goal is to learn component classifiers on more perturbed distributions char-

acterised by higher rates of consistent objects. This is a different approach comparing

to an iterative identification of incorrectly classified objects while constructing boost-

ing integrated classifiers (Freund et al., 1997; Schapire and Singer, 1999; Friedman and

Popescu, 2008). Boosting consists in subsequent extending of an ensemble of classifiers

by adding component classifiers focused on objects incorrectly classified so far. In our

approach, we evaluate consistency of objects and we change their sampling probability

in a pre-processing phase before learning of component classifiers. This is different than

evaluating objects’ classification in boosting. Additionally, in the way typical for bag-

ging, consistency of objects is calculated independently for each of bootstrap samples.
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4.5.1 Bagging scheme

First, let us present the Bagging (an acronym from Bootstrap aggregating) that was

introduced by Breiman (Breiman, 1996). The idea of bagging is quite simple: it com-

bines base classifiers generated by the same learning algorithm from different bootstrap

samples of the input training set. The outputs of these classifiers are aggregated by an

equal weight voting to make a final classification decision.

The diversity results from using different training samples. Each bootstrap sample isbootstrap
sample obtained by sampling objects uniformly with replacement. Each sample contains n ≤ |U |

objects (usually it has the same size as the original set), however, some objects do not

appear in it, while others may appear more than once. The same probability 1/n of

being sampled is assigned to each object. The probability of an object being selected

at least once is 1 − (1 − 1/n)n. For a large n, this is about 1 − 1/e. Each bootstrap

sample contains, on the average, 63.2% unique objects from the training set (Breiman,

1996). Thus, on average, approximately 36.8% of objects from the original training

set are not present in a given bootstrap sample. We may suspect that some bootstrap

samples may contain less misleading training objects than the complete original training

set. Consequently more accurate classifiers could be generated and aggregating them

may improve classification performance.

The bagging has one parameter m, which is the number of repetitions, i.e, the num-

ber of component classifiers that is created. For more details see, e.g., (Breiman, 1996;

Kuncheva, 2004). Let us also remark that the bagging is a kind of parallelization in train-

ing and classification phases, i.e., there is no transfer of additional information between

components unlike it happens in the boosting which iteratively builds a new classifier

using information about performance of the previously generated base classifiers.

Bagging is a learning framework in which almost any learning algorithm can be used.

Many experimental results show a significant improvement of the classification accuracy,

in particular, using decision tree classifiers. An improvement is also observed when using

rule classifiers. However, the choice of a base classifier is not indifferent. According to

Breiman (Breiman, 1996), what makes a base classifier suitable is its unstability. A base

classifier is unstable, when small changes in the training set do cause major changes in

the classifier. For instance, the decision tree and rule classifiers are unstable, while k-

Nearest Neighbor classifiers are not. For more theoretical discussion on the justification

of “why bagging works” please refer to (Breiman, 1996; Kuncheva, 2004).
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4.5.2 Variable consistency sampling

The goal of variable consistency sampling is to increase predictive accuracy of bagged

classifiers by using additional information that reflects the treatment of inconsistency

of objects, i.e., variation of consistency of objects, which could be easily applied to the

training set. The resulting bagged classifiers are trained on bootstrap samples slightly

shifted towards more consistent objects.

In general, the above idea is partly related to some earlier proposals of changing

probability distributions while constructing bagging inspired ensembles. In particular,

Breiman refers to methods that can improve accuracy of unstable classifiers by perturb-

ing and combining (P&C). The key concept of the P&C method is to generate multiple

versions of the classifier by perturbing the training set and then to combine these mul-

tiple versions into a single classifier. Breiman proposed some P&C methods for bagged

classifiers. Among them are Arcing Classifiers (Breiman, 1998), Pasting Small Votes

(Breiman, 1999) and Random Forests (Breiman, 2001). These methods perturb the

training data by sampling objects sequentially with replacement, where at each step the

probability of selecting a given object is modified by its importance. This importance is

estimated at each step by the accuracy of a new base classifier. Importance sampling is

known to provide better results than the standard bagging scheme.

The reader familiar with ensemble classifiers can notice other solutions for taking

into account accuracy of base classifiers in the process of learning of the ensemble. In

boosting more focus is given on objects difficult to be classified by iteratively extended

set of base classifiers. We argue that these ensembles are based on a different principle

of stepwise adding classifiers and using accuracy from the previous step of learning while

changing weights of objects.

Variable consistency sampling could be seen as similar to the described above im-

portance sampling because it is also based on modification of probability distribution.

However, there is a striking difference between these two approaches, which is grounded

in the fact that consistency of the training objects is evaluated in the pre-processing stage

before learning of the base classifiers. Moreover, consistency of objects is intended to be

a simpler measure than importance in terms of computational expense resulting from

its calculation. Our expectation is that drawing bootstrap samples from a distribution

that reflects their consistency will not decrease the diversity of the samples.

Our other observation is that estimating the role of objects in the pre-processing of

training data is more similar to previous works on edited k-nearest neighbor classifiers,

where the most useful training objects for correct classification are kept, while noisy or



102 CHAPTER 4. RULE MODELS

borderline objects are removed, see, e.g., (Wilson and Martinez, 2000). For instance, the

IBL3 algorithm (Aha and Kibler, 1989, 1991), which keeps the most useful objects for

correct classification and removes noisy or borderline examples, is more accurate than

IBL2 version, which focuses on difficult examples from border between classes. Similar

performance of a variant of nearest neighbor cleaning rule in a specific approach to

pre-processing of imbalanced data was observed in (Stefanowski and Wilk, 2007).

The VC-bagging learning algorithm presented as Algorithm 3 is almost the same

as the standard bagging scheme. The difference lies in variable consistency sampling,

which is a modified procedure of bootstrap sampling on random subsets of attributes P

of specified size p = |P |, line 3. This procedure is using consistency of object calculated

on random subsets of attributes to construct more consistent bootstrap samples. The

cardinality p of random subsets of attributes P ⊆ C is limited by the size of set of

condition attributes describing problem. The interpretation of this parameter is that

it controls the size of patterns that are identified by the consistency measures in the

sampling procedure. The rest of the bagging scheme remains unchanged. It is worth

noting that, random subsets of attributes are used only to calculate consistency of ob-

jects. Objects with complete description are drawn into bootstrap samples and then

used during learning of component classifiers.

Algorithm 3: VC-bagging scheme
Input : LS training set; TS testing set; LA learning algorithm;

ΘP
X consistency measure;

p number of attributes used in consistency sampling;
m number of bootstrap samples;

Output: C∗ final classifier

1 Learning phase;
2 for i := 1 to m do
3 Si := bootstrap sample of objects, which are drawn by consistency

sampling from LS with measure ΘP
X calculated on randomly selected

set of attributes P, such that |P | = p {sample objects with
replacement according to measure ΘP

X } ;
4 Ci := LA (Si) {generate a base classifier} ;

5 Classification phase;
6 foreach y in TS do
7 C∗(y) := combination of the responses of Ci(y), where i = 1, . . . ,m

{the suggestion of the classifier for object y is a combination of suggestions of
component classifiers Ci} ;

Consistency measures defined for VC-IRSA in chapter 2, and for VC-DRSA in chap-
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ter 3, can be applied to evaluate consistency of object y that is then used in variable

consistency sampling. To apply both gain-type consistency measure fPX(y) and cost-type

consistency measure gPX(y) in variable consistency sampling we need to transform them

to measure ΘP
X(y) defined for a given object y, set of attributes P and set of objects X,

as

ΘP
X(y) = fPX(y) or ΘP

X(y) = 1− gPX(y). (4.12)

This transformation is valid since consistency measures defined in chapters 2 and 3 take

values from [0, 1]. One exception is measure ε
′

defined as (2.4) and as (3.9). It needs

special treatment in the above transformation since it takes values from
[
0, |¬X

≥|
|X≥|

]
. Thus,

ε
′

needs to be normalized using an upper limit of its domain.

In the variable consistency sampling, objects that are inconsistent on the selected

random subset P have decreased probability of being sampled. The value of consistency

measure calculated for object y is used to tune the probability of y being sampled to a

bootstrap sample, e.g., by calculating a product of ΘP
X(y) and 1/|U |. A consistent object

y has ΘP
X(y) = 1, while inconsistent object y has 0 ≤ ΘP

X(y) < 1. Thus, objects that

are more consistent (i.e., have higher value of a consistency measure) are more likely

to appear in the bootstrap sample. Different object consistency measures may result in

different probability of inconsistent object y being sampled. The consistency measures

that have property (m1), i.e., that are monotonic with respect to the set of attributes,

when are applied in consistency sampling on subsets of attributes P , they allow to

identify consistent patterns of at least size p , such that |P | = p. The object consistency

measures that do not have property (m1) allow to identify consistent patterns of exactly

size p.

The responses of component classifiers are combined in line 7 of the algorithm. Differ-

ent combination rules can be applied to this end, depending on the type of classification

method used in component classifiers and the nature of classification problem that is

solved. The combination rules for classification methods considered in this work are

discussed in section 5.3.

4.6 Summary

In this chapter, we have presented rule induction methods for VC-IRSA and VC-DRSA.

We started with proposing a single rule induction algorithm VC-DomLEM. This algo-

rithm may be used in a general framework of consistency sensible ensembles of learning

methods, called VC-bagging. Moreover, VC-bagging may also be applied with almost
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any unstable learning method that is not necessarily aware of information provided by

rough set analysis.

All methods presented here are meant to produce sufficiently accurate and compre-

hensible classifiers that satisfy constraints imposed on consistency measures. These are

the same consistency measures as the ones used to define monotonic probabilistic rough

set approaches in chapter 2 and in chapter 3. The predictive abilities of these methods

are further investigated in chapter 6.



CHAPTER 5
Rule Classifiers

5.1 Introduction

In this chapter, we present how rule models, which are discussed in chapter 4, can be

used to classify objects. Sequential covering methods of rule induction, that we use, do

not set any order in produced rule sets. Thus, sets of rules used by classification methods

presented in this chapter are unordered. This means that, during classification, each of

the rules from the set is matched with each of classified objects. The order in which rules

are used in classification has no consequence on classification result. Another approach

to classification is implemented by methods that use ordered lists of rules (Clark and

Niblett, 1989; Quinlan, 1992).

Two types of classifiers are investigated in this chapter. The first type is a single

classifier. Single classifier is using one classification method that applies one set of rules

to classify objects. The second type is an ensemble of classifiers. In this case, objects

are classified by an ensemble of component classifiers that use the same classification

method but that apply different sets of rules to classify objects.

In case of a single classifier, the standard classification method for DRSA is described

in (Greco et al., 2002b). In this procedure, an object covered by a set of rules is as-

signed to a class (or a set of contiguous classes) resulting from intersection of unions of

decision classes suggested by the rules. This procedure is described more thoroughly in

section 5.2. In (Błaszczyński et al., 2007a), we presented a new procedure for a single

classifier in DRSA and in VC-DRSA. We recall and discuss this procedure in section 5.2.

It is based on a notion of score coefficient associated with a set of rules covering object

and classes to which these rules may assign the object. The score coefficient reflects
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relevance between rules and class to which they assign objects. A vector of values of

score coefficients calculated for an object with respect to each class can be interpreted

as a distribution of relevance between rules that cover classified object and classes.

Finally, we present how to combine responses of component classifiers that use stan-

dard and new procedure of classification for DRSA and for VC-DRSA in the ensemble

framework. We also address the idea of abstaining in such ensembles of classifiers.

5.2 Classification by a set of decision rules

In this section, a method of classification by a set of decision rules is presented. We

introduced this method with VC-DRSA classification in mind. Contrary to the classifi-

cation method introduced earlier for DRSA (Greco et al., 2002b,a), this method allows

to calculate a score coefficient for an object with respect to each of decision classes.

The previously proposed method for DRSA will be referred to as standard classification

method. The new method is particularly suitable for VC-DRSA but, obviously, it can

be applied within DRSA as well (Błaszczyński et al., 2007a).

To start presentation of the new method we distinguish three basic situations that

occur while classifying new objects using decision rules. For a given set of rules R, let

define a set of decision rules covering an object y ∈ U :

cov(y) = {r ∈ R : y ∈ ‖Φr‖}, (5.1)

where ‖Φr‖ denotes a set of objects satisfying condition part of rule r. Note the difference

between cov(y) used for the set of rules covering object y and the coverage of rule defined

as (4.6).

In general, only one of the following three situations can occur when matching object

y to a set of decision rules R:

1) none of the rules from R cover object y (i.e., cov(y) = ∅),

2) exactly one decision rule r covers object y (i.e., cov(y) = 1),

3) several rules cover object y (i.e., cov(y) > 1).

We consider these three situations below. First, we characterize the source of difficul-

ties while dealing with each situation. Then, we show how these difficulties are overcome

by the standard classification method and by the new one.

