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1 Introduction
jMAF is a rough set data analysis software written in Java language and available online1. It makes use of
java Rough Set (jRS) library. jMAF and jRS library implement methods of data analysis provided by the
Dominance-based Rough Set Approach, and by its relaxed version, the Variable Consistency Dominance-based
Rough Set Approach. In this chapter, we give some basics of these two approaches, together with an example
of jMAF usage that is meant to instruct novice users.

1http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
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2 Reminder on the Dominance-based Rough Set Approach
Dominance-based Rough Set Approach (DRSA) has been proposed by Greco, Matarazzo and Słowiński [11,
12, 13, 14, 34]. DRSA extends rough set theory proposed by Pawlak [27, 28, 31] and follows the suggestion
formulated by Słowiński in [33], towards reasoning about decision situations with background knowledge about
ordinal evaluations of objects from a universe, and about monotonic relationships between these evaluations,
e.g. “the larger the mass and the smaller the distance, the larger the gravity” or “the greater the debt of a
firm, the greater its risk of failure”. Precisely, the monotonic relationships are assumed between evaluation
of objects on condition attributes and their assignment to decision classes. The monotonic relationships are
also interpreted as monotonicity constraints, because the better the evaluation of an object, the better should
be the decision class the object is assigned to. For this reason, classification problems of this kind are called
ordinal classification problems with monotonicity constraints. Many real-world classification problems fall into
this category [7]. Typical examples are multiple criteria sorting and decision under uncertainty, where the order
of value sets of attributes corresponds to increasing or decreasing order of preference of a decision maker. In
these decision problems, the condition attributes are called criteria. Some tutorial presentations of DRSA are
available in [15, 16, 35, 37].

It is worth stressing, however, that DRSA can also be used in data analysis of non-ordinal problems, i.e.
problems with no background knowledge about ordinal evaluations of objects, after an easy pre-processing of
the input data [5]. It then gives more concise decision rules than the usual induction techniques designed for
non-ordinal classification, without recurring to a pre-discretization of numerical attributes.

Although DRSA is a general methodology for reasoning about data describing ordinal classification prob-
lems with monotonicity constraints, in this chapter, we shall use the vocabulary typical for multiple criteria
classification (called also sorting) problems.

2.1 Decision Table
Let us consider a decision table including a finite universe of objects (solutions, alternatives, actions) U evaluated
on a finite set of condition attributes F = {f1, . . . , fn}, and on a single decision attribute d.

Table 1: Exemplary decision table with evaluations of students

Student f1 - Mathematics f2 - Physics f3 - Literature d - Overall Evaluation
S1 good medium bad bad
S2 medium medium bad medium
S3 medium medium medium medium
S4 good good medium good
S5 good medium good good
S6 good good good good
S7 bad bad bad bad
S8 bad bad medium bad

The set of the indices of attributes is denoted by I = {1, . . . , n}. Without loss of generality, fi : U → <
for each i = 1, . . . , n, and, for all objects x, y ∈ U , fi(x) ≥ fi(y) means that “x is at least as good as y with
respect to attribute i”, which is denoted by x �i y. Therefore, it is supposed that �i is a complete preorder,
i.e. a strongly complete and transitive binary relation, defined on U on the basis of quantitative and qualitative
evaluations fi(·). Furthermore, decision attribute d makes a partition of U into a finite number of decision
classes, Cl={Cl1, . . . , Clm}, such that each x ∈ U belongs to one and only one class Clt, t = 1, . . . ,m. It is
assumed that the classes are preference ordered, i.e. for all r, s = 1, . . . ,m, such that r > s, the objects from
Clr are preferred to the objects from Cls. More formally, if � is a comprehensive weak preference relation on
U , i.e. if for all x, y ∈ U , x�y reads “x is at least as good as y”, then it is supposed that

[x∈Clr, y∈Cls, r>s]⇒ x�y,

where x�y means x�y and not y�x.
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The above assumptions are typical for consideration of an ordinal classification with monotonicity constraints
(or multiple criteria sorting) problem. Indeed, the decision table characterized above, includes examples of ordinal
classification which constitute an input preference information to be analyzed using DRSA.

