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Abstract. Evaluating the interestingness of rules or trees is a challeng-
ing problem of knowledge discovery and data mining. In recent studies,
the use of two interestingness measures at the same time was prevailing.
Mining of Pareto-optimal borders according to support and confidence,
or support and anti-support are examples of that approach. Here,
we consider induction of “if..., then...” association rules with a fixed
conclusion. We investigate ways to limit the set of rules non—-dominated
wrt support and confidence or support and anti-support, to a subset of
truly interesting rules. Analytically, and through experiments, we show
that both of the considered sets can be easily reduced by using the
valuable semantics of confirmation measures.
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1 Introduction

In data mining and knowledge discovery, the discovered knowledge pat-
terns are often expressed in a form of “if..., then...” rules. They are conse-
quence relations representing correlation, association, causation etc. be-
tween independent and dependent attributes. In order to increase the
relevance and utility of selected rules and, thus, also limit the size of the
resulting rule set, quantitative measures, also known as interestingness
measures, have been proposed and studied (e.g. confidence, support, gain,
conviction, lift). Among widely studied interestingness measures, there is,
moreover, a group of Bayesian confirmation measures, which quantify the
degree to which a piece of evidence built of the independent attributes
provides “evidence for or against” the hypothesis built of the dependent
attributes [4]. Another approach to evaluation of generated rules concen-
trates on the use of two different interestingness measures. In this paper,



we show a way to limit the set of rules generated with respect to pairs
of measures: support—confidence and support—anti—support, by filtering
out the rules for which the premise does not confirm the conclusion. This
proposition is based on imposing the confirmation perspective on the an-
alyzed two—dimensional evaluations.

The paper is organized as follows. In section 2, there are preliminaries
on rules and their quantitative description. In section 3, we investigate
the idea and advantages of mining only rules with positive confirmation
from Pareto—optimal border with respect to support and confidence. Sec-
tion 4 concentrates on the proposal of limiting the set of rules generated
with respect to support and anti—support. Theoretical considerations are
supported by experimental results. The paper ends with conclusions.

2 Preliminaries

Since discovering rules from data is the domain of inductive reasoning,
its starting point is a sample of larger reality often given in a form of
a data table. Formally, a data table is a pair S = (U, A), where U is a
nonempty finite set of objects called universe, and A is a nonempty finite
set of attributes such that a : U — V, for every a € A. The set V, is a
domain of a. A rule induced from S is denoted by ¢ — 9 (read as “if
@, then ¢”). It consists of antecedent ¢ and consequent v, called premise
and conclusion, respectively. In this paper, similarly to [2], we consider
evaluation of rules with the same conclusion.

2.1 Partial Preorder on Rules in terms of Two Measures

Let us denote by =<, a partial preorder given by a dominance relation
on a set X of rules in terms of any two different interestingness measures
g and t, i.e. for all 71,70 € X1 <y 72 if r1 =4 r2 and r; = 2. Recall
that a partial preorder on a set X is a binary relation R on X that
is reflexive and transitive. The partial preorder <, can be decomposed
into its asymmetric part <4 and its symmetric part ~4 in the following
manner: given a set of rules X and two rules ri,ro € X,7r <g ro if
and only if q(r1) < q(ro)at(ri) < t(r2), orq(ri) < q(r2)at(ri) < t(re),
moreover, 11 ~g 1o if and only if ¢(r1) = q(re) at(r1) = t(rg). If for a
rule 7 € X there does not exist any rule v’ € X, such that r < ' then
r is said to be non—dominated (i.e. Pareto—optimal) wrt interestingness
measures ¢ and t. A set of all non—dominated rules wrt ¢ and ¢ is also
referred to as an ¢g—t Pareto—optimal border.



2.2 Monotonicity of a Function in its Argument

Let = be an element of a set of rules X and let g(x) be a real function
associated with this set, such that ¢ : X — R. Assuming an ordering
relation > in X, function g is said to be monotone (resp. anti-monotone)
in z, if for any x,y € X, relation > y implies that g(x) > g(y) (resp.
g9(z) < g(y))-

2.3 Support, Confidence and Anti—support Measures of Rules

Among measures very commonly associated with rules induced from in-
formation table S, there are support and confidence. The support of con-
dition ¢, denoted as sup(¢), is equal to the number of objects in U having
property ¢. The support of rule ¢ — v, denoted as sup(¢p — 1), is the
number of objects in U having property ¢ and 1.

