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Abstract. In this paper, we study the in�uence of changing the tech-
nique of bootstrap sampling on the classi�cation performance of bag-
ging ensembles. In standard bagging each training object has the same
probability of being selected to bootstrap sample. We propose a feature
set-based consistency sampling, where the local information about class
distribution in the objects' neighborhood is used to produce bootstrap
samples more focused on consistent objects. We use random feature set
selection to determine the neighbourhood. This sampling technique may
lead to ensembles learned on slightly more diversi�ed bootstrap samples
with more accurate component classi�ers. The experiments show that
proposed technique leads to improvement in the global performance of
tree and rule bagging ensembles.

1 Introduction

Bagging is one of the most popular approaches for constructing ensembles
of classi�ers. Its idea is quite simple and e�ective. The ensemble is a set of
so called component or base classi�ers induced by the same learning algorithm
on a number of bootstrap samples drawn from the training set. The outputs
of component classi�ers are combined in equal weight voting [3]. Classi�cation
performance of bagging results mainly from perturbation in random subsamples
of the training data and combining of component classi�ers in ensemble [17].

Bagging procedure [3] has been extended in a number of ways in attempt
to improve the classi�cation accuracy of the ensemble. These extensions focused
mainly on increasing diversity of component classi�ers. Random forest is a well
known example of such extension. It uses feature subset randomized decision
tree component classi�ers [6]. Other extensions of bagging pro�t from random
selection of features. In some cases, several random subspaces of features are
selected along with the idea presented as the random subspaces method [15]. In
other cases, the random selection of features is combined with standard bootstrap
sampling. Examples of such ensembles of classi�ers were considered by di�erent
researchers [18, 19, 24].



In this paper, we consider a new extension of bagging that is touching another
aspect of creating bootstrap samples. Let us remind that in the standard boot-
strap sampling the equal probability of drawing is assigned to each object from
the training set. We postulate a modi�cation of distribution of the samples that
results from the di�erent procedure of drawing objects. This procedure focuses
on analyzing local properties in the training data. The motivation is that not
all objects in the training data are equally important for induction of accurate
classi�ers. Our research hypothesis is that one may use information about the
objects' neighborhood in sampling. More precisely, we consider class distribu-
tion of objects' neighbors. This allows us to recognize some as consistent objects
(i.e., objects safer for predicting class label because their neighbors have the
same or similar descriptions by attributes and the same class label). Objects are
distinguished as inconsistent when their neighbors that have similar descriptions
are labeled by di�erent classes. The inconsistent objects are usually located in
boundaries between classes or in noisy sub-regions of the problem space. These
objects, if not treated appropriately by the learning method, may lead to over-
�tting and decrease classi�cation performance of the standard, single classi�ers.
Moreover, depending on the number of neighbors with the same class label and
the number of neighbors with di�erent class label one can consider degrees of
consistency.

We can pose a research question whether it is possible to slightly change
bootstrap sampling in such a way that component classi�ers are less in�uenced
by inconsistent objects. At the same time, we want the ensemble of classi�ers
to bene�t from the distribution of consistent objects. Following from this mo-
tivation, we postulate a higher diversity in bootstrap samples with respect to
inconsistent objects (i.e., more diversi�ed bootstrap samples in this respect). We
measure the consistency of each object in its neighborhood and use this value
to estimate the probability of drawing the object into sample. In this way, we
modify the standard bootstrap sampling with uniform probability distribution
into more focused distribution where consistent objects are more likely to be
selected than inconsistent ones. The goal is to learn component classi�ers on
more perturbed distributions characterised by higher rates of consistent objects.

This modi�cation is de�nitely di�erent to stronger changes in input data
made by some pruning techniques typical for single classi�ers which may omit
di�cult, noisy objects. Here, we do not remove such objects from the samples.
They can be still selected to bootstrap samples but with the lower probabil-
ity. Moreover, the probability of selection is controlled by choice of consistency
measure. In our view, the decrease of the probability of selecting inconsistent
or noisy objects in the bagging scheme may lead to creating more accurate and
still su�ciently diversi�ed component classi�ers.

Moreover, we would like to stress that this modi�cation is also di�erent to the
idea of boosting where an iterative identi�cation of incorrectly classi�ed objects
is made. Boosting consists in subsequent extending of an ensemble of classi�ers
by adding component classi�ers focused on objects incorrectly classi�ed so far. In
our approach, we evaluate consistency of objects and we change their sampling



probability in a pre-processing phase before learning of component classi�ers.
This is di�erent than evaluating objects' classi�cation in boosting. Additionally,
in the way typical for bagging, consistency of objects is calculated independently
for each of bootstrap samples.