Situation 1 is clear when we do not consider a partial matching of object y by rules.
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• Standard classification method : object y is assigned to all considered decision

classes. Alternatively, object y may be assigned to the majority class (i.e., it

may be assigned to the class with the most objects).

• New classification method : as above.

Otherwise, different partial matching strategies (Clark and Niblett, 1989; Clark and

Boswell, 1991; Grzymała-Busse, 1994; Grzymała-Busse and Zou, 1998; Słowiński and

Stefanowski, 1994; Stefanowski, 1995) could be applied when at least one of rule condi-

tions of some rules from R is satisfied by the corresponding attributes in the description

of object y. The classification method is called abstaining if none of partial matching

strategies is applied nor the object is assigned to the majority class.

Situation 2 is also relatively simple.

• Standard classification method : the classification is inspired by a prudence prin-

ciple. For rule rθ̂X
≥

X≥
that matches object y, and assigns it to upward union X≥,

the standard classification method assigns object y to the lowest class of the union

in the decision part of rθ̂X
≥

X≥
. For rule rθ̂X

≤

X≤
that matches object y, and assigns

it to downward union X≤, the standard classification method assigns object y to

to the highest class of the union in the decision part of rθ̂X
≥

X≥
. More formally, if

the decision part of rule rθ̂X
≥

X≥
matching object y is “then y ∈ X≥t ”, then object

y is assigned to class Xt. Analogously, if the decision part of rule rθ̂X
≤

X≤
matching

object y is “then y ∈ X≤t ”, then object y is assigned to Xt.

• New classification method : the classification involves calculation of a score coeffi-

cient that reflects relevance between rules and class to which they assign objects.

For rule rθ̂X
≥

X≥
matching object y and having decision part “then y ∈ X≥t ”, a value

of score
rθ̂X
≥

X≥
(Xi, y) is calculated for object y and each decision class Xi, such that

i ≥ t:

score
rθ̂X
≥

X≥
(Xi, y) =

∣∣‖Φ
rθ̂X
≥

X≥
‖ ∩Xi

∣∣2∣∣‖Φ
rθ̂X
≥

X≥
‖
∣∣∣∣Xi

∣∣ , (5.2)

where ‖Φ
rθ̂X
≥

X≥
‖ denotes the set of objects verifying the condition part of rule rθ̂X

≥

X≥
,

and
∣∣‖Φ

rθ̂X
≥

X≥
‖
∣∣, |Xi| and

∣∣‖Φ
rθ̂X
≥

X≥
‖ ∩Xi

∣∣ denote cardinalities of the corresponding

sets: the set of objects verifying Φ
rθ̂X
≥

X≥
, the set of objects belonging to class Xi

and the set of objects verifying Φ
rθ̂X
≥

X≥
and belonging to class Xi. Analogously,

for rule rθ̂X
≤

X≤
matching y and having decision part “then y ∈ X≤t ”, a value of
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score
rθ̂X
≤

X≤
(Xi, y) is calculated for object y and each decision class Xi, such that

i ≤ t:

score
rθ̂X
≤

X≤
(Xi, y) =

∣∣‖Φ
rθ̂X
≤

X≤
‖ ∩Xi

∣∣2∣∣‖Φ
rθ̂X
≤

X≤
‖
∣∣∣∣Xi

∣∣ . (5.3)

The value of above defined score coefficient can be interpreted as a product of

credibility crr and relative strength rsr of rule r covering object y with respect to

decision class Xi, since:

crr(Xi, y) =

∣∣‖Φr‖ ∩Xi

∣∣∣∣‖Φr‖
∣∣ , (5.4)

rsr(Xi, y) =

∣∣‖Φr‖ ∩Xi

∣∣∣∣Xi

∣∣ . (5.5)

Thus, score
rθ̂X
≥

X≥
(Xi, y) = cr

rθ̂X
≥

X≥
(Xi, y)× rs

rθ̂X
≥

X≥
(Xi, y). Analogously,

score
rθ̂X
≤

X≤
(Xi, y) = cr

rθ̂X
≤

X≤
(Xi, y)× rs

rθ̂X
≤

X≤
(Xi, y).

Moreover, the value of the score coefficient can be interpreted as a measure of

relevance between condition part of rule r covering object y and class Xi. Using

frequentist estimators of probabilities, one can also express the score coefficient as

a product of two conditional probabilities:

Pr(Xi

∣∣‖Φr‖) =

∣∣‖Φr‖ ∩Xi

∣∣∣∣‖Φr‖
∣∣ , (5.6)

Pr(‖Φr‖
∣∣Xi) =

∣∣‖Φr‖ ∩Xi

∣∣∣∣Xi

∣∣ , (5.7)

that is, the larger the product of the two probabilities, the stronger is the relevance

between ‖Φr‖ and Xi.

Finally, object y is assigned to the class Xi for which the value of the score co-

efficient is the greatest. The value of score
rθ̂X
≥

X≥
(Xi, y) ∈ [0, 1] and the value of

score
rθ̂X
≤

X≤
(Xi, y) ∈ [0, 1]. Thus, it can be interpreted as a degree of certainty of

the assignment of y to Xi.

Situation 3; in this case, set cov(y) of decision rules assigning object y to different

unions of decision classes is taken into account. Remark that any object y from the

learning data set used to induce rules can support many rules suggesting different unions,

even if y creates no ambiguity with other objects from the learning data set. For example,

object y ∈ Xr, can support rule rθ̂X
≥

X≥
whose decision part is “then y ∈ X≥t ” with t ≤ p

or decision rule rθ̂X
≤

X≤
whose decision parts is “then y ∈ X≤s ” with s ≥ p. Analogously,

when we pass from the rule induction to the application of decision rules for classification,
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object y covered by a rule suggesting assignment to the union of decision classes X≥t
may be covered also by rules indicating unions of decision classes X≥s , where s < t, since

X≥t ⊆ X≥s . Of course, object y can be covered also by a rule suggesting assignment to

the union of decision classes X≤v : in this case; object y may be covered also by rules

indicating unions of decision classes X≤w , where w > v, since X≤v ⊆ X≤w .

• Standard classification method : it compiles decisions suggested by rules from cov(y)

in two steps. First, an intersection of unions suggested by all decision rules rθ̂X
≥

X≥

(i.e., decision rules having decision part “then y ∈ X≥”) covering object y is calcu-

lated. The lowest class from this intersection, say Xt, constitutes the first limit of

final assignment. Second, an intersection of unions suggested by all by all decision

rules rθ̂X
≤

X≤
(i.e., decision rules having decision part “then y ∈ X≤”) covering object

y is calculated. The highest class from this intersection, say Xs, constitutes the

second limit of final assignment. The recommended final assignment of y is the

interval of decision classes from Xt to Xs (i.e., at least Xt and at most Xs). If

t = s, then the assignment is univocal, otherwise, one of two cases may occur:

1) t < s, then object y is assigned to classes Xt, Xt+1, . . . , Xs−1, Xs, without

possibility of refinement because of imprecise information,

2) t > s, then object y is assigned to classes Xs, Xs+1, . . . , Xt−1, Xt, without

possibility of discernment because of contradictory information.

In case (1), the information is imprecise because the classification regards a family

of classes, from Xt to Xs, but there is not enough information for a finer spec-

ification. In case (2), the information is contradictory because suggestions from

rθ̂X
≥

X≥
decision rules and rθ̂X

≤

X≤
decision rules are conflicting. In fact, rθ̂X

≥

X≥
deci-

sion rules suggest at least Xt, while rθ̂X
≤

X≤
decision rules suggest at most Xs, but

t > s. For example, in a classification problem with three classes, X1 = ”bad”,

X2 = ”medium”, X3 = ”good”, this is the case in which the suggestion is that

object y is at least good (i.e., good or better) but also at most bad (i.e., bad or

worse). Reasonably, in this case the conclusion would be that object y is good,

medium or bad.

• New classification method : score coefficient scorecov(y)(Xt, y) is calculated with

respect to each class Xt and set cov(y). Object y is assigned to the class with the

highest value of score coefficient.
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First, let us distinguish in the set of decision rules cov(y) those rules that are

concordant with assignment of y to class Xt. These are decision rules ri ∈ cov(y),

i = 1, 2, . . . , k, that suggest assignment of y to the union of classes X≥s and X≤q ,

where Xt ⊆ X≥s and Xt ⊆ X≤q , respectively. For, object y ∈ U , set of rules cov(y)

and class Xt let us define the set of rules supporting assignment of object y to

class Xt as:

cov+
Xt

(y) = {r ∈ cov(y) : Xt ∈ Ψr}, (5.8)

where Ψr denotes decision part of rule r. Analogously, let us define the set of rules

that are not supporting assignment of object y to class Xt. These are decision

rules ri ∈ cov(y), i = k+1, . . . , h, that suggest assignment of object y to the union

of classes X≥s and X≤q such that Xt ∩X≥s = ∅ and Xt ∩X≤q = ∅, respectively. For,

object y ∈ U , set of rules cov(y) and class Xt let us define the set of rules not

supporting assignment of object y to class Xt as:

cov−Xt(y) = {r ∈ cov(y) : Xt /∈ Ψr}. (5.9)

We define positive score coefficient with respect assignment of object y to class Xt

on the basis of rules belonging to cov+
Xt

(y), as follows:

scorecov+Xt (y)(Xt, y) =

∣∣(‖Φr1‖ ∩Xt) ∪ . . . ∪ (‖Φrk‖ ∩Xt)
∣∣2

(
∣∣‖Φr1‖ ∩ ‖Φrk‖)

∣∣|Xt|
, (5.10)

where ‖Φr1‖, . . . , ‖Φrk‖ are the sets of objects verifying condition parts of rules

ri ∈ cov+
Xt

(y), i = 1, 2, . . . , k. Positive score coefficient scorecov+Xt (y)(Xt, y) takes

into account decision rules which are concordant with assignment of y to class Xt.

The interpretation of scorecov+Xt (y)(Xt, y) is analogous to the interpretation of the

score coefficient defined in situation 2.

We define negative score coefficient with respect to assignment of object y to class

Xt on the basis of rules belonging to cov−Xt(y), as follows:

scorecov−Xt (y)(Xt, y) =

=

∣∣(‖Φk+1‖ ∩X≤t−1) ∪ . . . ∪ (‖Φl‖ ∩X≤t−1) ∪ (‖Φl+1‖ ∩X≥t+1) ∪ . . . ∪ (‖Φh‖ ∩X≥t+1)
∣∣2∣∣‖Φk+1‖ ∪ . . . ∪ ‖Φl‖ ∪ ‖Φl+1‖ ∪ . . . ∪ ‖Φh‖

∣∣|X≤t−1 ∪X
≥
t+1|

,

(5.11)

where X≤t−1 and X≥t+1 are downward union and upward union of classes that do

not include class Xt. In case of t = 1, all parts of equation (5.11) that involve

X≤t−1 are neglected. Analogously, in case of t = n, all parts of equation (5.11) that

involve X≥t+1 are neglected.
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In definition (5.11) we assume that decision rules in set cov−Xt(y) are ordered so

that all ri for i = k + 1, . . . , l are assigning to subset of X≤t−1, while all rj for

j = l + 1, . . . , h are assigning to subset of X≥t+1.

Negative score coefficient scorecov−Xt (y)(Xt, y) can be interpreted as a product of

credibility and relative strength of all rules matching object y, and suggesting its

assignment to decision classes different than Xt. It can also be interpreted as a

measure of relevance between condition parts of rules belonging to cov−Xt(y) and

¬Xt.

The recommended final assignment of object y is calculated on the basis of score

coefficient that involves both positive and negative score coefficients. For object y

and class Xt this score coefficient is defined as:

scorecov(y)(Xt, y) = scorecov+Xt (y)(Xt, y)− scorecov−Xt (y)(Xt, y). (5.12)

Analogously to situation 2, object y is assigned to the classXt for which the value of

scorecov(y)(Xt, y) is the highest. In this situation, score coefficient scorecov(y)(Xt, y)

can be interpreted as a net balance of arguments in favor and arguments against

the conclusion “object y belongs to class Xt”.

As follows from the above description, the new classification method takes into account

a joint strength of covering rules with respect to each particular class. This strength

is calculated considering the rules suggesting an assignment to a given class Xt as ar-

guments in favor of Xt, and all other matching rules as arguments against Xt. The

standard classification method is not using information about the strength of matching

rules and, instead, recommends an assignment based on intersection of suggested unions

of decision classes.

The new classification method may give different results to the standard classification

method. This is the consequence of the different type of information taken into account

by the two methods. The following Example 5.2.1 illustrates the difference in result of

the two classification methods.

Example 5.2.1. Let us consider two rules {r1, r2} covering object y (i.e., cov(y) =

{r1, r2}). Rule r1 assigns to union of classes X≥2 while rule r2 assigns to union of

classes X≥3 .