The confidence of a rule (also called certainty), denoted as conf(¢p — 1),

is defined as: conf(¢ — ¢) = %@;ﬁ), sup(¢) > 0.

Anti-support of a rule, denoted as anti — sup(¢p — 1), is equal to the
number of objects in U having the property ¢ but not having the property
1. Thus, anti—support is the number of counter—examples, i.e. objects for
which the premise ¢ evaluates to true but which fall into a class different
than 1. Note that anti-support can also be regarded as sup(¢ — —).

2.4 Bayesian Confirmation Measures

Bayesian confirmation measures constitute a group of interestingness
measures that quantify the degree to which a premise ¢ provides “support
for or against” a conclusion 1 [4]. Under the “closed world assumption”
adopted in inductive reasoning, and because U is a finite set, a confir-
mation measure denoted by ¢(¢ — 1) is required to satisfy the following
definition:

> 0if conf(¥ — ¢) > sup(v)/|U],
(¢ — ) ={ =0 if conf(yp — ¢) = sup(¥)/|U], (1)
< 0if conf(ih — @) < sup(v)/|U].

For the confirmation measures a desired property of monotonicity (M) was
proposed in [5]. This monotonicity property says that, given an informa-
tion system S, a confirmation measure is a function non—decreasing wrt



sup(¢ — v)and sup(—¢p — —)), and non—increasing wrt sup(—¢ — 1)
and sup(¢ — —1)). Among confirmation measures that have property (M)

there is e.g. confirmation measure f [4] defined as:
_ conf(p—¢)—conf(p—9¢)
16 = ¥) = Gonfu=orreonsv—0)"

2.5 A Brief Description of a Dataset and Experiments

For the purpose of these experiments we used a dataset adult [7]. The
number of analyzed instances reached 32561. They were described by
9 nominal attributes differing in domain sizes. Missing values were sub-
stituted by the most frequently appearing one. Two experiments were
conducted: one generating rules wrt support and confidence, and the sec-
ond one generating rules according to support and anti-support. Both of
them proceeded in a two step Apriori-like framework:

— firstly, all conjunctions of elementary conditions (i.e. itemsets) that
exceeded the minimum rule support threshold (i.e. frequent itemsets)
were found;

— secondly, those frequent itemsets were used to generate association
rules having either confidence or anti-support not smaller than the
user’s defined threshold.

The detailed description as well as the efficiency comparison of the ap-
plied algorithms (based on [1,6]) can be found in [9]. Throughout the
experiment, the value of support was expressed as a relative value be-
tween 0 and 1. During the frequent itemset generation phase, only item-
sets that exceeded 0.15 support threshold were approved. No confidence
nor anti-support thresholds were applied in order to show the complete
Pareto-optimal border exceeding the support threshold.

3 Support—Confidence Pareto—optimal Border

Bayardo and Agrawal [2] proposed evaluation of the set of rules in terms
of two popular interestingness measures being rule support and confi-
dence. They have proved that for a class of rules with fixed conclusion,
the support—confidence Pareto—optimal border includes optimal rules ac-
cording to several different interestingness measures, such as gain, lift,
conviction, etc. Thus, by solving an optimized rule mining problem wrt
rule support and confidence one can identify a set of rules containing
most interesting (optimal) rules according to several interestingness mea-
sures. However, despite those valuable features of the support—confidence



Pareto—optimal border, one cannot, in general, claim that the set of dom-
inated rules is without interest. It can be e.g. due to the fact that in order
to cover the analyzed concept (decision class) one has to use both domi-
nated and non—dominated rules. Of course, a user can set some thresholds
both on rule support and confidence, but still taking under the consid-
eration both dominated and non—dominated rules can result in a large,
difficult to analyze set of rules. Hence, we propose a way to limit the
set of the analyzed rules by using the valuable semantic of confirmation
measures.

3.1 The Confirmation Perspective on the Support—Confidence
Evaluations

The advantages of semantic utility of confirmation measures in general
over confidence have been widely studied in [3,5]. Thus, we find it valu-
able to impose the confirmation perspective on the analyzed support—
confidence evaluations and limit in this way the set of rules to be ana-
lyzed. It has been analytically proved in [3] that for a fixed value of rule
support, confidence is monotone wrt any confirmation measure having
the desired property of monotonicity (M) proposed in [5].

