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Introduction – rule induction

Patterns in form of rules are induced from a data table

S=〈U, A〉 – data table,  where U and A are finite, non-empty sets 
U – universe;    A – set of attributes

S=〈U, C, D〉 – decision table,  where C – set of condition attributes,
D – set of decision attributes, C∩D=∅

Decision rule or association rule induced from S

is a consequence relation:  φ→ψ read as  if φ then ψ
where φ and ψ are condition and conclusion formulas 
built from attribute-value pairs (q,v)

If the division into independent and dependent attributes is fixed, then rules 
are regarded as decision rules, otherwise as association rules.
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Introduction – rule induction

E.g. decision rules induced from „characterization of nationalities”:

1) If (Height=tall), then (Nationality=Swede)

2) If (Height=medium) & (Hair=dark), then (Nationality=German)

C D
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Introduction – attractiveness measures

To measure the relevance and utility of rules, quantitative measures

called attractiveness or interestingness measures, have been proposed

(e.g. support, confidence, lift, gain, conviction, Piatetsky-Shapiro,…)

Unfortunately, there is no evidence which measure(s) is (are) the best

Notation:

is the number of all objects from U, having property °

e.g.              ,

)(osup
)(φsup )(ψsup
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Basic quantitative characteristics of rules

Basic quantitative characteristics of rules

Support of rule φ→ψ in S:

Confidence (called also certainty factor) of rule φ→ψ in S:

Anti-support of rule φ→ψ in S:

anti-sup

)ψ()ψ( ∧φ=→φ supsup

( ) ( )
( )φ

ψ→φ
=ψ→φ

sup
supconf

)ψ()ψ( ¬∧φ=→φ sup
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Confirmation measure f and s

Confirmation measure f (Good 1984, Heckerman 1988, Pearl 1988, Fitelson 2001)

Confirmation measure s (Christensen 1999)

Gain measure (Fukuda et al. 1996)

Rule Interest Function (Piatetsky-Shapiro 1991)

Dependency Factor (Pawlak 2002)

Conviction (Brin et al. 1997)

...

( ) ( ) ( )
( ) ( )φ→ψ¬+φ→ψ

φ→ψ¬−φ→ψ
=ψ→φ

confconf
confconff

( ) ( ) ( )ψ→φ¬−ψ→φ=ψ→φ confconfs
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Bayesian confirmation property

An attractiveness c measure has the property of confirmation if is 

satisfies the following condition:

Measures of confirmation quantify the strength of confirmation that 

premise φ gives to conclusion ψ

„ψ is verified more often, when φ is verified, rather than when φ
is not verified”

( )
( ) ( )
( ) ( )
( ) ( )

 

PrPr if  

PrPr if  

PrPr if  

 c
⎪
⎩

⎪
⎨

⎧

ψ<φψ<

ψ=φψ=

ψ>φψ>

ψφ

0

0

0

,
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Bayesian confirmation property - interpretation

c(φ, ψ)>0 means that property ψ is satisfied more frequently

when φ is satisfied (then, this frequency is conf(φ, ψ)),                  

rather than generically in S (where the frequency is Pr(ψ)),

c(φ, ψ)=0 means that property ψ is satisfied with the same frequency

whether φ is satisfied or not

c(φ, ψ)<0 means that property ψ is satisfied less frequently

when φ is satisfied, rather than generically
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Property M

Property M (Greco, Pawlak, Słowiński 2004)

An attractiveness measure I(a, b, c, d)  has the property M

if it is a function non-decreasing with respect to a and d

and non-increasing with respect to b and c

where:

a=sup(φ→ψ)
the number of objects in U for which φ and ψ hold together 

b=sup(¬φ→ψ), 
c=sup (φ→¬ψ), 

d=sup(¬φ→¬ψ)
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Interpretation of the property M

E.g. (Hempel) consider rule φ→ψ : 

if x is a raven then x is black

φ is the property to be a raven, ψ is the property to be black

a – the number of objects in U which are black ravens
//the more black ravens we observe, the more credible becomes the rule

b – the no. of objects in U which are black non-ravens

c – the no. of objects in U which are non-black ravens

d – the no. of objects in U which are non-black non-ravens



Greco S., Słowiński R., Szczęch I.: Analysis of monotonicity properties of some rule 
interestingness measures (manuscript, 2007)
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Attractiveness measures with the property M

Open question: 

which attractiveness measures possess the property M?