• Standard classification method: the result of compilation of decisions suggested by

covering rules is class X3.
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• New classification method: score coefficient scorecov(y)(Xt, y) is calculated with

respect to each class Xt and the set of rules cov(y). First, we identify rules that

support assignment to class X2 or X3 and rules that are against assignment to

these classes:

cov+
X2

(y) = {r1}, cov−X2
(y) = {r2},

cov+
X3

(y) = {r1, r2}, cov−X3
(y) = ∅.

Then we calculate the score coefficient for class X2 and X3:

scorecov(y)(X2, y) =

∣∣(‖Φr1‖ ∩X2)
∣∣2∣∣‖Φr1‖

∣∣|X2|
−
∣∣(‖Φr2‖ ∩X3)

∣∣2∣∣‖Φr2‖
∣∣|X3|

,

scorecov(y)(X3, y) =

∣∣(‖Φr1‖ ∩X3) ∪ (‖Φr2‖ ∩X3)
∣∣2∣∣‖Φr1‖ ∪ ‖Φr2‖

∣∣|X3|
.

The result of classification depends on value of scorecov(y)(X2, y) and scorecov(y)(X3, y)

coefficients. Object y may be assigned to class X2 if relevance between rule r1 and

class X2 is high and relevance between rule r2 and class X3 is low. It is assigned

to class X3 otherwise. The first situation occurs for example when |X2| and |X3|
are equal, |‖Φr1‖| is high, |‖Φr2‖| is low, |(‖Φr1‖∩X2)

∣∣ is high, |(‖Φr1‖∩X3)
∣∣ and

|(‖Φr2‖ ∩X3)
∣∣ are low.

5.3 Combination of responses in an ensemble of classifiers

In this section, we show how to combine the results of classification, i.e., assignments

of object to class (or classes), produced in an ensemble by component classifiers that

use both types of classification methods presented in the previous section 5.2. The

reason for combination of results of classifications produced by component classifiers

in an ensemble is a potential improvement of predictive accuracy of the ensemble. An

important property of ensembles that show this type of improvement over its component

classifiers is diversity of the component classifiers (see e.g., (Breiman, 1996; Kittler et al.,

1998; Kuncheva et al., 2002; Kuncheva, 2004)). In case of both types of classifiers

considered here, we use rule models that are known to give unstable classifiers (i.e.,

small change in the learning set may lead to significantly different set of rules). Unstable

component classifiers result in ensembles that are diversified.

The choice of method that combines the results of classification in the ensembles

depends on the type of these classification results and on the classification problem that
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is solved. When the classification results always indicate single class, in case of non-

ordinal classification problem, majority voting is the method of combining the results in

the ensemble (Franke and Mandler, 1992; Breiman, 1996). This choice may be attributed

to the fact that mode is the measure of central tendency for non-ordinal nominal scale.

Thus, majority voting minimizes the number of misclassifications of the ensemble. On

the other hand, in case of ordinal classification problem, median of the results is the

natural choice. This choice may be attributed to the fact that median is the measure

of central tendency for ordinal scales. Median does not depend on the distance between

values of the decision attribute, so the scale of the decision attribute does not matter,

only the order is taken into account. It minimizes the difference of ranks of the class

to which the classified object belongs and to which it is classified. Note, however, that

in some applications of ordinal classification, low misclassification rate may be more

important than small errors. In such applications, majority voting may be a better

choice than median voting.

In our case, the classification result issued by a component classifier that applies the

standard classification method (see section 5.2 for details) is class or set of contiguous

classes. This type of classifier does not give any additional information that reflects

certainty (or consistency) of the classification result. We can treat such classification

results, i.e., the suggestions of assignment, as votes. Votes of all component classifiers are

equally important. Each component classifier in ensemble is voting for one class or set

of contiguous classes according to the classification result produced by the classification

method:

1) If j-th component classifier (j = 1, . . . ,m) is voting to assign object y to only

one class Xi, we can denote it as votej(Xi, y) = 1. In this case, for any k 6= i,

votej(Xk, y) = 0.

2) If result of classification suggested by j-th component classifier (j = 1, . . . ,m)

for object y is a set of contiguous classes Xk, Xk+1, . . . , Xl, (see situation 3 in

section 5.2)) then the vote of this component classifier is divided equally (e.g.,

1/(l − k)) between suggested classes. We can denote it as votej(Xi, y) = 1
l−k , for

i ∈ [k, l]. Analogically, votej(Xi, y) = 0, for i /∈ [k, l]

In case of results issued by component classifiers applying the new classification

method, we can treat the value of score coefficient (5.12) as the value of vote. In this

case, each of component classifiers issues a distribution of score coefficients that reflect

relevance between the classifying rules and the classes. For j-th component classifier
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assigning object y, class Xi, i = 1, . . . , n, and covj(y), j = 1, . . . ,m, being the set

of rules in j-th classifier that covers object y, we can denote it as: votej(Xi, y) =

scorecovj(y)(Xi, y).

The following aggregation rules can be applied to results of classification represented

by votes:

1) Max vote rule

assign y →Xi if

Xi =
n

arg max
i=1

m
max
j=1

(
votej(Xi, y)

)
,

2) Majority vote rule

assign y →Xi if

Xi =
n

arg max
i=1

( 1

m

m∑
j=1

votej(Xi, y)
)
,

3) Median vote rule

assign y →Xi if

Xi =
n

arg med
i=1

( m∑
j=1

votej(Xi, y)
)
.

As it is shown in (Kittler et al., 1998), the following relationship holds:

n
max
i=1

( 1

m

m∑
j=1

votej(Xi, y)
)
≤ n

max
i=1

m
max
j=1

(
votej(Xi, y)

)
. (5.13)

The relationship (5.13) reflects that max vote rule can be approximated by majority

vote rule as the lower bound. Difference between application of majority voting and

median voting is considered earlier in this section.

A component classifier may be abstaining according to definition of situation 1 in

section 5.2. Other researchers considered solutions when a classifier in ensemble may

not produce class prediction in case of uncertainty of the objects’ classification. How-

ever, most of the research in this area concerns refraining from the final decision in case

of disagreement between votes of component classifiers, e.g., see a study (Rückert and

Kramer, 2004) showing that it may improve the final accuracy. Some researches allow

single classifiers to give no answer. For instance, rule ensembles, like SLIPPER (Cohen
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and Singer, 1999) are based on a weighted combination of single rules (being compo-

nent classifiers) and a rule is excluded from voting if the new object is not covered by

it. According to our best knowledge other researchers have not considered abstaining

solutions for ensembles where component classifiers are based on sets of unordered rules

induced by sequential covering algorithms which are the most popular techniques for in-

ducing rules (Kononenko and Kukar, 2007). Let us remind that we presented sequential

covering rule induction algorithm VC-DomLEM in section 4.4. VC-DomLEM induces

sets of rules applied by classification methods presented in this chapter.

A set of unordered rules usually covers a subspace in the problem space which can

be seen as an area of its expertise. Thus, in a diversified ensemble of rule classifiers, it

is likely that if one of component classifiers abstains from classifying an object, other

more experienced classifiers that use other sets of rules may classify the object. They

should make it better than the classifier that is forced to suggest assignment of object

not belonging to his area of expertise. We have shown in (Błaszczyński et al., 2009e)

that abstaining strategy gives more accurate ensembles of rule set classifiers than those

ensembles that applied partial matching strategy.

5.4 Summary

In this chapter, we presented two classification methods for DRSA and VC-DRSA. These

methods resolve situations that occur when the considered object is covered by none of

rules, one rule, or multiple rules from the set of rules.

Moreover, these classification methods were investigated with regard to two types

of classifiers, namely single classifier and ensemble of classifiers. We have presented

methods to combine results of component classifiers in an ensemble of classifiers.





CHAPTER 6
Computational Experiments

6.1 Experimental Setup

In this chapter, we check the predictive accuracy of the variable consistency rough set

approach in ordinal classification with monotonicity constraints. To this end, we com-

pare our methods to other classifiers. In general, it is not always the case that ordinal

classifiers that preserve monotonicity constraints perform better in terms of the predic-

tive accuracy than non-ordinal classifiers. This is mainly attributed to the fact that

monotonicity constraints, that need to be satisfied, bias the classifier. Taking this into

account, we included in comparison some well known non-ordinal classifiers. The results

are analyzed with application of nonparametric statistical tests.

Our experiment was conducted on several real data sets. We restricted these data

sets to only those which are known to be ordinal and that include monotone relationships

between values of decision attribute and some of the other attributes.

The experiment has been divided into two parts: in the first part single classifiers,

and in the second, ensembles of classifiers, are compared.

According to our motivation concerning application of the methods to decision aiding,

we also consider interpretability and traceability of the compared classification models.

6.1.1 Data sets

We included in the experiment fourteen data sets that were known to be ordinal and

that include monotonic relationships between values of the decision attribute and some

117
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of the other attributes. The directions of ordering in the domains of the attributes are

part of the domain knowledge about the considered classification problems.

Six data sets that we analyzed come from the UCI repository1. These are:

• balance scale data set,

• breast-c: breast cancer Ljubljana data set,

• breast-w: breast cancer Wisconsin data set,

• car evaluation data set,

• cpu performance data set, in case of which the decision attribute was discretized

into four classes, containing equal number of objects,

• housing data set concerns housing values in suburbs of Boston; decision attribute

is discretized into four classes containing equal number of objects as in (Feelders

and Pardoel, 2003).

Two data sets concerning credit rating and credit risk assessment problems were

taken from Doumpos and Zopounidis (Doumpos and Pasiouras, 2005; Marinakis et al.,

2008):

• bank-g: bank of Greece data set,

• fame: financial analysis made easy data set that contains Bureau van Dijk’s com-

pany database.

Two additional data sets concern house pricing problem:

• denbosch data set that contains housing values from Dutch city Den Bosch; see

(Daniëls and Kamp, 1999) for details,

• windsor data set that concerns housing values in Windsor, Canada (Koop, 2000);

decision attribute is discretized into four classes containing equal number of objects

as in (Feelders and Pardoel, 2003).

Finally, four data sets were taken from Ben-David (Ben-David, 1992, 1995):

1see http://www.ics.uci.edu/˜mlearn/MLRepository.html
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• ERA: employee rejection/acceptance data set; aiming at determining the most im-

portant qualities of potential employees,

• ESL: employee selection data set; applications for industrial jobs,

• LEV: lectures evaluation data set; anonymous evaluations of lecturers in MBA

courses,

• SWD: social workers decisions data set; assessments of qualified social workers with

regard to the risk that children face if they stay with their families at home.

Data sets breast-c and breast-w contained a marginal number of missing values

which were substituted by the central values of the respective attribute.

Characteristics of these fourteen data sets are given in Table 6.1. In this table, we

also show the values of λ (3.47) and δ (3.49), calculated on the whole data sets. For both

measures, we present values for the most restrictive consistency thresholds (i.e., µ
′∗
X = 1,

ε∗X = 0), and values calculated for the consistency thresholds used in the further parts of

the experiment. These measurements show the predictive accuracy that is attainable by

a rough set classifier on a given data set, which can also be interpreted as the consistency

of the data set.

Basing on these measures, we can observe that we have three fully consistent data

sets among all presented in the table. These are: balance, cpu, and housing. Then, we

can distinguish four data sets that have high consistency: brest-w, car, bank-g, and

fame. Also not bad in terms of consistency are: denbosch and ESL. While data sets:

breast-c, ERA, LEV, SWD, and windsor are highly inconsistent. We can also observe

that application of VC-DRSA leads to considerable improvement of both measures for

inconsistent data sets. This means that VC-DRSA allowed to include fair amount of

inconsistent objects into extended lower approximations. The values of λ and δ measures

will be further compared to the percentage of correctly classified objects and mean

absolute error (MAE) obtained in 10-fold cross validation by the methods taking part

in the experiment.
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Table 6.1: Characteristics of data sets, values of λ and δ measures for θ∗X = µ
′∗
X = 1,

θ∗X = ε∗X = 0, as well as for µ′X and εX used to obtain results shown in Tables 6.2
and 6.3

Id Data set #Obj. #Attr. #Class. λ
θ∗X
P δ

θ∗X
P µ′X λ

µ′X
P δ

µ′X
P εX λεXP δεXP

1 balance 625 4 3 100 0 1 100 0 0 100 0
2 breast-c 286 7 2 23.78 0.7622 0.55 90.21 0.0979 0.45 98.60 0.014
3 breast-w 699 9 2 97.57 0.0243 0.95 100 0 0.001 97.57 0.0243
4 car 1296 6 4 98.61 0.0162 0.85 100 0 0.01 99.46 0.0054
5 cpu 209 6 4 100 0 1 100 0 0 100 0
6 bank-g 1411 16 2 98.02 0.0198 0.99 98.72 0.0128 0.001 98.87 0.0113
7 fame 1328 10 5 98.27 0.0211 0.6 100 0 0.001 99.17 0.0113
8 denbosch 119 8 2 89.92 0.1008 0.9 100 0 0.05 99.16 0.0084
9 ERA 1000 4 9 11.3 2.826 0.75 87.3 0.129 0.03 80.8 0.28
10 ESL 488 4 9 85.04 0.1578 0.95 98.98 0.0102 0.03 100 0
11 housing 506 13 4 100 0 1 100 0 0 100 0
12 LEV 1000 4 5 41.20 0.8010 0.9 88.7 0.113 0.03 97.7 0.023
13 SWD 1000 10 4 48.7 0.68 0.85 80.4 0.196 0.15 100 0
14 windsor 546 10 4 69.6 0.40664 0.9 80.04 0.1996 0.05 97.44 0.0256

6.1.2 Methods

In the fist part of the experiment, we considered single classifiers. In this part of exper-

iment, we compared eight classifiers, among which two are our proposals described in

this thesis. These were two variants of VC-DomLEM, implemented in jRS library2:

• monotonic VC-DomLEM (i.e., with monotonic ε-consistency or ε′-consistency mea-

sure) with the standard classification method and the new classification method,

• non-monotonic VC-DomLEM (i.e., with non-monotonic µ-consistency measure)

with the standard classification method and the new classification method.