The sets to be approximated are called upward union and downward union of decision classes, respectively:

Cl≥t =
⋃
s≥t

Cls, Cl≤t =
⋃
s≤t

Cls, t = 1, ...,m.

The statement x ∈ Cl≥t reads “x belongs to at least class Clt”, while x ∈ Cl≤t reads “x belongs to at most class
Cl t”. Let us remark that Cl≥1 = Cl≤m = U , Cl≥m=Clm and Cl≤1 =Cl1. Furthermore, for t=2,...,m,

Cl≤t−1 = U − Cl≥t and Cl≥t = U − Cl≤t−1 .

2.2 Dominance cones as granules of knowledge
The key idea of DRSA is representation (approximation) of upward and downward unions of decision classes,
by granules of knowledge generated by attributes being criteria. These granules are dominance cones in the
attribute values space.

x dominates y with respect to set of attributes P ⊆ F (shortly, x P-dominates y), denoted by xDP y, if for
every attribute fi ∈ P , fi(x) ≥ fi(y). The relation of P -dominance is reflexive and transitive, i.e., it is a partial
preorder.

Given a set of attributes P ⊆ I and x ∈ U , the granules of knowledge used for approximation in DRSA are:

• a set of objects dominating x, called P -dominating set,
D+

P (x)={y ∈ U : yDPx},

• a set of objects dominated by x, called P -dominated set,
D−P (x)={y ∈ U : xDP y}.

Let us recall that the dominance principle requires that an object x dominating object y on all considered
attributes (i.e. x having evaluations at least as good as y on all considered attributes) should also dominate y on
the decision (i.e. x should be assigned to at least as good decision class as y). Objects satisfying the dominance
principle are called consistent, and those which are violating the dominance principle are called inconsistent.

2.3 Approximation of ordered decision classes
The P -lower approximation of Cl≥t , denoted by P (Cl≥t ), and the P -upper approximation of Cl≥t , denoted by
P (Cl≥t ), are defined as follows (t = 2, ...,m):

P (Cl≥t ) = {x ∈ U : D
+
P (x) ⊆ Cl

≥
t },

P (Cl≥t ) = {x ∈ U : D
−
P (x) ∩ Cl

≥
t 6= ∅}.

Analogously, one can define the P -lower approximation and the P -upper approximation of Cl≤t as follows
(t = 1, ...,m− 1):

P (Cl≤t ) = {x ∈ U : D
−
P (x) ⊆ Cl

≤
t },

P (Cl≤t ) = {x ∈ U : D
+
P (x) ∩ Cl

≤
t 6= ∅}.

The P -lower and P -upper approximations so defined satisfy the following inclusion property, for all P ⊆ F :

P (Cl≥t ) ⊆ Cl≥t ⊆ P (Cl
≥
t ), t = 2, . . . ,m,

P (Cl≤t ) ⊆ Cl≤t ⊆ P (Cl
≤
t ), t = 1, . . . ,m− 1.

The P -lower and P -upper approximations of Cl≥t and Cl≤t have an important complementarity property,
according to which,
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P (Cl≥t ) = U–P (Cl≤t−1) and P (Cl≥t ) = U–P (Cl≤t−1), t=2,...,m,

P (Cl≤t ) = U–P (Cl≥t+1) and P (Cl≤t ) = U–P (Cl≥t+1), t=1,...,m–1.

The P -boundary of Cl≥t and Cl≤t , denoted by BnP (Cl
≥
t ) and BnP (Cl

≤
t ), respectively, are defined as follows:

BnP (Cl
≥
t ) = P (Cl≥t )–P (Cl≥t ), t = 2, . . . ,m,

BnP (Cl
≤
t ) = P (Cl≤t )–P (Cl≤t ), t = 1, . . . ,m− 1.

Due to the above complementarity property, BnP (Cl
≥
t ) = BnP (Cl

≤
t−1), for t = 2, ...,m.