Theorem [2004]:

Confirmation measures f, s have the property M

Theorem:

Rule support, Confidence, Rule Interest Function, Gain measure 

have the property M

Theorem:

Dependency factor does not have the property M



Support-confidence Pareto border
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Support-confidence Pareto border

Support-confidence Pareto border is the set of non-dominated, 

Pareto-optimal rules with respect to both rule support and confidence

Mining the border identifies rules optimal with respect to measures 

such as: lift, gain, conviction, Piatetsky-Shapiro,…

Pareto border

no rules fall above this borderdominated rules 
fall in this area

- Pareto-optimal rules 
(non-dominated)

sup (φ→ψ)

conf (φ→ψ)
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Support-confidence Pareto border

The following conditions are sufficient for verifying whether rules 

optimal according to a measure g(x) are included 

on the support-confidence Pareto border:

1. g(x) is monotone in support over rules with the same confidence

and

2. g(x) is monotone in confidence over rules with the same support

A function g(x) is understood to be monotone in x, 

if  x1 p x2 implies that  g(x1) ≤ g(x2)



Support-f Pareto border
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Monotonicty of f in support and confidence

Is measure  f included in the support-confidence Pareto border?

Theorem:

Confirmation measure f is independent of support, and, therefore, 

monotone in support, when the value of confidence is held fixed.

Theorem:

Confirmation measure f is increasing, and, therefore, monotone in 

confidence

Conclusion:

Rules maximizing f lie on the support-confidence Pareto border



Brzezińska I., Słowiński R.: Monotonicity of a Bayesian confirmation measure in rule 
support and confidence. (AI-METH Gliwice, 2005) 
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Support-confidence vs. support-f Pareto border

The utility of confirmation measure f outranks utility of confidence

Claim: Substitute the conf(φ→ψ) dimension for f(φ→ψ)

Theorem:

The set of rules located on the support-confidence Pareto border is 

exactly the same as on the support-f Pareto border
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Dominated rules fall 
into this area

No rules fall 
outside this border

Support-f Pareto border is more meaningful

0

Area of rules to be discarded

1

-1 sup (φ→ψ)

f (φ→ψ)



Słowiński R., Szczęch I., Greco S.: Mining Association Ruleswith respect to Support and 
Anti–support - experimental results.  (RSEISP LNAI Warszawa, to appear) 
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Is there a curve separating rules with negative value of any measure 

with the confirmation property in the support-confidence space?

Theorem:

Rules lying above a constant:

have a negative value of any confirmation measure. 

For those rules, the premise only disconfirms the conclusion!

sup(ψ)/|U|

Confirmation perspective on support-confidence space
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Dominated rules fall 
into this area

No rules fall 
outside this border

0

Area of rules to be discarded

1

sup (φ→ψ)

conf (φ→ψ)

0.5

For rules lying below the curve for which c=0 

the premise only disconfirms the conclusion

c=0, for sup(ψ)/|U|=50%

Confirmation perspective on support-confidence space
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Support-confidence Pareto border vs. support-f

• indicates rules with negative confirmation

• the class constitutes over 70% of the whole dataset

• rules with high confidence can be disconfirming

• even some rules from the Pareto border need to be discarded 
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Support-confidence Pareto border vs. support-f

• both Pareto borders contain the same rules



Support-s Pareto border
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Monotonicty of s in support and confidence

Is measure s on rule support-confidence Pareto border?

Theorem:

Confirmation measure s is increasing, and, therefore, 
monotone in confidence when the value of support is held fixed

Theorem:
For a fixed value of confidence, confirmation measure s is:

• increasing in sup(φ→ψ) ⇔ s(φ→ψ)>0

• constant  in sup(φ→ψ) ⇔ s(φ→ψ)=0

• decreasing in sup(φ→ψ) ⇔ s(φ→ψ)<0

The above theorem states the monotone relationship just in the non-
negative range of the value of s (i.e. the only interesting)
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Support-confidence vs. support-s Pareto border

Theorem:

If a rule resides on the support-s Pareto border 

(in case of positive value of s), 
then it also resides on the support-confidence Pareto border, 

while one can have rules being on the support-confidence Pareto 

border which are not on the support-s Pareto border.