Moreover, we used two ordinal classifiers that preserve monotonicity constraints,

namely:

• Ordinal Learning Model (OLM) (Ben-David et al., 1989; Ben-David and Jagerman,

1997),

• Ordinal Stochastic Dominance Learner (OSDL) (Cao-Van, 2003) in balanced ver-

sion, which gives better results on inconsistent data (and which is similar with

respect to treatment of inconsistencies to the approach presented in this thesis).

Brief description of these methods can be also found in section 1.2.2. In case of both

classifiers we used implementation obtained from WEKA (Hall et al., 2009).

2see http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
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As it was mentioned, we decided to compare ordinal classifiers that are required to

preserve monotonicity constraints to some well known non-ordinal classifiers, like:

• Näıve Bayes,

• Support Vector Machine (SVM) with linear kernel (Platt, 1998),

• decision rule classifier RIPPER (Cohen, 1995),

• decision tree classifier C4.5 (Quinlan, 1992).

These classifiers were used also in implementation obtained from WEKA (Hall et al.,

2009).

We compared single classifiers in terms of their predictive accuracy.

In the second part of the experiment, we compared ensembles of classifiers. In this

case, we compared standard bagging with proposed by us variable consistency bagging

(VC-bagging), more precisely:

• bagging in standard setting (Breiman, 1996), with the number of component clas-

sifiers m = 20, and and median vote rule in aggregation,

• VC-bagging with ε-consistency measure calculated on random subsets of attributes

with 50% cardinality, the number of component classifiers m = 20, and median

vote rule in aggregation.

Two versions of monotonic VC-DomLEM were used in this comparison as component

classifiers in standard bagging and VC-bagging:

• monotonic VC-DomLEM with the standard classification method,

• random monotonic VC-DomLEM with the standard classification method.

In this part of the experiment, we focused not only on comparison of the predictive accu-

racy between classifiers. We also investigated the sources of improvements of predictive

accuracy that is achieved by these ensembles. Moreover, we compared the results of our

ensembles with the best results from the literature.
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6.2 Results of experiments

We used a statistical approach to verify significance of differences in predictive accuracystatistical
compari-

son
between classifiers in variants which we mentioned in section 6.1.2. First, we applied non-

parametric Friedman test to globally compare performance of the classifiers on multiple

data sets (Demsar, 2006; Kononenko and Kukar, 2007). The null-hypothesis in this test

is that all compared classifiers perform equally well. It was tested using the ranks of

each of the classifiers on each of the data sets. The Friedman test is defined as follows:

Let rji be the rank of the j-th classifier of m classifiers on the i-th of n data sets.Friedman
test The smaller the rank the better the classifier. The Friedman test compares the average

ranks of classifiers, Rj = 1
n

∑
i r
j
i . Under the null-hypothesis, which states that average

ranks Rj of all compared classifiers are equal, the Friedman statistic

χ2
F =

12× n
m× (m+ 1)

[∑
j

R2
j −

m× (m+ 1)2

4

]
(6.1)

is distributed according to χ2
F with m − 1 degrees of freedom, when n and m are suffi-

ciently big (usually, n > 10 and m > 5). According to suggestion from (Demsar, 2006),

Friedman statistics is undesirably conservative and so it is better to apply Iman and

Davenport statistic (which is relying on Friedman χ2
F )

FF =
(n− 1)× χ2

F

n× (m− 1)− χ2
F

, (6.2)

which is distributed according to the F -distribution with m − 1 and (m − 1)(n − 1)

degrees of freedom.

We did not present complete post-hoc analysis (Demsar, 2006) of differences between

classifiers. We decided to rely on direct comparison of ranks of each classifier averaged

over all data sets and on comparison of pairs of classifiers. We continued our experimental

comparison with examination of significance of difference in predictive accuracy for each

pair of classifiers. We applied Wilcoxon signed rank test (Demsar, 2006; Kononenko and

Kukar, 2007) with null-hypothesis that the medians of results on all data sets of the

two compared classifiers are equal. Let us remark, that in the paired tests ranks are

assigned to the value of difference in the predictive accuracy between the two compared

classifiers. Wilcoxon test is defined as follows:

Let di denote the difference between the performance values of the two classifiersWilcoxon
test on the i-th out of n data sets. The differences are ranked according to their absolute

values. Average ranks are assigned in case of ties between absolute values. Then, let R+

denote the sum of ranks for the data sets on which the first classifier outperformed the
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second. Let R− denote the sum of ranks for the data set on which it was the opposite.

Ranks of di = 0 are split evenly among the sums (if there is an odd number of them,

one is ignored. The value of T is the smaller of the sums, T = min(R+, R−). Critical

values for T can be checked in tables. For a lager number of data sets, the statistics

z =
T − 1

4 × n× (n+ 1)√
1
24 × n× (n+ 1)× (2n+ 1)

(6.3)

is distributed approximately normally.

The predictive accuracy was estimated by stratified 10-fold cross-validation, which estimation
of
predictive
accuracy

was repeated several times. We measured mean absolute error (MAE), which is a stan-

dard measure used for ordinal classification problems. We also measured the percentage

of correctly classified objects. We present the values of these measures in two sepa-

rate tables. In both cases, the tables with results contain the value of measure and its

standard deviation for each data set and each classifier. Moreover, for each data set

we calculated a rank of the result of a classifier when compared to the other classifiers.

The rank is presented in brackets (the smaller the rank, the better). Last row of each

table shows the average rank obtained by a given classifier. For each data set, the best

value of the predictive accuracy measure, and those values which are within standard

deviation of the best one, are marked as bold.

6.2.1 Single classifiers

The results of the experiment which concerned comparison of predictive accuracy, per- predictive
accuracyformed for single classifiers are shown in Tables 6.2 and 6.3. The first table contains

values of mean absolute error while the second table contains the percentages of correctly

classified objects.

We analyzed the ranks of MAE, which are presented in Table 6.2. We begun with

Friedman test, which in this case checks whether the measured average ranks are signif-

icantly different from the expected under the null-hypothesis mean average rank equal

4.5. In the test, performed for this comparison, we have FF = 5.28, while critical value

for α = 0.05 is 2.11. The p-value in this test is lower than 0.0001. Then, we analyzed

ranks of percentage of correctly classified objects, which are presented in Table 6.3. In

this test, we have FF = 4.93. The p-value in Friedman test is in this case is also lower

than 0.0001. The results of Friedman test and observed differences in average ranks allow

us to state with high confidence that there is a significant difference between compared

classifiers.
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Table 6.2: Single classifiers - mean absolute error (MAE) results

Id monotonic non-monotonic Näıve SVM RIPPER C4.5 OLM OSDL
VC-DomLEM VC-DomLEM Bayes

1
0.1621 (2) 0.1659 (3) 0.1104 (1) 0.1723 (4) 0.2917 (5) 0.3088 (6) 0.6384 (7) 0.7003 (8)
+
−0.001996 +

−0.002719 +
−0.002613 +

−0.003017 +
−0.01088 +

−0.02174 +
−0.01713 +

−0.004588

2
0.2331 (1) 0.2436 (3) 0.2564 (4) 0.3217 (7) 0.2960 (5) 0.2424 (2) 0.324 (8) 0.3065 (6)
+
−0.003297 +

−0.007185 +
−0.005943 +

−0.01244 +
−0.01154 +

−0.003297 +
−0.01835 +

−0.001648

3
0.03720 (2) 0.04578 (6) 0.03958 (3) 0.03243 (1) 0.04483 (5) 0.05532 (7) 0.1764 (8) 0.04149 (4)
+
−0.002023 +

−0.003504 +
−0.0006744 +

−0.0006744 +
−0.004721 +

−0.00751 +
−0.00552 +

−0.001168

4
0.03421 (1) 0.03524 (2) 0.1757 (7) 0.08668 (4) 0.2029 (8) 0.1168 (6) 0.09156 (5) 0.04141 (3)
+
−0.0007275 +

−0.0009624 +
−0.002025 +

−0.002025 +
−0.01302 +

−0.003108 +
−0.005358 +

−0.0009624

5
0.08293 (1) 0.0925 (2) 0.1707 (5) 0.4386 (8) 0.1611 (4) 0.1196 (3) 0.3461 (7) 0.3158 (6)
+
−0.01479 +

−0.01579 +
−0.009832 +

−0.01579 +
−0.01372 +

−0.01790 +
−0.02744 +

−0.01034

6
0.04536 (1) 0.04867 (2) 0.1146 (6) 0.1280 (7) 0.0489 (3) 0.0515 (4) 0.05528 (5) 0.1545 (8)
+
−0.001531 +

−0.000884 +
−0.01371 +

−0.001205 +
−0.00352 +

−0.005251 +
−0.001736 +

−0

7
0.3406 (1.5) 0.3469 (3) 0.4829 (6) 0.3406 (1.5) 0.3991 (5) 0.3863 (4) 1.577 (7) 1.592 (8)
+
−0.001878 +

−0.004 +
−0.002906 +

−0.001775 +
−0.003195 +

−0.005253 +
−0.03791 +

−0.007555

8
0.1232 (1) 0.1289 (2.5) 0.1289 (2.5) 0.2129 (7) 0.1737 (6) 0.1653 (5) 0.2633 (8) 0.1541 (4)
+
−0.01048 +

−0.01428 +
−0.01428 +

−0.003961 +
−0.02598 +

−0.01048 +
−0.02206 +

−0.003961

9
1.307 (2) 1.364 (7) 1.325 (5) 1.318 (3) 1.681 (8) 1.326 (6) 1.321 (4) 1.280 (1)
+
−0.002055 +

−0.006018 +
−0.003771 +

−0.007257 +
−0.01558 +

−0.006018 +
−0.01027 +

−0.00704

10
0.3702 (3) 0.4146 (5) 0.3456 (2) 0.4262 (6) 0.4296 (7) 0.3736 (4) 0.474 (8) 0.3422 (1)
+
−0.01352 +

−0.005112 +
−0.003864 +

−0.01004 +
−0.01608 +

−0.01089 +
−0.01114 +

−0.005019

11
0.3235 (2) 0.3083 (1) 0.5033 (7) 0.3551 (3) 0.3676 (4) 0.3676 (5) 0.3867 (6) 1.078 (8)
+
−0.01133 +

−0.00559 +
−0.006521 +

−0.005187 +
−0.007395 +

−0.01556 +
−0.01050 +

−0.00796

12
0.4813 (6) 0.5187 (7) 0.475 (5) 0.4457 (4) 0.4277 (3) 0.426 (2) 0.615 (8) 0.4033 (1)
+
−0.004028 +

−0.002867 +
−0.004320 +

−0.003399 +
−0.00838 +

−0.01476 +
−0.0099 +

−0.003091

13
0.454 (4) 0.4857 (7) 0.475 (6) 0.4503 (2) 0.452 (3) 0.4603 (5) 0.5707 (8) 0.433 (1)
+
−0.004320 +

−0.005249 +
−0.004320 +

−0.002867 +
−0.006481 +

−0.004497 +
−0.007717 +

−0.002160

14
0.5024 (1) 0.5201 (3) 0.5488 (4) 0.5891 (6) 0.6825 (8) 0.652 (7) 0.5757 (5) 0.5153 (2)
+
−0.006226 +

−0.003956 +
−0.005662 +

−0.02101 +
−0.03332 +

−0.03721 +
−0.006044 +

−0.006044

2.04 3.82 4.54 4.54 5.29 4.71 6.71 4.36

Thus, we continued with Wilcoxon test on MAE values from Table 6.2. We can ob-

serve significant difference (p-values lower than 0.05) between monotonic VC-DomLEM

and any other classifier except OSDL (p-value in this case is 0.078). The same is true

for the following pairs: non-monotonic VC-DomLEM and OLM, non-monotonic VC-

DomLEM and RIPPER, Näıve Bayes and OLM, SVM and OLM, C4.5 and OLM. Then,

we applied Wilcoxon test to percentage of correctly classified objects from Table 6.3.