Our �rst contribution is to introduce consistency sampling technique in bag-
ging scheme. Our previous experiments with consistency sampling on full sets of
features [2] indicate that it allows to increase classi�cation ability of classi�ers
on highly inconsistent data. Here presented technique can be viewed as a kind of
two level bagging. On the �rst level, we use a preprocessing method that assigns
a weight to each of training objects. The weight re�ects the value of consistency
measure calculated for this object with regard to its neighborhood and its class
label. In general, the neighborhood of the object can be modelled in di�erent
ways. However, in the current paper, we use discretization of continuous features
and identify neighbors belonging to the same classes/blocks of discretization sub-
intervals. This method seems natural since some kind of handling of continuous
attributes similar to internal discretization is applied anyways in the learning
phase of tree and rule base classi�ers that we use in experiments. Moreover,
the neighborhood of the object is selected on the basis of a random subset of
features of a given size. The use of feature subsets may increase the number of
similar neighbors. It also follows from intuitive premise saying that if an object
keeps su�cient consistency even for smaller sets of features, it could be a good
candidate for a seed to generalize its description for well supported decision rule
or branch in decision tree. More consistent objects are assigned higher weights.
On the second level of our approach the weights are used in the bagging scheme.
The feature sets are used only for calculation of the weights. The sampling of
objects takes into account their complete description.

The consistency of objects is measured on the basis of class labels distribu-
tion in its neighborhood by means of either rough membership function [26] or
monotonic measure of consistency [1]. These measures are quite simple and fast
to calculate and re�ect natural properties of objects' distribution in the training
data. They have already been used for learning rules [1].

The other aim of this paper is to carry out a comprehensive experimental
study on several benchmark data sets, where we evaluate the usefulness of the
new proposal of bagging constructed with either decision tree or rule based
component classi�ers. We compare them against the standard version of bagging
to study the in�uence of the modi�ed sampling on the classi�cation accuracy.

In the next section, we remind bagging scheme and we show some other
related works. In section 3, we de�ne consistency measures and give their in-
terpretation. In section 4, we describe feature set-based consistency sampling.
Section 5 brings presentation of learning algorithms used to create base classi-
�ers and experimental setup. In the following section 6, results of experiments are
presented and discussed. We conclude by giving remarks and recommendations
for applications of presented techniques.



2 Related Works

As the main aim of our research is to extend bagging we present an overview
of its standard version and we brie�y discuss the related extensions which use
feature selection or speci�c sampling of training data.

2.1 Bagging

The Bagging approach introduced by Breiman [3] is based on the concepts of
manipulating input data by bootstrap sampling and then combining predictions
of classi�ers. The bootstrap sample is obtained by uniformly sampling with re-
placement objects from the training set. Given the parameter k, which is the
number of repetitions or component classi�ers, k di�erent bootstrap samples
S1, S2, . . . , Sk are generated. From each new training sample Si a classi�er Ci is
induced by the same learning algorithm and the �nal classi�er C∗ is formed by
aggregating k classi�ers. A �nal classi�cation of object x is built by a uniform
voting scheme on C1, C2, . . . , Ck, i.e. is assigned to the class predicted most often
by these component classi�ers, with ties broken arbitrarily. For more details see,
e.g., [3, 17].

Many experimental results show a signi�cant improvement of the classi�ca-
tion accuracy, in particular, using decision tree classi�ers. An improvement is
also observed when using rule classi�ers [23]. However, the choice of a base clas-
si�er is not indi�erent. According to Breiman [3], what makes a base classi�er
suitable is its unstability. A base classi�er is unstable, when small changes in the
learning set cause major changes in the classi�er. For instance, the decision tree
and rule classi�ers are unstable, while K-Nearest Neighbor classi�ers are not.
For more theoretical discussion on the justi�cation of the problem why bagging
works the reader is referred to [3, 17].

Let us come back the key concept of using several perturbed training sets.
Each bootstrap sample is obtained by uniformly sampling with replacement ob-
jects from the original learning set. So, some objects do not appear in it, while
others may appear more than once. Let the original training set consist of m
objects. Each sample contains n ≤ m objects (usually it has the same size as the
original set). The same probability 1/m of being sampled is assigned to each ob-
ject. The probability of an object being selected at least once is 1− (1− 1/m)m.
For a large m, this is about 1 − 1/e. Each bootstrap sample contains, on the
average, 63.2% unique objects from the original learning set [3].

Thus, on average, approximately 36, 8% of objects from the original training
set are not present in a given bootstrap sample. Following some motivations from
the �rst section we could suspect that some bootstrap samples may contain less
misleading training objects than the complete original training set. Consequently
more accurate classi�ers could be generated and aggregating them may improve
classi�cation performance.

Let us also remark that the bagging is a kind of parallel algorithm in training
and classi�cation phases, i.e., there is no transfer of additional information be-



tween components unlike in the boosting which iteratively builds a new classi�er
using information about performance of the previously generated base classi�ers.

2.2 Adaptive Resampling and Combining

To extend the last remark from the previous section we would like to notice
that Breiman refers to methods that can improve accuracy of unstable classi�ers
by perturbing and combining. The key concept of the P & C method (perturb
and combine) is to generate multiple versions of the classi�er by perturbing the
training set and then to combine these multiple versions into a single classi�er.
Breiman proposed some P & C methods for bagged classi�ers. Among them
are Arcing Classi�ers [4], Pasting Small Votes [5] and Random Forests [6]. In
particular these methods perturb the training data by sequentially sampling with
replacement objects, where at each step probability of selecting a given object
is modi�ed by its importance. This importance is estimated at each step by the
accuracy of a new base classi�er.

