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Introduction

n S=〈U, A〉 – data table,  where U and A are finite, non-empty sets 

U – universe;    A – set of attributes

n S=〈U, C, D〉 – decision table,  where C – set of condition attributes,

D – set of decision attributes, C∩D=∅

n Decision rule or association rule induced from S

is a consequence relation:  Φ→Ψ read as  if Φ, then Ψ

where Φ and Ψ are condition and decision formulas expressed as attribute-

value pairs 
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Introduction

n is the set of all objects from U, having property Φ

n is the set of all objects from U, having property Ψ

n Support of decision rule Φ→Ψ :

n Certainty factor for decision rule Φ→Ψ (Łukasiewicz, 1913): (called also 

confidence)
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Semantics of attractiveness measures

n In all practical applications, like medical practice, market basket, customer 

satisfaction or risk analysis, it is crucial to know how good 

the rules are for:

n knowledge representation 

n prediction

n efficient intervention 

n “How good” is a question about attractiveness measures of rules 

n Review of literature shows that there is no single measure which would be the 

best for applications in all possible perspectives 

(e.g. Bayardo and Agrawal 1999, Greco, Pawlak & Slowinski 2004, Yao & Zhong

1999, Hilderman and Hamilton 2001) 

n Claim 1: the adequacy of interestingness measures is dependent 

on their semantics
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Knowledge representation semantics

n Among commonly used attractiveness metrics are:

n support

n certainty (a.k.a. confidence)

n conviction

n lift

n laplace

n piatetsky-shapiro

n gini

n chi-squared

n gray-orlowska

n kamber-shinghal

n Several algorithms are known to efficiently find the best rules according to one 

of these metrics (e.g. Webb’95, Fukada et al.’96, Rastoni and Shim ’98).
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List of all mentioned attractiveness metrics
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List of all mentioned attractiveness metrics
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List of all mentioned attractiveness metrics
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List of all mentioned attractiveness metrics
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The second component measures „how necessary is Φ for Ψ”.
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Conviction metric*
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nThe metric takes into account occurrence of objects with ~Ψ in the 
decision table.

nDivision by zero occurs when there are no (Φ and ~Ψ) objects.

It is a strong disadvantage of the metric! 

*Bayardo, R.J.;Agrawal, R.;and Gunopulos, D. 1999. Constraint-Based Rule Mining in 
Large, Dense Databases. In Proc. of the 15th Int’l Conf. on Data Engineering, 188-197.
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Piatetsky-Shapiro’s metric*
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nThis rule interest function is used to quantify the correlation between 
condition and decision attributes.

nWhen ps=0, then Φ and Ψ are statistically independent and the rule is not 
interesting.

nWhen ps>0 (ps<0), then Φ is positively (negatively) correlated to Ψ .

nThe metric does not take into account occurrence of objects with ~Φ nor ~Ψ
in the decision table.

nIt can be transformed to be identical to gain metric**.

*Piatetsky-Shapiro, G. 1991. Discovery , Analysis, and Presentation of Strong Rules. 
Chapter 13 of Knowledge Discovery in Databases, AAAI/MIT press, 1991.

**Fukada,T. et al.1996. Data Mining using Two-Dimensional Optimized Association Rules: 
Scheme, Algorithms, and Visualization. In Proc. of the 1996 ACM-SIGMOD Int’l Conf. on the 
Management of Data, 13-23.
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Lift metric*

nThe metric is not straightforwardly influenced by number of objects with ~Ψ
or ~Φ in the decision table.

nMeasures the „independency” of Φ and Ψ.

nLooks very similar to Horwitch’82 confirmation measure r.