Conclusion:

The support-confidence Pareto border is, in general, larger than 

the support-s Pareto border
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Measures with the property M in support-confidence space

What are the conditions for rules maximizing

any measure with the property M 

to be included in the rule support-confidence Pareto border?

Reminder of the property M:

a=sup(φ→ψ), b=sup(¬φ→ψ), c=sup (φ→¬ψ), d=sup(¬φ→¬ψ)

I(a,b,c,d) is a function non-decreasing with respect to a and d, 

and non-increasing with respect to b and c



Słowiński R., Brzezińska I., Greco S.: Application of Bayesian confirmation measures for 
mining rules from support-confidence Pareto-optimal set. (ICAISC LNAI Zakopane, 2006) 
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Theorem:

When the value of support is held fixed, then I(a, b, c, d) is monotone 

in confidence. 

Theorem:

When the value of confidence is held fixed, then I(a, b, c, d) admitting 

derivative with respect to all its variables a, b, c and d, is monotone 

in support if:

( )  
conf

c
I

d
I

b
I

a
I

    or    
d
I

c
I 110 −

ψ→φ
≥

∂
∂

−
∂
∂

∂
∂

−
∂
∂

=
∂
∂

=
∂
∂

Measures with the property M in support-confidence space
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Conclusions:

For a set of rules with the same conclusion, any interestingness 

measure with property M is always non-decreasing with respect to 

confidence when the value of support is kept fixed

All those interestingness measures that are independent of 

c=sup(φ→¬ψ) and d=sup(¬φ→¬ψ) are always monotone in support 

when the value of confidence remains unchanged

There are some measure with property M whose optimal rules will 

not be on the support-confidence Pareto border.

Measures with the property M in support-confidence space



Support-anti-support Pareto border
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Support - anti-support Pareto border

How to find rules optimal according to any measure 

with the property M?

Theorem:

When the value of support is held fixed, then I(a, b, c, d) 

is anti-monotone (non-increasing) in anti-support

Theorem:

When the value of anti-support is held fixed, then I(a, b, c, d) is 

monotone (non-decreasing) in support



Brzezińska I., Greco S., Słowiński R.: Mining Pareto-Optimal Rules with Respect to 
Support and Confirmation or Support and Anti-Support (EAAI Journal, 2007) 
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Support - anti-support Pareto border

Theorem:

For rules with the same conclusion,

the best rules according to any measure with the property M

must reside on the support-anti-support Pareto border 

The support-anti-support Pareto border is the set of rules such that 

there is no other rule having greater support and smaller anti-support

Theorem:

The support - anti-support Pareto border is, in general, not smaller 

than the support-confidence Pareto border
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Dominated rules fall 

into this area

No rules fall 
outside this border

Support - anti-support Pareto border

0

anti-support=

The best rules according to any measure with the property M
must reside on the support - anti-support Pareto border

sup (φ→ψ)

sup (φ→ ¬ ψ)



Confirmation perspective on 

the support - anti-support Pareto border



Słowiński R., Szczęch I., Greco S.: Mining Association Ruleswith respect to Support and 
Anti–support - experimental results.  (RSEISP LNAI Warszawa, to appear) 
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Is there a curve separating rules with negative value of 

any confirmation measure in the support-anti-support space?

Theorem:

Rules lying above a linear function:

have a negative value of any confirmation measure. 

For those rules, the premise only disconfirms the conclusion!

sup(φ→ ψ)[|U|/sup(ψ)-1]

Confirmation perspective on support - anti-support border
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Dominated rules fall 

into this area

No rules fall 
outside this border

0

anti-support= c=0, for sup(ψ)/|U|=50%

For rules lying above the curve for which c=0 

the premise only disconfirms the conclusion

c=0, for sup(ψ)/|U|=66%

c=0, for sup(ψ)/|U|=33%

sup (φ→ψ)

sup (φ→ ¬ ψ)

Confirmation perspective on support - anti-support border
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Support - anti-support (workclass=Private)

• indicates rules with negative confirmation

•even some rules from the Pareto border need to be discarded 



Inner monotonicity 

in support - anti-support space
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The gist of the algorithm for support - anti-support rules