The reader familiar with ensembles classi�ers can notice other solutions to
taking into account misclassi�cation of training objects. In boosting [21] more
focus is given on objects di�cult to classify.

2.3 Feature Subsets in Bagging

The most powerful extension of bagging with decision trees is Random forest
introduced by Breiman [6]. It is a kind of generalization of bagging where each
tree classi�er is additionally randomized. So, besides using bootstrap sampling
of objects from the training set, for each node of the tree a subset of p features
from the original set of r features is randomly selected. The tree induction algo-
rithm selects the best split on p as the new node of the tree. In general, such a
randomization should increase diversity of component classi�ers. Breiman sug-
gested to grow in this way unpruned CART tree and showed in experiments
that it signi�cantly improved the classi�cation performance comparing to other
ensembles, see details in [6, 17]. He also recommended to select (log2(r) + 1) of
features.

Another approach to increase diversity of component classi�er with selecting
feature subsets comes from inspirations of the Random Subspace Method [15].
In this method each component classi�er in the ensemble is constructed using
a di�erent randomly chosen subset of features (so training sets are diversi�ed
by using di�erent feature subsets). Ho [15] suggested that good results were
obtained for selecting r/2 features, where r is the number of all features in the
original training set.

Latine at al. [18] proposed combining bootstrap bagging with a random fea-
ture selection. In this approach k bootstrap samples of objects are generated
as in the standard bagging. Then, for each sample, r subset of features (of size
p) are randomly selected. Thus, one gets r × k new training sets and apply the
learning algorithm to construct classi�ers in the ensemble. Authors [18] showed



that such a combination of decision trees performed better than Random Sub-
space Method and standard bagging. Quite similar approach was also considered
in [19] - where more extensive experimental evaluation was carried out. Using
other less random features selection in this combination was also studied in [24].
To sum up, we can repeat after [17] that combination of bagging and feature
selection aims at making the ensemble more diverse than using each of these
methods alone.

3 Measures of Consistency

Consistency measures operate on sets of similar objects that are called neigh-
bours of the considered object x. In this paper we restrict interest on qualitative
and discrete descriptions � so sets of neighbours are a kind of elementary classes
of relation (elementary sets) constructed with respect to available information
about values of features. Let us de�ne these sets more formally. Given a set
P of measured values of features / attributes characterizing properties of an
object x = (x1, x2, . . . , xn), an equivalence relation, or indiscernibility between
objects is

x =P x′ ⇔ xi = x′i ∀i ∈ P.

We can de�ne neighbourhood (or set) of indiscernible objects as such that ∀x,x′:

N=
P (x) = {x,x′|x =P x′}. (1)

If object x belongs to neighbourhood N=
P , in which all objects are assigned the

same output value / decision class Xi, i = 1, . . . , t then x is consistent.
Indiscernibility relation is a natural choice for discrete data with limited

attributes' domains. For continuous domains, discretization of objects' descrip-
tion [8] is usually needed to e�ectively use this relation.

Having di�erent numbers of objects with the same value of a decision class
in the neighbourhood N=

P , object x is consistent to di�erent degree which can
be measures by appropriate consistency measures. Below two chosen measures
are presented.

Rough membership, called also µ consistency measure, of object x with re-
spect to a decision class Xi is de�ned [26] as

µP
Xi

(x) =
|N=

P (x) ∩Xi|
|N=

P (x)|
, (2)

where | · | denotes cardinality. Rough membership captures a ratio of number
of objects in neighbourhood N=

P (x) and in considered set Xi, to number of all
objects present in the neighbourhood N=

P (x). This measure is an estimate of
conditional probability Pr(x ∈ Xi|x ∈ N=

P (x)). It can be shown that estimation
of this probability by frequencies, as it is done in (2), is equivalent to the max-
imum likelihood estimation under the assumption of common class probability
distribution of objects within each neighbourhood N=

P (x).



The next, ε consistency measure, εP
Xi

(x) is de�ned [1] as

εP
Xi

(x) =
|N=

P (x) ∩ ¬Xi|
|¬Xi|

. (3)

In the numerator of (3), is the number of objects in the training data that
belong to neighborhood N=

P (x) and do not belong to set Xi. The ratio εP
Xi

(x)
is an estimate of conditional probability Pr(x ∈ N=

P (x)|x ∈ ¬Xi), called also a
catch-all likelihood [9]. Probability Pr(x ∈ N=

P (x)|x ∈ ¬Xi) can be rewritten

as
Pr(x∈N=

P (x)∧x∈¬Xi)
Pr(x∈¬Xi)

. Logically, implication x ∈ N=
P (x) → x ∈ Xi can be

rewritten as ¬(x ∈ N=
P (x)∧x ∈ ¬Xi). Thus, the intuition of calculating measure

εP
Xi

(x) is that we can see how far the implication, i.e., rule, stating that x belongs
to Xi is not supported by objects in neighbourhood of x.