2.4 Quality of approximation
For every P ⊆ F , the quality of approximation of the ordinal classification Cl by a set of attributes P is defined
as the ratio of the number of objects P -consistent with the dominance principle and the number of all the objects
in U . Since the P -consistent objects are those which do not belong to any P -boundary BnP (Cl

≥
t ), t = 2, . . . ,m,

or BnP (Cl
≤
t ), t = 1, . . . ,m−1, the quality of approximation of the ordinal classification Cl by a set of attributes

P , can be written as

γP (Cl) =

∣∣∣U −( ⋃
t=2,...,m

BnP (Cl
≥
t )

)∣∣∣
|U |

=

∣∣∣U −( ⋃
t=1,...,m−1

BnP (Cl
≤
t )

)∣∣∣
|U |

.

γP (Cl) can be seen as a degree of consistency of the objects from U , where P is the set of attributes being
criteria and Cl is the considered ordinal classification.

Moreover, for every P ⊆ F , the accuracy of approximation of union of ordered classes Cl≥t , Cl
≤
t by a set of

attributes P is defined as the ratio of the number of objects belonging to P -lower approximation and P -upper
approximation of the union. Accuracy of approximation αP (Cl

≥
t ), αP (Cl

≤
t ) can be written as

αP (Cl
≥
t ) =

∣∣∣P (Cl≥t )∣∣∣
|P (Cl≥t )|

, αP (Cl
≤
t ) =

∣∣∣P (Cl≤t )∣∣∣
|P (Cl≤t )|

.

2.5 Reduction of attributes
Each minimal (with respect to inclusion) subset P ⊆ F such that γP (Cl) = γF (Cl) is called a reduct of Cl , and
is denoted by REDCl . Let us remark that for a given set U one can have more than one reduct. The intersection
of all reducts is called the core, and is denoted by CORECl. Attributes in CORECl cannot be removed from
consideration without deteriorating the quality of approximation. This means that, in set F , there are three
categories of attributes:

• indispensable attributes included in the core,

• exchangeable attributes included in some reducts, but not in the core,

• redundant attributes, neither indispensable nor exchangeable, and thus not included in any reduct.

An algorithm for reduction of attributes in the framework of the Dominance-based Rough Set Approach has
been proposed in [40]. This algorithm has been implemented in jMAF.
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2.6 Decision Rules
The dominance-based rough approximations of upward and downward unions of decision classes can serve to
induce a generalized description of objects in terms of “if . . . , then . . . ” decision rules. For a given upward or
downward union of classes, Cl≥t or Cl≤s , the decision rules induced under a hypothesis that objects belonging
to P (Cl≥t ) or P (Cl≤s ) are positive examples, and all the others are negative, suggest a certain assignment to
“class Clt or better”, or to “class Cls or worse”, respectively. On the other hand, the decision rules induced
under a hypothesis that objects belonging to P (Cl≥t ) or P (Cl≤s ) are positive examples, and all the others are
negative, suggest a possible assignment to “class Clt or better”, or to “class Cls or worse”, respectively. Finally,
the decision rules induced under a hypothesis that objects belonging to the intersection P (Cl≤s ) ∩ P (Cl

≥
t ) are

positive examples, and all the others are negative, suggest an approximate assignment to some classes between
Cls and Clt (s < t).

In the case of preference ordered description of objects, set U is composed of examples of ordinal classification.
Then, it is meaningful to consider the following five types of decision rules:

1) certain D≥-decision rules, providing lower profile descriptions for objects belonging to P (Cl≥t ):
if fi1(x) ≥ ri1 and . . . and fip(x) ≥ rip , then x ∈ Cl

≥
t ,

{i1, . . . , ip} ⊆ I, t = 2, . . . ,m, ri1 , . . . , rip ∈ <;

2) possible D≥-decision rules, providing lower profile descriptions for objects belonging to P (Cl≥t ):
if fi1(x) ≥ ri1 and . . . and fip(x) ≥ rip , then x possibly belongs to Cl

≥
t ,

{i1, . . . , ip} ⊆ I, t = 2, . . . ,m, ri1 , . . . , rip ∈ <;

3) certain D≤-decision rules, providing upper profile descriptions for objects belonging to P (Cl≤t ):
if fi1(x) ≤ ri1 and . . . and fip(x) ≤ rip , then x ∈ Cl

≤
t ,

{i1, . . . , ip} ⊆ I, t = 1, . . . ,m− 1, ri1 , . . . , rip ∈ <;