These results indicate significant differences between monotonic VC-DomLEM and any

other classifier. The same is true for following pairs: non-monotonic VC-DomLEM and

OLM, Näıve Bayes and OLM, RIPPER and OLM, C4.5 and OLM.

It follows from the results of the experiment that monotonic VC-DomLEM is better

than the other compared classifiers. It has the best value of the average rank of both

predictive accuracy measures. However, when we compared monotonic VC-DomLEM

to other classifiers in pairs, we were not able to show significant difference in predictive

accuracy with respect to OSDL (but only in case of MAE). On the other hand, non-

monotonic VC-DomLEM is comparable to other classifiers except OLM. OLM is clearly
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Table 6.3: Single classifiers - percentage of correctly classified objects results

Id monotonic non-monotonic Näıve SVM RIPPER C4.5 OLM OSDL
VC-DomLEM VC-DomLEM Bayes

1
86.61 (4) 86.93 (3) 90.56 (1) 87.47 (2) 81.5 (5) 78.45 (6) 61.28 (7) 57.81 (8)
+
−0.5891 +

−0.3771 +
−0.1306 +

−0.1508 +
−0.5439 +

−0.7195 +
−1.287 +

−0.3288

2
76.69 (1) 75.64 (3) 74.36 (4) 67.83 (7) 70.4 (5) 75.76 (2) 67.6 (8) 69.35 (6)
+
−0.3297 +

−0.7185 +
−0.5943 +

−1.244 +
−1.154 +

−0.3297 +
−1.835 +

−0.1648

3
96.28 (2) 95.42 (6) 96.04 (3) 96.76 (1) 95.52 (5) 94.47 (7) 82.36 (8) 95.85 (4)
+
−0.2023 +

−0.3504 +
−0.06744 +

−0.06744 +
−0.4721 +

−0.751 +
−0.552 +

−0.1168

4
97.15 (1) 97.1 (2) 84.72 (7) 92.18 (4) 84.41 (8) 89.84 (6) 91.72 (5) 96.53 (3)
+
−0.063 +

−0.1311 +
−0.1667 +

−0.2025 +
−1.309 +

−0.1819 +
−0.4425 +

−0.063

5
91.7 (1) 90.75 (2) 83.41 (5) 56.62 (8) 84.69 (4) 88.52 (3) 68.58 (7) 72.41 (6)
+
−1.479 +

−1.579 +
−0.9832 +

−1.579 +
−1.409 +

−1.409 +
−2.772 +

−1.479

6
95.46 (1) 95.13 (2) 88.54 (6) 87.2 (7) 95.11 (3) 94.85 (4) 94.47 (5) 84.55 (8)
+
−0.1531 +

−0.0884 +
−1.371 +

−0.1205 +
−0.352 +

−0.5251 +
−0.1736 +

−0

7
67.55 (1) 67.1 (2.5) 56.22 (6) 67.1 (2.5) 63.55 (5) 64.33 (4) 27.43 (7) 22.04 (8)
+
−0.4642 +

−0.4032 +
−0.2328 +

−0.2217 +
−0.5635 +

−0.5844 +
−0.7179 +

−0.128

8
87.68 (1) 87.11 (2.5) 87.11 (2.5) 78.71 (7) 82.63 (6) 83.47 (5) 73.67 (8) 84.6 (4)
+
−1.048 +

−1.428 +
−1.428 +

−0.3961 +
−2.598 +

−1.048 +
−2.206 +

−0.3961

9
26.9 (2) 22.17 (7) 25.03 (3) 24.27 (5) 20 (8) 27.83 (1) 23.97 (6) 24.7 (4)
+
−0.3742 +

−0.1247 +
−0.2494 +

−0.2494 +
−0.4243 +

−0.4028 +
−0.4643 +

−0.8165

10
66.73 (3) 62.43 (6) 67.49 (2) 62.7 (5) 61.61 (7) 66.33 (4) 55.46 (8) 68.3 (1)
+
−1.256 +

−1.139 +
−0.3483 +

−0.6693 +
−1.555 +

−0.6966 +
−0.7545 +

−0.3483

11
72 (1) 71.61 (2) 59.03 (7) 69.24 (3) 67.59 (6) 68.12 (4) 67.65 (5) 27.14 (8)
+
−0.6521 +

−0.09316 +
−0.3727 +

−0.4061 +
−0.9815 +

−1.037 +
−0.796 +

−0.3359

12
55.63 (6) 52.73 (7) 56.17 (5) 58.87 (4) 60.83 (2) 60.73 (3) 45.43 (8) 63.03 (1)
+
−0.3771 +

−0.1700 +
−0.3399 +

−0.3091 +
−0.6128 +

−1.271 +
−0.8179 +

−0.2625

13
56.43 (6) 52.8 (7) 56.57 (5) 58.23 (2) 57.63 (3) 57.1 (4) 47.83 (8) 58.6 (1)
+
−0.4643 +

−0.4320 +
−0.4784 +

−0.2055 +
−0.66 +

−0.4320 +
−0.411 +

−0.4243

14
54.58 (2) 53.05 (4) 53.6 (3) 51.83 (5) 44.08 (8) 47.99 (7) 49.15 (6) 55.37 (1)
+
−0.7913 +

−1.349 +
−0.2284 +

−1.813 +
−0.8236 +

−2.888 +
−0.7527 +

−0.3763

2.29 4 4.25 4.46 5.36 4.29 6.86 4.5

the worst classifier in our experiment.

We also compared the values from Tables 6.2 and 6.3 to the values of δ and λ

presented in Table 6.1. Remember that the first ones are estimated by averaged 10-fold

cross validation, while the second ones are estimated on the whole data set. Nevertheless,

we can observe some interesting relationships. Thresholds δµ
′
x
P , δεxP , λµ

′
x
P , and λεxP are never

reached during learning. This is not surprising since they are defined as limit values of

what can be achieved in learning. The nine data sets that were distinguished by λ
θ∗X
P

and δ
θ∗X
P as at least not bad in terms of consistency, and thus, easier to learn, are also

those on which classifiers obtained good predictive accuracy. Exception to this rule are

data sets: ESL, fame and housing. This may be caused by the fact that these data

sets are described by many attributes and/or classes. It is thus visible that measures λ

and δ allowed to distinguish the data sets which are just hard to learn (ESL, fame, and

housing) from those which are inconsistent and hard to learn (breast-c, ERA, LEV, SWD,

windsor). It can be also seen that for the highly inconsistent data sets: breast-c, ERA,

LEV, and SWD, all classifiers performed better than the values of λθ
∗
X
P and δθ

∗
X
P . The only

exception is percentage of correctly classified objects obtained by OLM for data set SWD.
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This indicates that the classifiers were able to overcome the inconsistencies present in

the highly inconsistent data sets.

Finally, we compared mean execution times of both versions of VC-DomLEM over all

runs on the data sets. Induction of rules with monotonic VC-DomLEM was on average

over three times faster than induction of rules with non-monotonic VC-DomLEM. Thus,

the results showed that monotonic VC-DomLEM is more efficient than non-monotonic

VC-DomLEM.

6.2.2 Ensembles of classifiers

We started this part of experiment with analysis of the predictive accuracy of the ensem-predictive
accuracy bles of classifiers. We compared standard version of bagging with variable consistency

bagging (VC-bagging) on random subsets of attributes with 50% cardinality. The car-

dinality of the random subset of attributes was chosen according to the results of our

previous experiments with this type of ensembles (Błaszczyński et al., 2009b). Naturally,

to obtain better results, the cardinality of the random subset of attributes can be also

tuned in experiments. We used ε-consistency measure in this type of ensemble because

it has preferable properties and it is the same measure that is used by VC-DomLEM

component classifiers (which is important for the interpretability of the ensemble, con-

sidered in section 6.3). In both cases median vote rule (see section 5.3) was used to

aggregate the suggestions of component classifiers, which were monotonic VC-DomLEM

and random monotonic VC-DomLEM. Random Monotonic VC-DomLEM is expected to

perform worse than monotonic VC-DomLEM as a single classifier. That is why it was

not considered in the experiment with single classifiers. On the other hand, application

of this type of component classifier should result in more diverse ensembles than those

composed of monotonic VC-DomLEM classifiers.

Differently, to the previous part of the experiment, we used the standard classifica-

tion method in VC-DomLEM component classifiers. This choice was made due to com-

putational complexity of the new classification method. The new classification method

involves computation of intersections of sets of object covered by rules and sets of objects

belonging to unions of classes. As it is described in chapter 5, the standard classification

method may assign objects imprecisely or with contradictions. A diverse ensemble of

classifiers that apply the standard classification method which are combined by median

vote rule should be able to improve the final assignment in such situations. To show this

effect we compare ensembles composed of classifiers that use the standard classification

method to single classifiers that use the standard classification method and to single
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classifiers that use the new classification method. In both cases, these single classifiers

were constructed with the same parameters as the respective component classifiers in

the ensembles.

The results of the experiment which concerned comparison of predictive accuracy,

performed for ensembles of classifiers are shown in Tables 6.4 and 6.5. The first table

contains values of mean absolute error while the second table contains the percentages

of correctly classified objects. The columns in these tables corresponds to the succeeding

classifiers:

• single monotonic VC-DomLEM classifier with the standard classification method,

• single monotonic VC-DomLEM classifier with the new classification method,

• single random monotonic VC-DomLEM classifier with the new classification method,

• single random monotonic VC-DomLEM classifier with the new classification method,

• standard bagging ensemble composed of monotonic VC-DomLEM component clas-

sifiers with the standard classification method,

• VC-bagging ensemble composed of monotonic VC-DomLEM component classifiers

with the standard classification method,

• standard bagging ensemble composed of random monotonic VC-DomLEM compo-

nent classifiers with the standard classification method,

• VC-bagging ensemble composed of random monotonic VC-DomLEM component

classifiers with the standard classification method,

We analyzed the ranks of MAE from Table 6.4. In this case Friedman test, checks

whether the measured average ranks are significantly different from the expected under

the null-hypothesis mean average rank equal 4.5. In the test, performed to compare all

classifiers in the table, we have FF = 4.23, while critical value for α = 0.05 is 2.11. The

p-value in this test is close to 0.0004. Then, we analyzed ranks of percentage of correctly

classified objects, which are presented in Table 6.5. In this test, we have FF = 3.82. The

p-value in Friedman test is in this case is close to 0.001. The results of Friedman test

and observed differences in average ranks allow us to state with high confidence that

there is a significant difference between compared classifiers.

Thus, w continued with Wilcoxon test on MAE values from Table 6.4. We can observe

significant difference (p-values lower than 0.05) between VC-bagging with monotonic
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Table 6.4: Mean absolute error (MAE) in repeated 10-fold cross validation of monotonic
VC-DomLEM and random monotonic VC-DomLEM classifiers as single classifiers and
as component classifiers in ensembles

Id single single single random single random bagging VC-bagging bagging VC-bagging
std. class. new. class. std. class. new. class. random random

1
0.1621 (2.5) 0.1621 (2.5) 0.1621 (2.5) 0.1621 (2.5) 0.2011 (8) 0.1973 (7) 0.1872 (5) 0.1915 (6)
+
−0.001996 +

−0.001996 +
−0.001996 +

−0.001996 +
−0.003771 +

−0.01433 +
−0.00471 +

−0.001996

2
0.2331 (1.5) 0.2331 (1.5) 0.2401 (3.5) 0.2401 (3.5) 0.2448 (5) 0.2459 (6) 0.2809 (8) 0.2669 (7)
+
−0.003297 +

−0.003297 +
−0.003297 +

−0.003297 +
−0.008565 +

−0.008722 +
−0.004361 +

−0.001648

3
0.03815 (6) 0.03720 (5) 0.0391 (7.5) 0.0391 (7.5) 0.03577 (4) 0.03243 (2) 0.03386 (3) 0.02909 (1)
+
−0.0006744 +

−0.002023 +
−0.002432 +

−0.002432 +
−0.001168 +

−0.001349 +
−0.001784 +

−0.002432

4
0.04090 (7.5) 0.03421 (1.5) 0.04090 (7.5) 0.03421 (1.5) 0.03652 (3) 0.03832 (6) 0.03832 (5) 0.03781 (4)
+
−0.00126 +

−0.0007275 +
−0.00126 +

−0.0007275 +
−0.0007275 +

−0.002623 +
−0.002385 +

−0.003274

5
0.1037 (7) 0.08293 (4) 0.1276 (8) 0.08612 (6) 0.08453 (5) 0.07656 (1) 0.07974 (2.5) 0.07974 (2.5)
+
−0.01846 +