To use measures µP
Xi

(x) and εP
Xi

(x) in consistency sampling we need to trans-

form them to measure cP (x) de�ned for a given object x as

cP (x) = µP
Xi

(x) or cP (x) = 1− εP
Xi

(x), (4)

where Xi is the class label of object x.

4 Feature Set-based Consistency Sampling

The goal of feature set-based consistency sampling is to increase the global
predictive accuracy of bagged classi�ers by using additional local information
that re�ects consistency of objects with regard to subsets of their features. The
resulting bagged classi�ers are trained on bootstrap samples slightly shifted to-
wards more consistent objects.

The learning algorithm presented as Algorithm 1 is almost the same as the
standard bagging scheme. The di�erence lies in feature set-based consistency
sampling, the procedure of bootstrap sampling that is used in line 3. The rest of
the bagging scheme remains unchanged. In feature set-based consistency sam-
pling, when sampling with replacement from the training set is performed, a mea-
sure of consistency cP (x) is calculated for each object x from the training set. A
consistent object x has cP (x) = 1, inconsistent objects have 0 ≤ cP (x) < 1. The
consistency measure is used to tune the probability of object x being sampled
to a bootstrap sample, e.g. by calculating a product of cP (x) and 1/m; where
m is the number of objects in training data. Thus, objects that are inconsistent
have decreased probability of being sampled. Objects that are more consistent
(i.e., have higher value of a consistency measure) are more likely to appear in
the bootstrap sample. Di�erent measures of consistency may result in di�erent
probability of inconsistent object x being sampled. The value of cP (x) involving
ε measure is usually higher than cP (x) involving µ measure. As it comes from
formula (3), ε measure relates the number of inconsistent objects to the whole
number of objects in the data set that may cause inconsistencies. So, for large
data sets the value of ε measure may be relatively high for all objects. On the



other hand, from (2), µ measures inconsistency more locally. It relates the num-
ber of consistent objects in the neighborhood to the number of objects in the
neighborhood.

It is worth noting that, feature sets are used only to calculate consistency
of objects. Objects with complete description are drawn into bootstrap samples
and then used during learning of component classi�ers.

Algorithm 1: Feature set-based consistency sampling in bagging scheme
Input : LS learning set;

TS testing set;
LA learning algorithm;
c consistency measure;
p number of features used in consistency sampling;
k number of bootstrap samples;

Output: C∗ �nal classi�er

Learning phase;1

for i := 1 to k do2

Si := bootstrap sample of objects having complete description; objects are3

drawn by consistency sampling from LS with measure c calculated on
randomly selected p features {sample with replacement according to
measure c } ;
Ci := LA(Si) {generate a base classi�er} ;4

end5

Classi�cation phase;6

foreach x in TS do7

C∗(x) = arg maxX

PT
i=1(Ci(x) = X) {the class with maximum number of8

votes is chosen as a �nal label for x} ;
end9

We should stress the di�erence of sampling in boosting (and other adaptive
resampling and combining methods) to the consistency-based sampling presented
in this work. In general, boosting develops the ensemble of classi�ers by subse-
quent addition of a new component classi�er to the ensemble. This component
classi�er is trained on a sample which is drawn from the original data set ac-
cording to the performance of the ensemble of classi�ers. The objects on which
the ensemble of classi�ers performed poorly are more likely to be drawn into the
sample on which the new component classi�er is learned. The presented here
bagging with consistency sampling is not an incremental, stepwise approach and
does not change sampling towards objects that pose di�culty for the ensemble.
Our extension of sampling is de�nitely di�erent to boosting idea.



5 Experimental Setup

The main aim of experiments presented in this paper is to evaluate the use-
fulness of our modi�cation of sampling objects into bootstraps in improving the
classi�cation accuracy of bagging. We consider two variants: the �rst, where sam-
pling is modi�ed by evaluating µ consistency measure, and the second, where
it is modi�ed by ε consistency measure. We compare these variants of bagging
against the standard bagging using the same number of component classi�ers to
study how much these modi�cations may improve the classi�cation performance
of bagging. The magnitude of improvement may depend on used consistency
measure. To reduce the e�ect of too high values of ε consistency measure dis-
cussed in section 4, we transformed the value of ε measure by the exponential
function of high order (to be more speci�c, we used values of (εP (x))128 in exper-
iments; we do not expect signi�cant di�erence in results unless the order of the
exponential function is not signi�cantly lower). Predictions of classi�ers inside
the bagging were always aggregated into the �nal classi�cation decision by equal
weight voting.

In all compared versions of bagging the component classi�ers were generated
by the same learning algorithm. We decided to compare decision trees or rules
ensembles, because they are accurate but unstable which is good bagging. Such
kind of classi�ers may be particularly in�uenced by the possible inconsistency
of data [2]. Moreover, rule induction algorithms following sequential covering
principle correspond to discovery of local patterns in data.