4) possible D≤-decision rules, providing upper profile descriptions for objects belonging to P (Cl≤t ):
if fi1(x) ≤ ri1 and . . . and fip(x) ≤ rip , then x possibly belongs to Cl

≤
t ,

{i1, . . . , ip} ⊆ I, t = 1, . . . ,m− 1, ri1 , . . . , rip ∈ <;

5) approximate D≥≤-decision rules, providing simultaneously lower and upper profile descriptions for objects
belonging to Cls∪Cls+1∪. . .∪Cl t, without possibility of discerning to which class:
if fi1(x) ≥ ri1 and . . . and fik(x) ≥ rik and fik+1

(x) ≤ rik+1
and . . . and fip(x) ≤ rip , then x ∈

Cls ∪ Cls+1 ∪ . . . ∪ Clt,
{i1, . . . , ip} ⊆ I, s, t ∈ {1, . . . ,m}, s < t, ri1 , . . . , rip ∈ <.

In the premise of a D≥≤-decision rule, there can be “fi(x) ≥ ri” and “fi(x) ≤ r′i”, where ri ≤ r′i, for the same
i ∈ I. Moreover, if ri = r′i, the two conditions boil down to “fi(x) = ri”.

Since a decision rule is a kind of implication, a minimal rule is understood as an implication such that there
is no other implication with the premise of at least the same weakness (in other words, a rule using a subset of
elementary conditions and/or weaker elementary conditions) and the conclusion of at least the same strength
(in other words, a D≥- or a D≤-decision rule assigning objects to the same union or sub-union of classes, or a
D≥≤-decision rule assigning objects to the same or smaller set of classes).

The rules of type 1) and 3) represent certain knowledge extracted from data (examples of ordinal classifi-
cation), while the rules of type 2) and 4) represent possible knowledge; the rules of type 5) represent doubtful
knowledge, because they are supported by inconsistent objects only.

Given a certain or possible D≥-decision rule r ≡ “if fi1(x) ≥ ri1 and . . . and fip(x) ≥ rip , then x ∈ Cl
≥
t ”,

an object y ∈ U supports r if fi1(y) ≥ ri1 and . . . and fip(y) ≥ rip . Moreover, object y ∈ U supporting decision
rule r is a base of r if fi1(y) = ri1 and . . . and fip(y) = rip . Similar definitions hold for certain or possible
D≤-decision rules and approximate D≥≤-decision rules. A decision rule having at least one base is called robust.
Identification of supporting objects and bases of robust rules is important for interpretation of the rules in
multiple criteria decision analysis. The ratio of the number of objects supporting a rule and the number of all
considered objects is called relative support of a rule. The relative support and the confidence ratio are basic
characteristics of a rule, however, some Bayesian confirmation measures reflect much better the attractiveness
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of a rule [24]. In this sense one could consider a generalization of rough set approach in which approximations
are defined taking into account confidence and also one or more confirmation measures. This idea constitutes
the parameterized rough set approach proposed in [20].

A set of decision rules is complete if it covers all considered objects (examples of ordinal classification) in
such a way that consistent objects are re-assigned to their original classes, and inconsistent objects are assigned
to clusters of classes referring to this inconsistency. A set of decision rules is minimal if it is complete and
non-redundant i.e., exclusion of any rule from this set makes it incomplete.

Note that the syntax of decision rules induced from rough approximations defined using dominance cones, is
using consistently this type of granules. Each condition profile defines a dominance cone in n-dimensional condi-
tion space <n, and each decision profile defines a dominance cone in one-dimensional decision space {1, . . . ,m}.
In both cases, the cones are positive for D≥-rules and negative for D≤-rules.

Let us also remark that dominance cones corresponding to condition profiles can originate in any point of
<n, without the risk of their being too specific. Thus, contrary to traditional granular computing, the condition
space <n need not be discretized.