−0.01479 +
−0.01846 +

−0.006767 +
−0.005968 +

−0.003907 +
−0.002256 +

−0.008132

6
0.05481 (8) 0.04536 (5) 0.05268 (7) 0.04607 (6) 0.04489 (4) 0.04158 (2) 0.04181 (3) 0.04087 (1)
+
−0.001456 +

−0.001531 +
−0.002191 +

−0.001531 +
−0.001205 +

−0.001205 +
−0.001531 +

−0.000884

7
0.3803 (8) 0.3406 (6) 0.3785 (7) 0.3348 (5) 0.3230 (4) 0.32 (3) 0.32 (2) 0.319 (1)
+
−0.001627 +

−0.001878 +
−0.003095 +

−0.007834 +
−0.006419 +

−0.007993 +
−0.004032 +

−0.003155

8
0.1261 (7) 0.1232 (6) 0.1232 (5) 0.1176 (3) 0.1289 (8) 0.1092 (2) 0.1204 (4) 0.1064 (1)
+
−0.006861 +

−0.01048 +
−0.01048 +

−0.006861 +
−0.01048 +

−0.006861 +
−0.01585 +

−0.01048

9
1.386 (4.5) 1.386 (4.5) 1.415 (6) 1.296 (3) 1.263 (1) 1.271 (2) 1.704 (8) 1.656 (7)
+
−0.003682 +

−0.003682 +
−0.01159 +

−0.01257 +
−0.004497 +

−0.002625 +
−0.03583 +

−0.01302

10
0.4447 (7) 0.3702 (3) 0.5437 (8) 0.3893 (4) 0.3477 (2) 0.3374 (1) 0.4201 (5) 0.4406 (6)
+
−0.01045 +

−0.01352 +
−0.007545 +

−0.004427 +
−0.006762 +

−0.004211 +
−0.007293 +

−0.008853

11
0.3564 (7) 0.3235 (5) 0.3979 (8) 0.3465 (6) 0.2984 (2) 0.2793 (1) 0.3175 (4) 0.3142 (3)
+
−0.008887 +

−0.01133 +
−0.02075 +

−0.007276 +
−0.002795 +

−0.00796 +
−0.006521 +

−0.01130

12
0.4877 (4) 0.4813 (3) 0.5057 (6) 0.5033 (5) 0.4353 (2) 0.409 (1) 0.5193 (7) 0.5297 (8)
+
−0.004497 +

−0.004028 +
−0.005185 +

−0.004989 +
−0.001700 +

−0.003742 +
−0.004028 +

−0.004643

13
0.462 (5) 0.454 (3) 0.5087 (6) 0.4587 (4) 0.443 (2) 0.4297 (1) 0.588 (8) 0.5123 (7)
+
−0.003742 +

−0.004320 +
−0.002867 +

−0.004497 +
−0.003742 +

−0.002867 +
−0.009201 +

−0.009104

14
0.5354 (8) 0.5024 (1) 0.5305 (7) 0.5159 (4) 0.5299 (6) 0.5043 (2) 0.5214 (5) 0.5116 (3)
+
−0.008236 +

−0.006226 +
−0.009137 +

−0.004569 +
−0.006743 +

−0.006044 +
−0.01122 +

−0.006226

5.93 3.64 6.36 4.36 4 2.64 4.96 4.11

VC-DomLEM and any other classifier except VC-bagging and random monotonic VC-

DomLEM (p-value in this case is 0.068). We can see similar dependencies for Wilcoxon

test on percentage of correctly classified objects from Table 6.5. These results indicate

significant differences between VC-bagging with monotonic VC-DomLEM and any other

classifier with exception to single random monotonic VC-DomLEM (p-value in this case

is 0.078) and VC-bagging with random monotonic VC-DomLEM (p-value in this case is

0.124).

To conclude this part of the experimental comparison, we can observe that stan-

dard bagging improves results of monotonic VC-DomLEM and random monotonic VC-

DomLEM. However, in this case the difference in average ranks is not supported by

results of conservative, non-parametric Wilcoxon test. More visible is that VC-bagging

improves both monotonic VC-DomLEM and random monotonic VC-DomLEM. VC-

bagging classifiers are better than single classifiers and standard bagging with the re-
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Table 6.5: Percentage of correctly classified objects in repeated 10-fold cross validation
of monotonic VC-DomLEM and random monotonic VC-DomLEM classifiers as single
classifiers and as component classifiers in ensembles

Id single single single random single random bagging VC-bagging bagging VC-bagging
std. class. new. class. std. class. new. class. random random

1
84.48 (4) 84.48 (4) 84.48 (4) 86.99 (1) 80.7 (8) 84 (6) 82.08 (7) 85.44 (2)
+
−0.2613 +

−0.2613 +
−0.2613 +

−1.064 +
−0.2719 +

−0.5987 +
−0.3456 +

−0.5987

2
76.69 (1.5) 76.69 (1.5) 75.99 (3.5) 75.99 (3.5) 75.52 (5) 75.41 (6) 71.91 (8) 73.31 (7)
+
−0.3297 +

−0.3297 +
−0.3297 +

−0.3297 +
−0.8565 +

−0.8722 +
−0.4361 +

−0.1648

3
96.19 (6) 96.28 (5) 96.09 (7.5) 96.09 (7.5) 96.42 (4) 96.76 (2) 96.61 (3) 97.1 (1)
+
−0.06744 +

−0.2023 +
−0.2432 +

−0.2432 +
−0.1168 +

−0.1349 +
−0.1784 +

−0.2432

4
97.02 (3.5) 97.15 (1.5) 97.02 (3.5) 97.15 (1.5) 97 (5.5) 96.91 (7) 96.89 (8) 97 (5.5)
+
−0.07275 +

−0.063 +
−0.07275 +

−0.063 +
−0.063 +

−0.1667 +
−0.09624 +

−0.1667

5
90.43 (7) 91.7 (4) 88.2 (8) 91.39 (6) 91.55 (5) 92.34 (1) 92.03 (2.5) 92.03 (2.5)
+
−1.409 +

−1.479 +
−1.194 +

−0.6767 +
−0.5968 +

−0.3907 +
−0.2256 +

−0.8132

6
94.52 (8) 95.46 (5) 94.73 (7) 95.4 (6) 95.51 (4) 95.84 (2) 95.82 (3) 95.91 (1)
+
−0.1456 +

−0.1531 +
−0.2191 +

−0.1531 +
−0.1205 +

−0.1205 +
−0.1531 +

−0.0884

7
65.61 (7) 67.34 (6) 65.56 (8) 68 (5) 69.28 (4) 69.7 (3) 69.78 (2) 69.9 (1)
+
−0.2328 +

−0.2159 +
−0.4 +

−0.5929 +
−0.4434 +

−0.6772 +
−0.128 +

−0.284

8
87.4 (7) 87.68 (5.5) 87.68 (5.5) 88.24 (3) 87.11 (8) 89.08 (2) 87.96 (4) 89.36 (1)
+
−0.6861 +

−1.048 +
−1.048 +

−0.6861 +
−1.048 +

−0.6861 +
−1.585 +

−1.048

9
21.23 (7) 22.93 (5) 23.47 (4) 26.23 (1) 24.33 (3) 24.67 (2) 19.9 (8) 21.43 (6)
+
−0.1700 +

−0.411 +
−0.3091 +

−0.1247 +
−0.411 +

−0.776 +
−1.283 +

−1.195

10
63.11 (5) 66.73 (3) 52.39 (8) 64.21 (4) 68.1 (2) 68.99 (1) 61 (6) 59.08 (7)
+
−0.6033 +

−1.256 +
−0.3864 +

−0.9514 +
−0.8253 +

−0.5378 +
−0.9514 +

−1.022

11
67.92 (7) 72 (4) 65.55 (8) 69.57 (6) 72.66 (2) 74.5 (1) 71.74 (5) 72.2 (3)
+
−0.7626 +

−0.6521 +
−1.499 +

−0.4841 +
−0.1863 +

−0.8984 +
−0.4269 +

−0.8122

12
55.57 (4) 55.63 (3) 54.53 (6) 54.7 (5) 59.73 (2) 62.37 (1) 54.03 (7) 54 (8)
+
−0.4028 +

−0.3771 +
−0.5185 +

−0.2944 +
−0.1247 +

−0.2867 +
−0.04714 +

−0.2944

13
55.07 (5) 55.37 (3) 52.07 (7) 55.2 (4) 56.7 (2) 58.57 (1) 48.23 (8) 53.67 (6)
+
−0.3399 +

−0.5249 +
−0.33 +

−0.4243 +
−0.2944 +

−0.5793 +
−0.9877 +

−0.834

14
52.69 (7) 54.58 (1) 53.48 (6) 54.15 (4) 52.2 (8) 54.27 (2.5) 53.85 (5) 54.27 (2.5)
+
−0.3113 +

−0.7913 +
−0.5392 +

−0.7674 +
−0.7477 +

−0.8503 +
−1.078 +

−0.1727

5.64 3.68 6.14 4.11 4.46 2.68 5.46 3.82

spective classifier. The best classifier in this study is VC-bagging with monotonic VC-

DomLEM. It obtains the best average rank in experiments with both measures and it has

the highest number of best results. However, we failed to prove its superiority over VC-

bagging with random monotonic VC-DomLEM in Wilcoxon test (and also with single

random monotonic VC-DomLEM in case of results on percentage of correctly classified

objects, which is surprising).

The observations made with respect to the inconsistency of the data sets, based on

the comparison of values of δ and λ presented in Table 6.1 and the predictive accuracy

obtained by single classifiers are also valid for ensembles of classifiers (i.e., the results

presented in Tables 6.4 and 6.5).

Finally, we compared the results of VC-bagging with monotonic VC-DomLEM to

those obtained by statistical ensembles of classifiers that solve ordinal classification with

monotonicity constraints found in the literature (Kotłowski, 2009; Kotłowski and Słow-
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iński, 2009). The results of MAE obtained by the classifiers are comparable with little

differences indicating almost the same number of results in favour of one or the other

method. We should however add that a complete comparison is impossible in this case

due to little differences in the setup of experiments (lack of results for percentage of

correctly classified objects, different partitioning in folds, and also different treatment of

missing values (which are in the minority - see section 6.1.1). Moreover, we used in our

experiments two additional data sets.

We continued this part of experiment with the study consistency of objects in boot-

strap samples and similarity between samples. The purpose of this study is to showconsistency
of

bootstrap
samples

differences between sampling used in standard bagging and in VC-bagging. In this anal-

ysis, any object y, for which ΘP
X(y) < 1 calculated on a random subset of attributes with

50% cardinality is considered as inconsistent (see (4.12)). First, we check the average

percentage of inconsistent objects in bootstrap samples, which is presented in Table 6.6.

This shows the fraction of inconsistent objects in bootstrap samples created by com-

pared versions of bagging. Then we check the average consistency of an object drawn

into sample. This allows us to compare the average probability of object being drawn

into the samples.

We also compare in pairs all bootstrap samples created by each of versions of bagging.similarity
of

bootstrap
samples

We check the similarity of all objects in samples and similarity of inconsistent objects

in samples, which is presented in Table 6.6. We define similarity for a pair of bootstrap

samples as the value of the ratio of the sum of the same objects drawn into the samples to

the number of objects in the samples. Then we calculate similarity for a given version of

bagging as the average value of similarity of all pairs of samples created by the version of

bagging. This allows to compare how diversified are bootstrap samples created by each

version of bagging. Moreover, we can check the diversity of the samples with respect to

all objects and only with respect to the inconsistent objects.

The average percentage of inconsistent objects in Table 6.6, indicate that samples

used by VC-bagging are more consistent than those drawn in standard bagging. This

is not the case only for three data sets: balance, ERA, and LEV, for which bootstrap

samples are composed of 100% of inconsistent objects in both cases.

Similarity of bootstrap samples created by standard bagging is always close to 0.75

regardless of whether it is calculated for all objects or for inconsistent ones. We treat

this result as a base line for our comparison. We can see that similarity measured for all

objects drawn in bootstrap samples created by VC-bagging is usually lower than in case

of standard bagging. The exceptions to this rule are consistent data sets: breast-w,
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Table 6.6: Consistency and similarity of bootstrap samples created by standard bagging
and by VC-bagging with measure ε

bagging VC-bagging
Id Data set % inconsistent sim. all sim. inconsistent % inconsistent sim. all sim. inconsistent
1 balance 100 0.7507 0.7507 100 0.4428 0.4426
2 breast-c 93.05 0.7564 0.7561 91.76 0.7531 0.7506
3 breast-w 15.93 0.7519 0.7492 9.77 0.7527 0.5808
4 car 67.01 0.7512 0.7508 56.29 0.7231 0.6489
5 cpu 55.17 0.7534 0.7541 53.49 0.7554 0.7429
6 bank-g 6.38 0.7521 0.7492 3.34 0.7512 0.5472
7 fame 59.47 0.7499 0.7502 57.99 0.7499 0.7422
8 denbosch 39.6 0.7525 0.7573 3.76 0.7314 0.1431
9 ERA 100 0.7514 0.7514 100 0.7385 0.7387
10 ESL 99.25 0.7526 0.7526 99.05 0.7462 0.7463
11 housing 33.23 0.7542 0.7554 14.76 0.7207 0.4745
12 LEV 100 0.7514 0.7514 100 0.6530 0.6532
13 SWD 99.89 0.7514 0.7514 99.87 0.7407 0.7409
14 windsor 92.53 0.7508 0.7507 89.58 0.7358 0.7295

cpu, bank-g, and fame. Moreover, for most of the data sets similarity of inconsistent

objects in the samples is even lower. When we count out these data sets, for which

bootstrap samples are composed only of inconsistent objects, this tendency is not taking

place only for three data sets: cpu, ESL, and SWD. These results are concordant with

our analysis of consistency and similarity of bootstrap samples created by bagging and

VC-bagging on non-ordinal data sets (Błaszczyński et al., 2009b).