Therefore, we selected the well known Quinlan C4.5 algorithm [20] and run it
with standard parameters except generating unprunned decision trees. This fol-
lows Breiman's recommendations for using tree classi�ers inside bagging scheme.
As the rule induction algorithms we chose two options. Namely, PART algorithm
[10] and MODLEM algorithm . The last choice resulted from three motivations:
it has been already successfully applied inside few multiple classi�ers [23]; the
classi�cation ability of the classi�er built on its sets of rules is usually compara-
ble to C4.5 rules or tree classi�er; moreover it has been previously shown that
it could be used with pre-processing of inconsistent objects [22, 25].

As it is not so well known as other rule induction algorithms, we brie�y
remark that the MODLEM algorithm is also based on the idea of a sequential
covering and it generates an unordered minimal set of decision rules for every de-
cision concept. The main procedure for rule induction scheme starts from creat-
ing a �rst rule by choosing sequentially the best elementary conditions according
to chosen criteria (in our experiments we used an entropy based one). When the
rule is stored, all learning positive objects that match this rule are removed from
consideration. The process is repeated while some signi�cant positive examples
of the decision concept remain still uncovered. For inconsistent data a kind of
pruning strategy can be used - although in our experiments we used unpruned
version to be consistent with the other algorithms. More detailed description of
this algorithm can be found in [14, 25]. We use classi�cation strategy for solv-
ing ambiguous, multiple or partial matches proposed in [11] to classify objects
with rules induced by MODLEM. This strategy takes into account coverage of



all rules completely matched and also allows partial matching if no rule �ts the
description of the new object.

The number of component classi�ers in each bagging ensemble was set to
20. This number led to comparable performance of bagging ensembles when
compared to other perturb and combine methods in our previous experiments.

Additionally, we study consistency of objects in bootstrap samples and sim-
ilarity between bootstrap samples. We check average values for 1000 bootstrap
samples created by standard bagging, and bagging extended by feature set-based
consistency sampling with µ measure and ε measure.

We evaluated performance for 14 data sets listed in Table 1. They come
mainly from the UCI repository1. We chose them because they were often used
by other researchers working with rule ensembles. Several of these data sets
included numerical attributes so we used discretization method to e�ectively
use indiscernibility relation to select neighbors (see section 3). We used a well
known supervised method based on minimizing class entropy [8], in the version
which automatically determine the necessary number of cut points for each of
the attributes.

Table 1. Characteristics of data sets

Data set Objects Attributes Classes

breast-w 699 9 2

bupa 345 6 2

credit-german 1000 20 2

crx 690 15 2

diabetes 768 8 2

ecoli 336 7 8

glass 214 9 7

heart-cleveland 303 13 5

hepatits 155 19 2

ionosphere 351 34 2

pima 768 8 2

sonar 208 60 2

vehicle 846 18 4

vowel 990 13 11

6 Results of Experiments and Discussion

The classi�cation accuracy was estimated by the strati�ed 10-fold cross-
validation, which was repeated several times. Tables with results always contain
the average classi�cation accuracy and the standard deviation of classi�cation

1 see http://www.ics.uci.edu/�mlearn/MLRepository.html



accuracy. Moreover, we include the rank of the average classi�cation accuracy
calculated for all variants of classi�ers and the given data set. The rank is pre-
sented in brackets (the smaller rank, the better).

We compare standard bagging to bagging extended by feature set-based con-
sistency sampling with µ and ε consistency measures. We checked two sizes of
the feature sets used to measure the consistency of objects. First, we chose 50%
of original feature set size following recommendation given in [15]. Then, we also
checked ln of original feature set size following [6]. Because there were no huge
di�erences in results, we present results for 50% feature set size (which were bet-
ter) and summarize results for ln feature set size. The rank given in a tables 2,
3 and 4 re�ects position of the average classi�cation accuracy of a 50% random
feature ensemble when compared to all other variants in 50% random feature
ensembles. We show these ranks because they are used in further described sta-
tistical test. Last row of each table shows the average rank scored by a given
type of 50% random feature ensemble.

Table 2. Classi�cation accuracy in repeated 10-fold cross validation of an ensemble of
20 C4.5 classi�ers standard bagging and feature set-based consistency bagging on 50%
of features. Rank of the results presented in Tables 2, 3 and 4 is given in brackets.