*International Business Machines, 1996. IBM Intelligent Miner User’s Guide, Ver 1, Rel1.
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Bayardo-Agrawal concept

n Bayardo and Agrawal ’99 introduced a concept involving a partial order on rules 

defined in terms of support and certainty.

n They demonstrated that the set of rules that are optimal according to this 

partial order includes all rules that are best according to any of these metrics.
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Optimized rule mining – problem statement

n The input to the problem of mining optimized rules: <K, U, ≤, L, N>

n K is a finite set of conditions;

n U  is a data set;

n ≤ is a total order on rules;

n L is a condition specifying the rule consequent;

n N is a set of constraints on rules (e.g. minimum support, certainty).

n Optimized rule mining problem statement:

Find  a rule r1 such that:

1. r1 satisfies the input constraints, and

2. there exists no r2 such that r2 satisfies the input constraints and r1 < r2.
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Mining optimized rules under partial order

n With partial order, because some rules may be incomparable, there can be 

several equivalence classes containing optimal rules.

n The previous problem statement requires an algorithm to identify only a single 

rule from one of these equivalence classes. 

n To mine at least one representative from each equivalence classes that 

contains an optimal rule, we need to rephrase the mining problem.  

n Partial-order optimized rule mining problem statement:

Find  a set R of rules such that:

1. every rule ri in R is optimal as defined by the optimized rule mining 

problem

2. for every equivalence class of rules if the equivalence class contains an 

optimal rule, then exactly one member of this equivalence class is in R.
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Support-certainty optimality

n Consider the following partial order ≤sc on rules. Given rules r1 and r2,                   

r1 ≤sc r2 if and only if:

- sup(r1) ≤ sup(r2) ∧ cert(r1) < cert(r2), or

- sup(r1) < sup(r2) ∧ cert(r1) ≤ cert(r2).

Additionally, r1 =sc r2 iff  sup(r1) = sup(r2) and cert(r1) = cert(r2).

An optimal set of rules (optimized rule mining problem solutions) according to 

this partial order ≤sc is regarded as sc-upper border. Intuitively, such a set of 

rules defines a support-certainty border above which no rule that satisfies the 

input constraints can fall.
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Support-~ certainty optimality

n Consider the following partial order ≤s~c on rules. Given rules r1 and r2,                   

r1 ≤s~c r2 if and only if:

- sup(r1) ≤ sup(r2) ∧ cert(r1) > cert(r2), or

- sup(r1) < sup(r2) ∧ cert(r1) ≥ cert(r2).

Additionally, r1 =s~c r2 iff  sup(r1) = sup(r2) and cert(r1) = cert(r2).

An optimal set of rules according to this partial order ≤s~c forms a lower border.
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Support vs certainty pareto-optimal borders

n Pareto optimal borders:

n support vs certainty => upper border

n support vs ~certainty => lower border

upper border

lower border

certainty

support

no rules fall outside these bordersnon-optimal rules 
fall in this area

- sc-optimal rules
- s(1-c)-optimal rules
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Border mining

n Mining the upper support/certainty border identifies optimal rules according to 

such interestingness metrics:

n support

n certainty (a.k.a. confidence)

n lift

n conviction

n laplace

n piatetsky-shapiro’s rule-interest function (p-s)

n If we also mine the lower border, such metrics will also be included:

n gini

n chi-squared
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Theoretical implications – lemma 1

Definition 1:

We say that an intended to rank rules in order of interestingness

total order ≤t is implied by partial order ≤sc iff

r1 <sc r2 ⇒ r1 ≤t r2,  and  r1 =sc r2 ⇒ r1 =t r2. 

Lemma 1:

Given the problem instance I = <K, U, ≤t, L, N> 

such that ≤t is implied by ≤sc, 

an I-optimal rule is contained within any Isc-optimal set

where Isc = <K, U, ≤sc, L, N>.
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Theoretical implications – proof 1

Proof 1:

Consider any rule r1 that is not Isc-optimal. Because r1 is non-optimal, 

there must exist some rule r2 that is optimal such that r1 <sc r2. But then 

we also have that r1 ≤t r2 since ≤t is implied by ≤sc. 

This implies that any non-Isc-optimal rule is either non-I-optimal, or it 

is equivalent to some I-optimal rule which resides in an Isc-optimal 

equivalence class. 

At least one Isc-optimal equivalence class must therefore contain an        

I-optimal rule. Further, because =t is implied by =sc, every rule in this 

equivalence class must be I-optimal. By definition, an Isc-optimal set will 

contain one of these rules, and the claim follows. •
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Theoretical implications – lemma 2

To identify the interestingness metrics that are implied by ≤sc we use:

Lemma 2: 

The following conditions are sufficient for establishing that a total order 

≤t defined over a rule value function f(r) is implied by partial order ≤sc:

1. f(r) is monotone in support over rules with the same certainty, and

2. f(r) is monotone in certainty over rules with the same support.