One further way to get insight into the behaviour of the ensemble methods is to

construct diversity vs. error diagrams (Margineantu and Dietterich, 1997; Dietterich, diversity
vs. error
diagrams

1998). These diagrams help to visualize the predictive accuracy and the diversity of

the component classifiers. For each pair of the component classifiers, we measure their

predictive accuracy as the average of MAE on the test data (in our case it was measured

in 10-fold cross validation). More precisely, we calculate MAE twice for each classifier.

First, we calculate a univocal MAE , i.e., MAE of these classifiers that suggest assignment univocal
and non-
univocal
MAE

to exactly one class. Then, we calculate a non-univocal MAE, i.e., MAE for classifiers

that suggest assignment to one class or to multiple classes. Suggestion of assignment to

multiple classes is in this case treated as assignments to each of the classes separately.

Non-univocal MAE allows us to get more insight into behaviour of a single component

classifier applying the standard classification method since in most cases it suggests

assignment to a set of contiguous classes.

We measure the diversity of component classifiers by computing a degree of agree-

ment statistics κ, which is defined, for a pair of classifiers, as follows. For n classes, let

C be an n× n square array such that Cij contains the number of test objects assigned
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to class i by the first classifier and into j by the second classifier. We define:

Θ1 =

∑n
i=1Cii
|U |

, (6.4)

which is an estimate of the probability that the two classifiers in pair agree.

The problem with Θ1 is that in case of imbalanced data sets, where one class is much

more common than the others, all classifiers may agree by choosing majority class and

in consequence obtain high values of Θ1. In case of κ, such situation is corrected by

computing

Θ2 =

n∑
i=1

( n∑
i=1

Cij
|U |
×

n∑
i=1

Cji
|U |

)
, (6.5)

which estimate the probability that the classifiers in pair agree by chance. These two

statistics, are used to define diversification statistics κ as:

κ =
Θ1 −Θ2

1−Θ2
. (6.6)

When the two classifiers in pair agree only by chance κ = 0. On the other hand, when

the two classifiers agree on every example κ = 1. Thus, low values of κ indicate that

responses of component classifiers in an ensemble are highly diversified.

The diversity vs. error diagrams for all data sets are presented in the following

Figures 6.1,8.1-8.13. We present here only the diagram for balance data set in Figure 6.1.

The rest of diagrams were moved to the appendix 8. All these diagrams result from

the repeated 10-fold cross validation experiments described so far. Each of the figures

includes two diagrams for standard bagging with monotonic VC-DomLEM and random

monotonic VC-DomLEM. Each of the figures also includes two diagrams for VC-bagging

with monotonic VC-DomLEM and random monotonic VC-DomLEM.

We continued the analysis of experimental results with comparison of diagrams for

standard bagging to these for VC-bagging. This allows us to see how far the differences

in similarity and consistency of bootstrap samples created by each version of bagging

propagates to diversity and predictive accuracy of component classifiers constructed on

these samples.

As a general tendency, we can observe that for consistent data sets, the classifiers

give very compact clouds of points. Each point in such clouds has low error rate and

high value of κ, which indicates that the component classifiers are accurate but not

very diverse. This is the case for data sets breast-w, car, and also but to lower extent

for bank-g (Figures 8.2, 8.3, and 8.5). On the other hand, for inconsistent data sets

such as breast-c and ERA (Figures 8.1, 8.8), the classifiers give diagrams with wide
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Figure 6.1: Diversity vs. error diagrams for balance data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).

ranges of accuracy and diversity (in case of ERA this effect is increased by the number

of classes). This clearly show the trade off between accuracy and diversity. As the

component classifiers become more accurate, the must also become less diverse.

The shape of the diagrams usually does not change for the same data set. This can

be explained by the same type of component classifier, i.e., VC-DomLEM and bagging

used in all cases. Different shapes of the diversity vs. error diagrams are produced by

completely different classifiers as for example bagging and boosting (Dietterich, 1998).
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There are, however, two data set, for which our classifiers produced different shapes of

diagrams. In case of small and inconsistent data set breast-c (Figure 8.1), the shape of

diagrams for monotonic VC-DomLEM are different from those of diagrams for random

montonic VC-DomLEM. Moreover, in case of inconsistent data set SWD, the shape of

diagram for bagging with random monotonic VC-DomLEM is dramatically different

from the shape of the rest of diagrams for this data set. It seems that VC-bagging is

stabilizing the behaviour of random monotonic VC-DomLEM in this case (which is also

confirmed by better overall result of the VC-bagging ensemble).

Increased diversity of bootstrap samples created by VC-bagging results in better di-

versity of component classifiers. This effect is visible for most of the data sets. More

precisely, in case of VC-bagging with monotonic VC-DomLEM, we observed this ef-

fect for the following data sets: balance, breast-w, car, bank-g, fame, denbosch,

ERA, housing, LEV, and windsor. In case of VC-bagging with random monotonic VC-

DomLEM, we observed this effect for the following data sets: breast-w, car, cpu,

bank-g, slightly for fame, denbosch, ERA, LEV, and windsor. A visible decrease of di-

versity is visible only for VC-bagging with random monotonic VC-DomLEM for SWD. It

is however, combined with a visible increase of accuracy of component classifiers in the

ensemble.

Changes in the accuracy of component classifiers are less apparent even though we

know from previous results that these classifiers were learned on more consistent boot-

strap samples. Increased accuracy can be, however, observed in case of VC-bagging with

monotonic VC-DomLEM for the following data sets: balance, slightly for cpu, ERA, ESL,

housing, LEV, slightly for SWD, and windsor. In case of VC-bagging with random mono-

tonic VC-DomLEM, we can observe increase of accuracy for data sets breast-c, ERA,

and slightly for housing. We can, however, also observe decrease of accuracy of random

montonic VC-DomLEM component classifiers in case of data set LEV. Since this decrease

is not visible in case of monotonic VC-DomLEM component classifiers, we can attribute

this change to additional randomization introduced to the ensemble by random mono-

tonic VC-DomLEM. This decrease resulted in decrease of the overall predictive accuracy

of the ensemble.

6.3 Interpretability

Interpretability of results of classification is an important issue from the view point of

decision aiding (see section 1.2.1). In decision aiding, a recommendation suggested by a

classifier needs to be interpretable for a human decision maker. This is why the recom-
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mendation needs to be consistent and traceable. It is known, that since interpretability

is not measurable, it is only possible to assess subjectively this aspect for various clas-

sifiers. Taking this all into account, we comment on each of the classifiers compared in

the experiments showing its strong and weak points.

First, we can distinguish “black-box” classifiers, like Näıve Bayes and SVM. Esti-

mates of distributions and support vectors in space that is higher dimensional than

the original problem are hardly interpretable. Without additional processing, results of

these methods are oracle suggestions. Moreover, these methods do not take into account

domain knowledge about the orders and monotonicity constraints, which can make their

recommendations inconsistent.

The well interpretable decision tree models constructed by C4.5 and discriminative

rule models induced by RIPPER, also do not take into account the domain knowledge.

In Figure 6.2, we show the inconsistency that may occur in interpretation of such models

on example. The decision tree model has been constructed for data set bank-g. The leaf

marked in red shows that this model is inconsistent. It means that when a firm obtains

a better evaluation on gain ordered criterion “Net worth / Total liabilities” it makes this

firm less attractive for investments (i.e., firm is classified as distressed). Such suggestion

may be confusing because it is inconsistent with the domain knowledge.

Current assets / Current liabilities Net profit / Net worth

<= 0.74227

Gross profit / Total assets

<= 0.007254

healthy

> 0.007254

Net profit / Net worth

<= 0.419248

Net worth / Total liabilities

> 0.419248

Net worth / Total liabilities 

<= -1.769659

distressed

> 0.004119

Inventories / Current assets

> -0.625624

distressed

<= -0.625624

distressed

> 0.427375

healthy

<= 0.427375

Figure 6.2: Inconsistency of decision tree model for bank-g data set.

This kind of inconsistent suggestions does not occur, of course, in results of ordinal

classifiers that preserve monotonicity constraints. Among such classifiers, we compare

two instance-based methods: OLM and OSDL to decision rule classifier VC-DomLEM

and ensemble of VC-DomLEM classifiers. OLM stores its model as a subset of the train-

ing objects, which is called a rule base. OSDL, on the other hand stores all objects.

These models are using the stored objects during classification to check dominance rela-

tion between them and the classified object. The suggestions given by these models and
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the process in which they are constructed is consistent and rather comprehensible. On

the other hand, it may be hardly traceable.

Finally, VC-DomLEM (in all presented variants, including bagged and VC-bagged

version) builds a model which consists of a set of rules that are covering all sufficiently

consistent objects in the learning set. This feature is important from the model consis-

tency point of view, as it ensures that information required to classify any object (from

the learning set) is included in the model. Decision rule model is well known to be one

of the most interpretable forms of knowledge representation. It is also traceable, which

means that when an object is assigned a suggestion, one can see all rules supporting this

suggestion. Moreover, when analysis of rules supporting the suggestion is not enough,

one can also see the objects that are supporting the rules. The rules are characterized

by the consistency measures that are part of the domain knowledge. The same consis-

tency measures characterize objects. The set of rules induced by VC-DomLEM is also

minimal, meaning that it does not contain any unnecessary rules and that rules does

not contain unnecessary elementary conditions. Stronger and shorter rules are particu-

larly relevant since they represent strongly established relationships between causes and

effects. Monotonic VC-DomLEM is known to induce shorter rules than non-monotonic

VC-DomLEM (Błaszczyński et al., 2009d). These rules have comparable strength.

Ensembles of rule sets allow to obtain better predictive accuracy, but this result

comes with reduced interpretability of the induced model. One can expect that analyzing

multiple sets of decision rules suggesting a particular assignment may be more difficult

than analysis of suggestions given by one set of decision rules. On the other hand,

the learning of the ensemble in VC-bagging has a clear interpretation since it promotes

objects that are good candidates for consistent rules in samples on which the component

classifiers are learned. The same consistency measures being part of domain knowledge

are used to this end.

6.4 Summary

We have shown that the algorithms presented in the thesis are competitive with the

other existing approaches to both ordinal classification with monotonicity constraints

and non-ordinal classification. In case of single classifiers, our classifiers obtained the best

results of all compared classifiers. Non-ordinal classifiers, which do not take monotonicity

constraints into account performed not worse than some ordinal methods, i.e., OLM, in

this comparison. However, non-ordinal classifiers can give models inconsistent with

domain knowledge. This can further lead to problems with interpretation of suggestions
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given by these models, which is unacceptable when a method is applied in decision

aiding. Better interpretability, is one more aspect that distinguishes our models form

the others. We propose a holistic approach, in which the information how to treat

the inconsistencies in data, expressed by measure of consistency, is a part of domain

knowledge. This information allows to say which objects are sufficiently consistent. The

same information allows then to induce sufficiently consistent decision rules.

Moreover, we have shown that, the measures λ and δ introduced in this thesis allow

to identify data sets with a significant number of inconsistencies which make these data

sets hard to learn. To increase predictive accuracy in such cases, we proposed variable

consistency bagging (VC-bagging) ensembles of classifiers. These ensembles proved to

improve the predictive accuracy with respect to single classifiers and standard bagging

ensembles. Also in this case, our ensemble algorithms are at least comparable to the

best existing ensemble approaches to ordinal classification with monotonicity constraints.

We have shown the source of improved performance of variable consistency bagging,

which lies in higher diversity and consistency of samples on which classifiers are learned.

Improved predictive performance of ensemble classifiers comes, however, at the expense

of decreased interpretability of the model.





CHAPTER 7
Summary and Conclusions

In this thesis, we considered the problem of ordinal classification with monotonicity con-

straints. According to the list of goals that we presented in section 1.3, we defined and

characterized the variable consistency dominance-based rough set approach (VC-DRSA)

to this problem. First, we introduced monotonicity properties for consistency measures.