C4.5

data set std. bagging µ bagging ε bagging

breast-w 95.61+
−0.07 (9) 95.76+

−0.5 (8) 96.04+
−0.3 (6.5)

bupa 54.4+
−0.5 (8) 56.33+

−0.1 (1) 53.53+
−0.8 (9)

credit-g 71.33+
−0.9 (9) 72.4+

−0.08 (7) 71.9+
−0.3 (8)

crx 83.72+
−0.9 (7) 85.27+

−0.5 (3) 85.6+
−0.07 (1)

diabetes 77.52+
−0.2 (7.5) 78.04+

−0.5 (4) 77.95+
−0.2 (5.5)

ecoli 84.03+
−0.1 (6) 84.42+

−0.4 (3) 83.53+
−0.7 (7)

glass 76.48+
−0.4 (4) 76.79+

−0.8 (3) 70.25+
−1 (8)

heart-c 78.1+
−2 (9) 81.41+

−2 (7) 82.73+
−0.4 (5)

hepatitis 80.65+
−2 (8) 79.57+

−1 (9) 81.08+
−1 (7)

ionosphere 91.45+
−0.4 (9) 91.83+

−0.5 (6.5) 91.83+
−0.4 (6.5)

pima 77.52+
−0.2 (7.5) 78.04+

−0.5 (4) 77.95+
−0.2 (5.5)

sonar 75+
−0.4 (8) 75+

−0.4 (8) 75+
−0.4 (8)

vehicle 71.16+
−0.3 (9) 71.4+

−0.8 (8) 71.51+
−0.6 (7)

vowel 85.05+
−0.2 (7) 84.68+

−0.2 (9) 84.88+
−0.2 (8)

average rank 7.71 5.75 6.57

We use a statistical approach to compare di�erence in performance between
classi�ers in variants which we mentioned above. First, we apply Friedman test
to globally compare performance of nine di�erent classi�ers (i.e., C4.5, MOD-
LEM and PART in standard bagging, µ bagging and ε bagging) on multiple data
sets [7, 16]. The null-hypothesis in this test is that all compared classi�ers per-
form equally well. It uses ranks of each of classi�ers on each of the data sets. The



Table 3. Classi�cation accuracy in repeated 10-fold cross validation of an ensemble of
20 MODLEM classi�ers standard bagging and feature set-based consistency bagging on
50% of features. Rank of the results presented in Tables 2, 3 and 4 is given in brackets.

MODLEM

data set std. bagging µ bagging ε bagging

breast-w 96.23+
−0.1 (3.5) 96.23+

−0.3 (3.5) 96.09+
−0.2 (5)

bupa 55.27+
−1 (4) 55.17+

−0.5 (5) 55.85+
−1 (2)

credit-g 74.5+
−1 (4) 74.6+

−0.6 (3) 74.87+
−0.3 (1)

crx 83.33+
−0.2 (8.5) 84.5+

−0.4 (6) 85.36+
−0.2 (2)

diabetes 78.3+
−0.4 (1) 78.12+

−0.3 (3) 78.21+
−0.5 (2)

ecoli 80.26+
−0.6 (9) 82.94+

−0.6 (8) 84.13+
−0.4 (5)

glass 66.67+
−1 (9) 73.36+

−0.4 (5.5) 72.74+
−2 (7)

heart-c 81.52+
−1 (6) 84.05+

−1 (1) 83.72+
−1 (2)

hepatitis 81.72+
−2 (6) 83.01+

−2 (5) 83.23+
−1 (4)

ionosphere 92.21+
−0.4 (5) 92.3+

−0.6 (4) 91.64+
−0.1 (8)

pima 78.3+
−0.4 (1) 78.12+

−0.3 (3) 78.21+
−0.5 (2)

sonar 80.77+
−1 (2) 80.77+

−1 (2) 80.77+
−1 (2)

vehicle 73.84+
−0.7 (1) 73.09+

−0.5 (3) 73.4+
−0.4 (2)

vowel 89.09+
−0.3 (3) 89.6+

−0.2 (2) 89.87+
−0.3 (1)

average rank 4.5 3.86 3.21

Table 4. Classi�cation accuracy in repeated 10-fold cross validation of an ensemble
of 20 PART classi�ers standard bagging and feature set-based consistency bagging on
50% of features. Rank of the results presented in Tables 2, 3 and 4 is given in brackets.

PART

data set std. bagging µ bagging ε bagging

breast-w 96.04+
−0.2 (6.5) 96.66+

−0.2 (1) 96.52+
−0.4 (2)

bupa 54.49+
−0.2 (7) 55.65+

−1 (3) 54.88+
−1 (6)

credit-g 72.97+
−0.6 (6) 73.83+

−0.6 (5) 74.73+
−0.6 (2)

crx 83.33+
−0.8 (8.5) 84.88+

−0.5 (5) 84.98+
−0.07 (4)

diabetes 77.52+
−0.3 (7.5) 77.95+

−0.6 (5.5) 77.39+
−0.2 (9)

ecoli 84.52+
−0.5 (2) 85.32+

−0.6 (1) 84.23+
−0.2 (4)

glass 77.41+
−0.9 (2) 77.88+

−1 (1) 73.36+
−1 (5.5)

heart-c 80.2+
−0.7 (8) 83.17+

−0.3 (4) 83.28+
−1 (3)

hepatitis 85.38+
−0.8 (1) 83.66+

−2 (3) 84.73+
−2 (2)

ionosphere 92.4+
−0.4 (3) 92.6+

−0.7 (2) 93.16+
−1 (1)