Proof 2:

Suppose r1 <sc r2, then consider a rule r where sup(r1)=sup(r) and 

cert(r2)=cert(r). By definition r1 ≤sc r and r ≤sc r2. 

If the total order has the monotonicity properties 1,2, 

then r1 ≤t r and r ≤t r2. Since total orders are transitive, we then have that 

r1 ≤t r2, which establishes the claim. •
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Example - Laplace function

Consider a Laplace function, which is commonly used to rank rules for 

classification purposes: 

Definition 2:

where k is a constant integer >1, usually set to the number of classes when 

building a classification model.

Because:

we have:
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Example - Laplace function

k
cert
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n This expression is monotone in rule support sine k>1 and cert≥0.

n It is also monotone in certainty among rules with equivalent support:

n note that if support is held constant, in order to raise the function 

value, we need to decrease the value of the denonimator,

n the decrease of the denominator can only be achieved by increasing 

certainty.
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Other attractiveness metrics included in the upper border

n Bayardo and Agrawal ’99  have also showed that the total orders listed 

below are also implied by partial order ≤sc:

n support

n certainty

n conviction

n lift

n laplace

n piatetsky-shapiro

n Thus, mining the upper support/certainty border identifies optimal rules 

according to these metrics.

upper border

lower border

certainty

support

- sc-optimal rules
- s(1-c)-optimal rules
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Mining the lower border

n The following metrics are not implied by ≤sc.

n gini

n chi-squared

n However, Bayardo and Agrawal have shown that the optimal rules with 
respect to these metrics must reside on either the upper or lower
support/certainty border.

upper border

lower border

certainty

support

- sc-optimal rules
- s(1-c)-optimal rules
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Computational experiment

n Decision rules were generated from lower approximations

of preference-ordered decision classes defined according to 

Variable-consistency Dominance-based Rough Set Approach (VC-DRSA)
(Greco, Matarazzo, Slowinski, Stefanowski 2001)

Rule induction algorithms:  „all” = all rules algorithm (DOMAPRIORI)

„mc” = minimal-cover algorithm (DOMLEM)

no limitno limit≥ 0.96186 (mc)318+9500Urology

no limitno limit≥ 0.7564 (mc)20+33342Nativity

≥ 0.9≤ 3≥ 0.75266 (all)30+876Buses

coveragelengthconsistencyrules (alg)classesatr+critobjectsFile
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Computational experiment - Buses

n Buses
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Computational experiment - Urology

n Urology
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Computational experiment - Nativity

n Nativity
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Computational experiment – Buses ”at least 2”

n Buses – for union of classes 1 and 2

bus e s  - at le as t 2
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Computational experiment – Buses ”at most 2”

n Buses – for union of classes 2 and 3
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Conclusions – knowledge representation

n A survey on attractiveness measures in knowledge representation aspect has 
been done.

n By Bayardo and Agrawal a new optimized rule mining problem has been 
defined. It allows a partial order in place of the typical total order on rules.

n Solving this optimized rule mining problem with respect to a particular partial 
order ≤sc is guaranteed to identify a most-interesting rule according to several 
attractiveness metrics including: (support, certainty, laplace, conviction, 
piatetsky-shapiro, lift, gini, chi-squared).

n The computational experiment has expressed that indeed Pareto optimal 
support/certainty border contains rules optimal with respect to any of those 
metrics.

n Moreover, the computational experiment placed in upper support/certainty 
border also rules optimal according to kamber-shinghal and gray-orlowska
metrics. However, an analytical proof is required. 
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Further research

n Computational experiments have placed rules optimal according to gray-

orlowska metric and kamber-shinghal metric in the upper support/certainty 

border. Can it be analitically verified whether these total orders are implied by 

partial order ≤sc?

n Is it possible to imply discussed total orders (like: support, certainty, laplace, 

etc.) by partial order other than support/certainty? 

n Are some metrics (eg. lift) confirmation metrics? Analitical proof of posessing

hypothesis symmetry and monotonicity properties.

n From decision to association rules...  
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