Monotonicity properties were necessary to define monotonic probabilistic rough set ap-

proaches. These subjects are covered in chapters 2, and 3. Then, we proposed a new rule

induction algorithm from probabilistic lower approximations, called VC-DomLEM. VC-

DomLEM is a sequential covering algorithm that induces sets of decision rules satisfying

constraints on monotonic or non-monotonic consistency measures. We also proposed

a new method of constructing ensembles of classifiers that uses consistency measures,

which is called variable consistency bagging (VC-bagging). Finally, we introduced a new

classification method for dominance-based rough set approaches, which solves conflicts

between rules assigning an object to multiple classes. These subjects are covered in

chapters 4, and 5.

Our approach allows to construct classifiers that are competitive in terms of the

predictive accuracy and that are favorable in terms of interpretability. These classifiers

are consistent with the domain knowledge about the order and monotonicity. We verified

these claims in the computational experiment presented in chapter 6. Thus, in our

opinion, the goal of the thesis has been achieved. Below, we provide a more detailed

summary of our results together with some plans for future research.

• Monotonic consistency measures. We proposed different measures of the over-

lap between a granule of knowledge based on a considered object and the approxi-
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mated set or its complement. We called such measures consistency measures. The

consistency measures are meant to be easy in interpretation so that one can directly

specify properties of objects included in the probabilistic lower approximation. Dif-

ferent consistency measures were used to express different view on the consistency.

Furthermore, we proposed four monotonicity properties for consistency measures:

(m1), (m2), (m3), and (m4). Two of these properties concern measures defined

for indiscernibility-based granules and dominance-based granules, namely: mono-

tonicity with respect to the set of attributes (m1), and monotonicity with respect

to the set of objects (m2). Two additional properties concern only dominance-

based granules, these are: monotonicity with respect to unions of classes (m3),

and monotonicity with respect to the dominance relation (m4). Monotonicity

properties guarantee that any object from a monotonic lower approximation will

belong to this lower approximation after the data set is extended with respect

to the set of attributes, set of objects or union of ordered classes. Monotonicity

properties guarantee also the same behavior of objects from lower approximation

when improvement of evaluation of any object in the data set takes place. We have

shown that consistency measures used so far in the definition of probabilistic rough

approximations lack some of these monotonicity properties. This observation led

us to propose new measures enjoying desirable properties. Moreover, monotonicity

properties of consistency measures proved also to be important in further stages

of construction of the decision rules classifiers.

• Monotonic probabilistic rough set approaches. We used consistency mea-

sures having desirable monotonic properties to define monotonic probabilistic rough

set approaches. Our proposal is a general probabilistic extension of the rough set

approach. We defined two monotonic probabilistic rough set approaches:

– monotonic Variable Consistency Indescernibility-based Rough Set Approach

(VC-IRSA), that involves granules of knowledge defined by the indiscernibility

relation,

– monotonic Variable Consistency Dominance-based Rough Set Approach (VC-

DRSA), that involves granules of knowledge defined by the dominance rela-

tion.

According to our best knowledge, no such general extension was proposed so far.

Moreover, we used monotonic probabilistic lower approximations to define positive,

negative and boundary regions, which are more desirable as a basis for induction
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of decision rules. Basing on the positive regions, we defined measures that allow

to estimate attainable predictive accuracy of rough-set-based classifiers.

• Decision rules induction algorithm VC-DomLEM. We developed a sequen-

tial covering algorithm that induces sets of probabilistic decision rules covering

the positive regions. This algorithm produces rules for ordinal classification with

monotonicity constraints. The resulting rules satisfy constraints specified on the

consistency measures. This property makes the set of rules to be traceable. Each of

the rules is characterized by consistency measure that corresponds to consistency

measure used to define the probabilistic lower approximation. The VC-DomLEM

algorithm is designed in VC-DRSA and it involves two steps. In the first step,

probabilistic lower approximations are constructed. These approximations consist

of objects that are sufficiently consistent according to the consistency measure.

Then, on the basis of the lower approximations, positive regions are determined.

In the second step, a set of probabilistic decision rules is induced to cover the pos-

itive regions. The type of rules depends on the consistency measure that is used in

the first step. We proved that it is possible to induce rules that cover monotonic

and non-monotonic probabilistic lower approximations. We have shown that in-

duction of rules that satisfy monotonic consistency measures is more effective than

induction of those that satisfy non-monotonic consistency measures. Moreover,

VC-DomLEM with monotonic consistency measures induces rule sets that serve

as more accurate classifiers. These rule sets are composed of shorter decision rules

that are easier to interpret. Monotonic VC-DomLEM achieved the best predictive

accuracy results among all the single classifiers, which was shown experimentally

on real-world data sets.

• Ensembles of classifiers in VC-bagging. We developed a bagging scheme, in

which the probability of selecting an object in the bootstrap sampling depends on

the consistency of the object. The same consistency measures that are used to

define probabilistic lower approximations are used to measure the consistency of

objects. In the developed variable consistency bagging (VC-bagging) consistent

objects are more likely to be selected to bootstrap samples than inconsistent ones.

The bootstrap samples, that are shifted towards consistent object are then used

to construct component classifiers of the ensemble. We considered consistency of

objects with respect to description by the whole set of attributes (criteria) and

by random subsets of attributes. The resulting ensembles of classifiers are learned

on samples that are more diversified and more consistent than in standard bag-
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ging ensembles. The VC-bagging scheme is general enough to be used with any

component classifier. Moreover, it can be used to solve different classification prob-

lems depending on the consistency measure that is used to evaluate objects and

aggregation rules applied to suggestions of assignment of the component classi-

fiers. We applied VC-bagging to ordinal classification problem with monotonicity

constraints. The component classifiers in such bagging ensembles were composed

of decision rules induced by monotonic VC-DomLEM from bootstrap samples of

objects structured using VC-DRSA. This application of VC-bagging achieved high

predictive accuracy on the real data sets.

• New classification method for dominance-based rough set approaches.

We proposed a new classification scheme for DRSA and VC-DRSA that is able

to deal with imprecise and contradictory suggestions given by the matching rules.

This classification scheme is based on a notion of score coefficient associated with a

set of rules covering object and classes to which these rules may assign the object.

The score coefficient reflects relevance between rules and class to which they assign

objects. A vector of values of score coefficients calculated for an object with respect

to each class can be interpreted as a distribution of relevance between rules that

cover classified object and classes. This classification method produced the most

accurate suggestions of assignment among the single classifiers when it was used

with rules induced by VC-DomLEM algorithm.

We present the following list of subjects as a plan for future research.

• Adaptive variable consistency ensembles of classifiers. An interesting ex-

tension of the idea of variable consistency ensembles are adaptive variable con-

sistency ensembles. Such ensembles are related to the methods that can improve

accuracy of unstable classifiers by perturbing and combining (P&C) (Breiman,

1998, 1999, 2001). The adaptive variable consistency ensembles iteratively per-

turb the training data by sampling objects with probability of selecting a given

object being modified by its importance and consistency. The importance is es-

timated at each step by the accuracy of component classifiers. The consistency

is estimated at each step by consistency measures. Multiple component classifiers

are constructed iteratively, with each component classifier being learned on sam-

ples composed of objects that are important according to the predictive accuracy

of the component classifiers from previous iterations and that are consistent. In
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this way, the ensemble is adaptively focusing on objects that are hard to learn but

consistent.

• Methods that improve interpretability of an ensemble rule classifiers.

Ensemble methods are known to increase the predictive accuracy of rule-based

classifiers. However, due to their increased complexity, they are less interpretable

then their components. We are working on presentation methods that should give

more intuitive insight into classification results provided by multiple sets of decision

rules.

• Extension of experimental comparison. We plan to extend experimental

comparison of our methods to more real-world data sets. We are gathering data

sets for such a comparison.





CHAPTER 8
Appendix

8.1 Notation

Table 8.1: Basic notation used thorough the thesis.

Symbol Meaning

U the universe of discourse, i.e., a set of all objects in the data set

A a set of criteria and regular attributes, it is composed of two disjoint

sets of condition attributes C and decision attributes D; further a

distinction between regular attributes G and criteria Q is made

a an attribute a ∈ A
G a set of regular attributes G ⊆ A
g a regular attribute g ∈ G
Q a set of criteria Q ⊆ A
q a criterion q ∈ Q
C a set of condition attributes C ⊂ A
c a condition attribute c ∈ C
D a set of decision attributes D ⊂ A, C ∩D = ∅
d a decision attribute d ∈ D
Vai a value set of attribute ai ∈ A
Xi a decision class i, Xi ⊂ U
X≥i an upward union of decision classes j > i, Xj ⊂ U
X≤i a downward union of decision classes j < i, Xj ⊂ U

Continued on Next Page. . .
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Table 8.1 Notation – continued

Symbol Meaning

X a set X ⊆ U of objects that belong to one class or union of decision

classes; it can be further specified to X≥ or X≤ if there is a requirement

for distinction between a set of objects belonging to an upward union

of decision classes from a set of objects that belong to a downward

union of decision classes

Θ an (object) consistency measure

fPX(y) an (object) gain-type consistency measure

gPX(y) an (object) cost-type consistency measure

AX the upper limit value of gain-threshold αX

BX the upper limit value of cost-threshold βX

αX the gain-threshold taking values from [0, AX ]

βX the cost-threshold taking values from [0, BX ]

(m1) the property of monotonicity with respect to the set of attributes,

defined for consistency measures in IRSA as ((2.14), (2.15)) and for

consistency measures in DRSA as ((3.21), (3.22))

(m2) the property of monotonicity with respect to the set of objects, defined

for consistency measures in IRSA as ((2.16), (2.17)) and for consistency

measures in DRSA as ((3.23), (3.24))

(m3) the property of monotonicity with respect to the unions of classes de-

fined for consistency measures in DRSA as ((3.25), (3.26))

(m4) the property of monotonicity with respect to the dominance relation

defined for consistency measures in DRSA as ((3.27), (3.28))

PαX (X) a P -lower approximation of set X defined for a gain-type consistency

measure

P βX(X) a P -lower approximation of set X defined for a cost-type consistency

measure

P
αX (X) a P -upper approximation of set X defined for a gain-type consistency

measure

P
βX

(X) a P -upper approximation of set X defined for a cost-type consistency

measure

POSαXP (X) a P -positive region of set X defined for a gain-type consistency measure

POSβXP (X) a P -positive region of set X defined for a cost-type consistency measure

NEGαXP (X) a P -negative region of set X defined for a gain-type consistency measure

Continued on Next Page. . .
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Table 8.1 Notation – continued

Symbol Meaning

NEGβXP (X) a P -positive region of set X defined for a cost-type consistency measure

BNDαX
P (X) a P -boundary region of set X defined for a gain-type consistency mea-

sure

BNDβX
P (X) a P -boundary region of set X defined for a cost-type consistency mea-

sure

λ the ratio of objects in U that may be learned by a rough-set-based

classifier; defined in IRSA as (2.33), and in DRSA as (3.47)

δ the average minimal absolute difference between the index of the class

to which an object may be assigned by a rough-set-based classifier and

the index of the class to which the object belongs; defined in DRSA as

(3.49)

Θ̂ a rule consistency measure

r a decision rule

R a set of decision rules

rθ̂XX a decision rule assigning to X, characterized by rule consistency mea-

sure θ̂X

Rθ̂XX a set of decision rules assigning to X, and characterized by rule con-

sistency measure θ̂X

‖Φ
r
θ̂X
X

‖ set of objects fulfilling the condition part of rule rθ̂XX

‖Ψ
r
θ̂X
X

‖ set of objects fulfilling the decision part of rule rθ̂XX
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8.2 Diversity vs. error diagrams

Figure 8.1: Diversity vs. error diagrams for breast-c data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).



150 CHAPTER 8. APPENDIX

Figure 8.2: Diversity vs. error diagrams for breast-w data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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Figure 8.3: Diversity vs. error diagrams for car data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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Figure 8.4: Diversity vs. error diagrams for cpu data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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Figure 8.5: Diversity vs. error diagrams for bank-g data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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Figure 8.6: Diversity vs. error diagrams for fame data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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Figure 8.7: Diversity vs. error diagrams for denbosch data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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Figure 8.8: Diversity vs. error diagrams for ERA data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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Figure 8.9: Diversity vs. error diagrams for ESL data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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Figure 8.10: Diversity vs. error diagrams for housing data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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Figure 8.11: Diversity vs. error diagrams for LEV data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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Figure 8.12: Diversity vs. error diagrams for SWD data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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Figure 8.13: Diversity vs. error diagrams for windsor data set using standard bagging
with monotonic VC-DomLEM (top left), random monotonic VC-DomLEM (top right),
and VC-bagging with monotonic VC-DomLEM (bottom left), random monotonic VC-
DomLEM (bottom right).
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