pima 77.52+
−0.3 (7.5) 77.95+

−0.6 (5.5) 77.39+
−0.2 (9)

sonar 79.33+
−0.7 (5) 79.33+

−0.7 (5) 79.33+
−0.7 (5)

vehicle 72.58+
−0.3 (5) 72.42+

−0.5 (6) 72.62+
−1 (4)

vowel 88.42+
−0.3 (6) 88.72+

−0.2 (5) 88.82+
−0.4 (4)

average rank 5.36 3.71 4.32

lower rank, the better classi�er. Friedman statistics for these results gives 5.3



which exceeds the critical value 2.03 (for con�dence level 0.05). We have not
presented complete post-hoc analysis [7] of di�erences between classi�ers. How-
ever, we show the average ranks of each of classi�ers in tables. The results of
Friedman test and observed di�erences in average ranks between classi�ers allow
us to state that there is a signi�cant di�erence between them.

We continue our comparison with examination of importance of di�erence in
classi�cation performance between each pair of classi�ers. However, we are more
focused on di�erences between the same classi�er used in di�erent variants of
bagging. We apply Wilcoxon test [16] with null-hypothesis that the medians of
results on all data sets of the two compared classi�ers are equal. Let us remark,
that in the paired tests ranks are assigned to the value of di�erence in the aver-
age classi�cation accuracy between compared pair of classi�ers. When we apply
this test to results of C4.5 classi�ers, it detects statistically important di�erence
in pairs between standard bagging and µ bagging (p-value around 0.03). In case
of MODLEM, p-value in Wilcoxon test comparing di�erence between standard
bagging and ε bagging is equal 0.0503. On the other hand, p-value in test com-
paring MODLEM in standard bagging with MODLEM in µ-bagging is much
higher, around 0.1. Let us notice that MODLEM gives the best results in stan-
dard bagging. Thus, relatively, it is the hardest case for improvement. In case
of examining PART results, statistically important di�erence is found between
standard bagging and µ bagging (p-value around 0.02).

The results of feature set-based consistency bagging with ln feature set size
also indicate a statistically important di�erence in Friedman test (p-value in this
test is around 0.008). However, the di�erence of ranks between classi�ers in this
test are smaller. Moreover, Wilcoxon test applied for pairs of classi�ers does not
allow us to distinguish statistically important di�erences for most of the pairs
as it gives higher p-values.

We study consistency of objects in bootstrap samples and similarity between
samples as a continuation of the presented comparison of the accuracy. The
purpose of this study is to show di�erences between sampling used in standard
bagging and 50% feature set-based consistency sampling with µ measure and
ε measure. The results are presented in Table 5. In the study, any object x,
for which cP (x) < 1 is considered as inconsistent. First, we check the average
percentage of inconsistent objects in bootstrap samples. This shows the fraction
of inconsistent objects in bootstrap samples created by compared versions of
bagging. Then we check the average consistency of an object drawn into sample.
This allows us to compare the average probability of object being drawn into
the samples. Finally, we compare in pairs all bootstrap samples created by each
of versions of bagging. We check the similarity of all objects in samples and
similarity of inconsistent objects in samples. We de�ne similarity for a pair of
bootstrap samples as the value of the ratio of the sum of the same objects drawn
into the samples to the number of objects in the samples. Then we calculate
similarity for a given version of bagging as the average value of similarity of all
pairs of samples created by the version of bagging. This allows to compare how
diversi�ed are bootstrap samples created by each version of bagging. Moreover,



we can check the diversity of the samples with respect to all objects and only
with respect to the inconsistent objects.

When we compare the average percentage of inconsistent objects from Ta-
ble 5, we can see that samples drawn by feature set-based consistency sampling
are more consistent than those drawn by standard bagging. Moreover, we can see
that ε sampling leads to lower average percentage of inconsistent objects in sam-
ples (with one exception of vowel data set). Less numerous data set described by
fewer attributes have higher percentages of inconsistent objects (see results for
bupa, diabetes, ecoli, glass and pima). The average consistency of sample (i.e.,
the average probability of object being drawn in the sample), is lower for these
data sets than for others. One data set, sonar, is not a�ected at all by feature set-
based consistency sampling. This is the data set described by the highest number
of attributes. Thus, we can see that feature set-based consistency sampling is
sensitive to the number of features used to calculate consistency of objects.

Similarity of bootstrap samples created by standard bagging is always close
to 0.75 regardless of whether it is calculated for all objects or for inconsistent
ones. We treat this result as a base line for our comparison. We can see that
similarity measured for all objects drawn in bootstrap samples created by fea-
ture set-based consistency sampling is higher then for standard bagging. On the
other hand, in most of the cases, the similarity measured with respect to incon-
sistent objects is lower than in standard bagging. The exceptions to this rule
are previously mentioned small data sets. For these data sets, similarity between
samples increase when we calculate it for all objects and inconsistent objects.
We relate these observations to the classi�cation accuracy results presented in
tables 2, 3 and 4. It becomes quite apparent that in most of the cases, feature
set-based consistency sampling increases the accuracy when similarity of samples
with respect to inconsistent objects decreases. Moreover, the accuracy tends to
be higher when similarity of samples calculated for all object does not increase
greatly.