Traditional Apriori approach to generation of association rules 

(Agrawal et al) proceeds in a two step framework:

find frequent itemsets (i.e. sets of items which occur more 

frequently than the minimum support threshold),

generate rules from frequent itemsets and filter out those that do 

not exceed the minimum confidence threshold

Generation of association rules regarding support and anti-support, in 

general, requires only the substitution of the parameter calculated in 

step 2. Confidence -> anti-support
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The gist of the algorithm for support - anti-support rules

Claim: calculation of anti-support (instead of confidence) does not 

introduce any more computational overhead to the algorithm

Let us observe that: anti-sup(φ→ψ) = sup(φ→ ¬ ψ) = sup(φ)–sup(φ→ψ).

All the data required to calculate anti-support are also gathered in 

step 1 of Apriori

The data needed to calculate anti-support is the same as to calculate 

confidence



42

The gist of the algorithm for support - anti-support rules

Claim: When generating association rules from a frequent set it is 

advisable to first generate rules with few conclusion elements (for 

optimisation reasons) 

Let us observe three different rules constructed from the same 

frequent itemset {x, y, z, v}:

r1: x→yzv anti-sup(r1) = sup(x) – sup(xyzv)

r2: xy→zv anti-sup(r2) = sup(xy) – sup(xyzv)

r3: xyz→v anti-sup(r3) = sup(xyz) – sup(xyzv)

anti-sup(r1) ≥ anti-sup(r2) ≥ anti-sup(r3)

Conclusion: anti-sup(r3) > max_acceptable anti-support =>

anti-sup(r2) > max_acceptable anti-support

Generate and verify r3 first! 



Summary
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Summary

Attractiveness measures with desirable property M were considered

we have verified property M for measures: gain, rule interest 

function, dependency factor

Relationships between measures were analysed 

We have analytically shown:

relationships between measures f, s, any measure with property M, 

and support-confidence Pareto border 

enclosure relationship between considered Pareto-optimal borders

a way to impose the confirmation perspective on 

the support-confidence space
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Summary

Moreover, we have proved that:

Pareto border w.r.t. support and anti-support includes rules 

maximizing any measures with the property M

support - anti-support Pareto border includes support-confidence 

border

a linear function narrows the area of rules only to rules for which 

the premise confirms the conclusion

there is a monotonic relationship between support and anti-support

Verification of those relationships results in potential efficiency 

improvement as it allows to limit the space of the analysed rules 

and concentrate on mining one Pareto set while having rules 

optimal wrt many different measures.  
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Further lines of investigation

Verification of the property M for other attractiveness measures

Development of algorithm for finding in support - anti-support space 

a set of rules (both dominated and non-dominated) that covers the 

objects in a certain percentage
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Thank you!
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General info about the dataset

Dataset adult, created in ’96 by B. Becker/R. Kohavi from census database

32 561 instances

9 nominal attributes

workclass: Private, Local-gov, etc.;

education: Bachelors, Some-college, etc.;

marital-status: Married, Divorced, Never-married, et.; 

occupation: Tech-support, Craft-repair, etc.;

relationship: Wife, Own-child, Husband, etc.; 

race: White, Asian-Pac-Islander, etc.; 

sex: Female, Male;

native-country: United-States, Cambodia, England, etc.;

salary: >50K, <=50K 

throughout the experiment, sup(φ→ψ) is denoted as „support” and 
expressed as a relative rule support [0-1]
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Dominated rules fall 

into this area

No rules fall 
outside this border

0

anti-support= c=0, for sup(ψ)/|U|=50%

For rules lying above the curve for which c=0 

the premise only disconfirms the conclusion

c=0, for sup(ψ)/|U|=66%

c=0, for sup(ψ)/|U|=33%

sup (φ→ψ)

sup (φ→ ¬ ψ)

Confirmation perspective on support - anti-support border
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Few rules describing class: workclass=Private

• the table contains few examples of rules with the conclusion 
workclass=Private
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0
100%

100%

50%

50%

min acceptable support

max acceptable 
anti-support Pareto border

Dominated 
but interesting rules

anti-support=
F=0, for sup(ψ)/|U|=50%sup (φ→ ¬ ψ)

sup (φ→ψ)

Confirmation perspective on support-anti-support border