2.7 Variable Consistency Dominance-based Rough Set Approaches
In DRSA, lower approximation of a union of ordered decision classes contains only consistent objects. Such a
lower approximation is defined as a sum of dominance cones that are subsets of the approximated union. In
practical applications, however, such a strong requirement may result in relatively small (and even empty) lower
approximations. Therefore, several variants of DRSA have been proposed, relaxing the condition for inclusion
of an object to the lower approximation. Variable Consistency Dominance-based Rough Set Approaches (VC-
DRSA) include to lower approximations objects which are sufficiently consistent, according to different measures
of consistency. Given a user-defined threshold value on a consistency measure, extended lower approximation of
a union of classes is defined as a set of objects for which the consistency measure satisfies that constraint.

Several definitions of consistency measures have been considered in the literature so far. In the first papers
concerning VC-DRSA [13, 23], consistency of objects has been calculated using rough membership measure [29,
42]. Then, in order to ensure monotonicity of lower approximation with respect to the dominance relation, some
new consistency measures have been proposed and investigated in [2]. Recently, it has been observed that it is
reasonable to require that a consistency measure used in the definition of the lower approximation satisfies a set
of monotonicity properties [4]. Variable-consistency measures involving such monotonic consistency measures are
called Monotonic Variable Consistency Dominance-based Rough Set Approaches (Monotonic VC-DRSA) [3, 4].

Procedures for rule induction from dominance-based rough approximations obtained using VC-DRSA have
been proposed in [6, 22].

3 Example of Application of jMAF
This section presents a didactic example which illustrates application of jMAF to an ordinal classification problem
with monotonicity constraints. The surveys [15, 16, 17, 34, 35, 36, 37] include other examples of application of
DRSA.

3.1 Running jMAF
You may find jMAF executable file in the location where you have unpacked the zip file that can be downloaded
from http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html. Please launch this file. A moment later
you will see main jMAF window on your desktop. It should resemble the one presented in Figure 1.

Now you have jMAF running in workspace folder located in the folder where it was launched from. You can
check the content of workspace folder by examining the explorer window. The main jMAF window is divided
into 4 sub windows: topmost menubar and toolbar, middle explorer and results window and bottom console
window. There is also a status line at the bottom.
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Figure 1: jMAF main window

3.2 Decision Table
Let us consider the following ordinal classification problem. Students of a college must obtain an overall evalua-
tion on the basis of their achievements in Mathematics, Physics and Literature. These three subjects are clearly
criteria (condition attributes) and the comprehensive evaluation is a decision attribute. For simplicity, the value
sets of the attributes and of the decision attribute are the same, and they are composed of three values: bad,
medium and good. The preference order of these values is obvious. Thus, there are three preference ordered
decision classes, so the problem belongs to the category of ordinal classification. In order to build a preference
model of the jury, DRSA is used to analyze a set of exemplary evaluations of students provided by the jury.
These examples of ordinal classification constitute an input preference information presented as decision table
in Table 2.

Note that the dominance principle obviously applies to the examples of ordinal classification, since an im-
provement of a student’s score on one of three attributes, with other scores unchanged, should not worsen the
student’s overall evaluation, but rather improve it.

Observe that student S1 has not worse evaluations than student S2 on all the considered condition attributes,
however, the overall evaluation of S1 is worse than the overall evaluation of S2. This violates the dominance
principle, so the two examples of ordinal classification, and only those, are inconsistent. One can expect that the
quality of approximation of the ordinal classification represented by examples in Table 2 will be equal to 0.75.
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Table 2: Exemplary decision table with evaluations of students (examples of ordinal classification)

Student Mathematics Physics Literature Overall Evaluation
S1 good medium bad bad
S2 medium medium bad medium
S3 medium medium medium medium
S4 good good medium good
S5 good medium good good
S6 good good good good
S7 bad bad bad bad
S8 bad bad medium bad

3.3 Data File
As the first step you should create a file containing data from the data table. You have now two choices - you
may use spreadsheet-like editor or any plain text editor. For this example, we will focus on the second option.

Run any text editor that is available on your system installation. Enter the text shown below.

**ATTRIBUTES
+ Mathematics : [bad, medium, good]
+ Physics : [bad, medium, good]
+ Literature : [bad, medium, good]
+ Overall : [bad, medium, good]
decision: Overall

**PREFERENCES
Mathematics : gain
Physics : gain
Literature : gain
Overall : gain

**EXAMPLES
good medium bad bad
medium medium bad medium
medium medium medium medium
good good medium good
good medium good good
good good good good
bad bad bad bad
bad bad medium bad

**END

Now, save the file as students.isf (for example in the jMAF folder). At this moment you are able to open
this file in jMAF.