7 Conclusions

In this paper we considered an extension of bagging where consistency of
objects on a subset of features is taken into account while drawing objects into
bootstrap samples. Two measures of objects' consistency were compared: µ rough
membership and ε monotonic measure. We calculate these measures on the ba-
sis of distribution of class labels in the given objects' neighborhood which was
identi�ed with using discretization in random feature subspaces of a given size.

Results of experiments showed that the new sampling improved the classi-
�cation accuracy of bagging. However, the range of this improvement depends
on a few aspects. The highest increase when comparing standard bagging and
µ bagging was observed for C4.5 trees. On the other hand, one should notice
that the accuracy of the standard version of bagging with trees was lower than
versions with rule sets. The statistical comparison of results showed that the
best of our extended variants of bagging may be di�erent depending on the used



Table 5. Consistency and similarity of bootstrap samples created by standard bagging
and 50% feature set-based consistency sampling with measures µ and ε

data set type of % inconsistent avg. consistency similarity similarity
sampling objects all inconsistent

breast-w
standard 18.38 - 0.75 0.755
µ 16.31 0.98 0.755 0.71
ε 13.38 0.95 0.760 0.57

bupa
standard 88.82 - 0.751 0.75
µ 85.08 0.62 0.751 0.725
ε 49.2 0.64 0.892 0.814

credit-german
standard 41.38 - 0.75 0.749
µ 33.09 0.89 0.768 0.63
ε 27.07 0.89 0.802 0.602

crx
standard 40.66 - 0.751 0.75
µ 33.16 0.91 0.768 0.648
ε 26.2 0.89 0.809 0.582

diabetes
standard 96.63 - 0.751 0.751
µ 95.59 0.72 0.771 0.768
ε 86.52 0.34 0.856 0.847

ecoli
standard 93.44 - 0.75 0.75
µ 91.49 0.8 0.788 0.789
ε 80.81 0.54 0.901 0.882

glass
standard 85.58 - 0.751 0.749
µ 80.04 0.72 0.788 0.742
ε 55.94 0.62 0.894 0.807

heart-c
standard 62.45 - 0.751 0.753
µ 56.36 0.86 0.768 0.697
ε 35.87 0.77 0.857 0.528

hepatits
standard 32.84 - 0.752 0.75
µ 27.27 0.94 0.762 0.661
ε 4.12 0.97 0.883 0.01

ionosphere
standard 1.41 - 0.75 0.74
µ 1.37 0.99 0.751 0.699
ε 0.55 0.99 0.753 0.01

pima
standard 96.63 - 0.751 0.751
µ 95.59 0.72 0.771 0.768
ε 86.52 0.34 0.856 0.847

sonar
standard 0 - 0.752 0
µ 0 1.0 0.751 0
ε 0 1.0 0.751 0

vehicle
standard 51.96 - 0.75 0.751
µ 41.73 0.85 0.778 0.641
ε 37.99 0.86 0.815 0.668

vowel
standard 46.94 - 0.75 0.75
µ 32.74 0.85 0.79 0.575
ε 33.25 0.87 0.801 0.639



component classi�er. Feature set-based consistency bagging with µ measure is
the best choice for C4.5 and PART algorithms. The variant using ε measure is
a better choice in case of MODLEM as a rule component classi�er. These ob-
servations are strongly supported by the analysis of average ranks and results
of Wilcoxon test. We may attribute this di�erence in performance of classi�ers
in µ consistency bagging and in ε consistency bagging to di�erent strategy of
constructing component classi�ers. Since rules generated in PART results from
induction of a tree, C4.5 and PART are tree based algorithms. MODLEM, on
the other hand, is a pure rule induction algorithm based on sequential cover-
ing technique. The results of experiments indicate that µ consistency sampling
works for tree based learning methods while ε consistency sampling works for
rule learning methods. This hypothesis should be, however, further investigated.

We compared classi�cation accuracy results of presented here modi�cations
to the results of Random Forest with the same number of component decision
tree classi�ers. Random Forest gives comparable results to bagging extended by
feature set-based consistency sampling on the data sets that we used in experi-
ments. We plan a more comprehensive comparison as the future work.

We observed that the number of randomly selected features cannot be too
small. The di�erences between feature set-based consistency bagging and stan-
dard bagging were more visible for random sub-samples of 50% size of the original
feature sets than for choosing ln of this size. The in�uence of the size of feature
set used for consistency bagging should be more deeply examined in the future.

Comparison of similarity between samples drawn in feature set-based consis-
tency sampling and standard uniform bootstrap sampling shown that the feature
set-based consistency sampling enables to construct more diversi�ed samples
with respect to inconsistent objects.

Finally, as a future research we should point to studying other methods of
selecting objects' neighborhood. In particular, we should examine appropriate
measures of distance between objects.
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