3.4 Opening Data File
Use File | Open to open students.isf file. You will see a typical file open dialog. Please select your newly
created file. Alternatively, you can double click file in the explorer window if you have saved it in the workspace
folder. If the file is not visible in explorer window, try right clicking on the explorer window and select from the
context menu Refresh or Switch workspace to choose different workspace folder.
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Figure 2: File students.isf opened in jMAF

3.5 Calculation of Dominance Cones
One of the first steps of data analysis using rough set theory is calculation of dominance cones (P -dominating
sets and P -dominated sets). To perform this step, you can select an example from the isf file in results window
and use Calculate | P-Dominance Sets | Calculate dominating set or Calculate | P-Dominance Sets
| Calculate dominated set. You can also use these options from the toolbar menu. The resulting dominance
cones for student S1 are visible in Figures 3 and 4.
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Figure 3: P -dominating cone of Example 1

Figure 4: P -dominated cone of Example 1
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3.6 Calculation of Approximations
The next step in rough set analysis is calculation of approximations. Use Calculate | Unions of classes |
Standard unions of classes to calculate DRSA unions and their approximations. Now, you should see an
input dialog for calculation of approximations. It should look like the one presented in Figure 5.

Figure 5: Input dialog for calculation of approximations

Leave default value of the consistency level parameter if you are looking for standard DRSA analysis. You
can also set consistency level lower than one, to perform VC-DRSA analysis. The result would be that more of
the objects from the upper approximations of unions with accuracy of approximation lower than one would be
included in lower approximation. You should see the result as presented in Figure 6.

Figure 6: Approximations of unions of classes

You can navigate in Standard Unions window to see more details concerning calculated approximations (they
are presented in Figure 7).
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Figure 7: Details of approximations of unions of classes

As you can see, quality of approximation equals 0.75, and accuracy of approximation in unions of classes
ranges from 0.5 to 1.0. Lower approximation of union "at most" bad includes S7 and S8. Please select Track
in Editor option to track your selection from Standard Unions window in the results window.

3.7 Calculation of Reducts
The list of all reducts can be obtained by selecting Calculate | Reducts | All reducts. As a result of this
operation one can see all of reducts together with their carnality, i.e. number of criteria in a reduct. Additionally,
the core of the calculated reducts is also shown (see Figure 8).
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Figure 8: List of calculated reducts and core

3.8 Induction of Decision Rules
Given the calculated in section 3.6 rough approximations, one can induce a set of decision rules representing
the preferences of the jury. We will use one of the available methods - minimal covering rules (VC-DOMLEM
algorithm).The idea is that evaluation profiles of students belonging to the lower approximations can serve as a
base for some certain rules, while evaluation profiles of students belonging to the boundaries can serve as a base
for some approximate rules. In the example we will consider, however, only certain rules.

To induce rules use Calculate | VC-DOMLEM algorithm. You will see a dialog with parameters of
rule induction that is presented in Figure 9. Leave default values of these parameters to perform standard rule
induction for DRSA analysis.

To select where the result file with rules will be stored please edit output file in the following dialog (presented
in Figure 10).

The resulting rules are presented in results window (see Figure 11).
Statistics of a rule selected in results window can be show by selecting Open Statistics View associated

with selected rule from toolbar or from the context menu (right click on a rule). Statistics of the first rule
are presented in Figure 12.

One can also see coverage of a rule (see Figure 13).
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Figure 9: Dialog with parameters of rule induction

Figure 10: Dialog with parameters of rule induction
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Figure 11: Decision rules

Figure 12: Statistics of the first decision rule
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Figure 13: Coverage of the first decision rule
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3.9 Classification
Usually data analyst wants to know what is the value of induced rules, i.e., how good they can classify objects.
Thus, we proceed with an example of reclassification of learning data table for which rules were induced. To
perform reclassification use Classify | Reclassify learning examples. You will see a dialog with classification
options. Select VCDRSA classification method as it is presented in Figure 14. Should you want to know more
about VC-DRSA method, please see [1].

Figure 14: Dialog with classification method

The results of classification are presented in a summary window as it is shown in Figure 15. Use Details
button to see how particular objects were classified. The resulting window is presented in Figure 16. In this
window, it is possible to see rules covering each of the classified examples and their classification.

Figure 15: Results of classification
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Figure 16: Details of classification

Column “Certainty” in Fig. 16 refers to classification certainty score calculated in a way presented in [1].

4 Exemplary Applications of Dominance-based Rough Set Approach
There are many possibilities of applying DRSA to real life problems. The non-exhaustive list of potential
applications includes:

• decision support in medicine: in this area there are already many interesting applications (see, e.g., [30,
25, 26, 41]), however, they exploit the classical rough set approach; applications requiring DRSA, which
handle ordered value sets of medical signs, as well as monotonic relationships between the values of signs
and the degree of a disease, are in progress;

• customer satisfaction survey: theoretical foundations for application of DRSA in this field are available
in [18], however, a fully documented application is still missing;

• bankruptcy risk evaluation: this is a field of many potential applications, as can be seen from promising
results reported e.g. in [38, 39, 10], however, a wider comparative study involving real data sets is needed;

• operational research problems, such as location, routing, scheduling or inventory management: these are
problems formulated either in terms of classification of feasible solutions (see, e.g., [9]), or in terms of
interactive multiobjective optimization, for which there is a suitable IMO-DRSA [21] procedure;

• finance: this is a domain where DRSA for decision under uncertainty has to be combined with interactive
multiobjective optimization using IMO-DRSA; some promising results in this direction have been presented
in [19];

• ecology: assessment of the impact of human activity on the ecosystem is a challenging problem for which
the presented methodology is suitable; the up to date applications are based on the classical rough set
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concept (see, e.g., [32, 8]), however, it seems that DRSA handling ordinal data has a greater potential in
this field.

5 Glossary
Multiple attribute (or multiple criteria) decision support aims at giving the decision maker (DM) a recommen-
dation concerning a set of objects U (also called alternatives, actions, acts, solutions, options, candidates,...)
evaluated from multiple points of view called attributes (also called features, variables, criteria,...).

Main categories of multiple attribute (or multiple criteria) decision problems are:

• classification, when the decision aims at assigning objects to predefined classes,

• choice, when the decision aims at selecting the best object,

• ranking, when the decision aims at ordering objects from the best to the worst.

Two kinds of classification problems are distinguished:

• taxonomy, when the value sets of attributes and the predefined classes are not preference ordered,

• ordinal classification with monotonicity constraints (also called multiple criteria sorting), when the value
sets of attributes and the predefined classes are preference ordered, and there exist monotonic relationships
between condition and decision attributes.

Two kinds of choice problems are distinguished:

• discrete choice, when the set of objects is finite and reasonably small to be listed,

• multiple objective optimization, when the set of objects is infinite and defined by constraints of a mathe-
matical program.

If value sets of attributes are preference-ordered, they are called criteria or objectives, otherwise they keep
the name of attributes.

Criterion is a real-valued function fi defined on U , reflecting a worth of objects from a particular point of
view, such that in order to compare any two objects a, b ∈ U from this point of view it is sufficient to compare
two values: fi(a) and fi(b).

Dominance: object a is non-dominated in set U (Pareto-optimal) if and only if there is no other object b in
U such that b is not worse than a on all considered criteria, and strictly better on at least one criterion.

Preference model is a representation of a value system of the decision maker on the set of objects with vector
evaluations.

Rough set in universe U is an approximation of a set based on available information about objects of U .
The rough approximation is composed of two ordinary sets, called lower and upper approximation. Lower
approximation is a maximal subset of objects which, according to the available information, certainly belong to
the approximated set, and upper approximation is a minimal subset of objects which, according to the available
information, possibly belong to the approximated set. The difference between upper and lower approximation
is called boundary.

Decision rule is a logical statement of the type “if..., then...”, where the premise (condition part) specifies
values assumed by one or more condition attributes and the conclusion (decision part) specifies an overall
judgment.
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