Let us observe that according to definition (1) of ¢(¢ — 1) , we have:
conf(¢%¢)>0®conf(¢aw)>%(‘¢> (2)

Since, we limit our consideration to rules with the same conclusion, then
|U| and sup(t)) should be regarded as constant values. Thus, (2) shows
that rules laying under a constant, expressing what percentage of the
whole dataset is taken by the considered class 1, are characterized by
negative values of confirmation (see Fig. 1). For those rules 1 is satisfied
less frequently when ¢ is satisfied rather than generically.

It is also interesting to investigate a more general condition ¢(¢ — ) >
k, k > 0, for some specific confirmation measures. In the following, we
consider confirmation measure f(¢ — ).

Theorem 1. (See proof in [8])

[(6 =) > k& conf(¢p— ) > il (3)
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Fig.1. An example of a constant line representing c¢(¢ — ) = 0 in a support—

confidence space. Rules laying under it should be discarded from further analysis

3.2 Experiments with Rule Induction with respect to Support
and Confidence

On Fig. 2 we show association rules generated, according to mentioned
thresholds for the conclusion: workclass=’Private’. This class contains
information about people working in a private sector. Rules are presented
in a support—confidence space.
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Fig. 2. Rules generated for a conclusion workclass='Private’ with positive (empty
circles) and non—positive confirmation measure value (solid circles) in a support—
confidence space. Fig. a — all generated rules, Fig. b — the Pareto-optimal border only.

This experiment makes it evident that in practice even rules with high
value of confidence (exceeding even 0.7) can be found useless as their
premise disconfirms the conclusion (those rules are marked by solid cir-
cles). It is therefore clear, that the semantic scale of the confidence mea-
sure is not enough and that confirmation measures are very much needed.
Sometimes even rules from the Pareto—optimal border need to be dis-
carded from further analysis as their value of confirmation is non—positive.
On Fig. 2 a constant line was placed separating the rules with positive
confirmation (situated above the line) from those with non—positive con-
firmation (situated below the line). Fig. 2 visualizes result (2) and says
how big (in comparison to the whole dataset) is the considered class of



rules for the analyzed conclusion workclass="Private’. Illustrations for
other classes can be found in [8,9]. By imposing the confirmation per-
spective, the number of rules to be analyzed by the domain expert can
be significantly reduced. For the conclusion being worklass=’Private’, 41
out of 84 rules had to be discarded for disconfirming the conclusion. Tab.
1 shows results for other conclusions that we have considered.

Table 1. Information about the percentage of rules with non-positive confirmation in
the set of all generated rules for different conclusions.

Considered No. of all rules| No. of all rules with | Reduction

conclusion non—positive confirm.|percentage
workclass="Private’ 84 41 49%
sex=Male 85 24 28%
income<=50kUSD 87 43 49%

Table 2. Information about the percentage of rules with non-positive confirmation
laying on the support—confidence Pareto—optimal border for different conclusions.

Considered No. of all rules | No. of all rules with | Reduction

conclusion on Pareto border|non—positive confirm.|percentage
workclass="Private’ 6 2 33%
sex=Male 6 1 17%
income<=50kUSD 5 1 20%

Tab. 2 shows how many rules with non—positive confirmation laid on
the support—confidence Pareto—optimal border for different considered
conclusions. Even Pareto—optimal borders, i.e. objectively the best sets
of rules, contain rules that are misleading. In some cases, the support—
confidence Pareto—optimal border could be reduced by even 33%, like for
the conclusion workclass="Private’.

4 Support—Anti—support Pareto—optimal Border

Presentation of association rules in dimensions of rule support and anti—
support was proposed in [3]. The idea of combining those two dimensions
came from a critical remark towards support—confidence Pareto—optimal
border. In [3], it was proved that a rule maximizing a confirmation mea-
sure satisfying the property (M) is on the support—confidence Pareto—
optimal border only if a specific condition is satisfied. Thus, in general,
not all rules maximizing such a measure are on the support—confidence
Pareto—optimal border. However, due to valuable semantics of confir-
mation measures, mining all rules that maximize confirmation measures



with (M), became an interesting problem. The solution is support—anti—
support Pareto—optimal border. It was proved in [3] that the best rule
according to any of confirmation measures with (M) must reside on the
support—anti-support Pareto—optimal border. Moreover, it was pointed
out in [3] that the Pareto—optimal border of support—anti—support con-
tains the support—confidence Pareto—optimal border. Despite all good
characteristics of the support—anti-support Pareto—optimal border, one
can still remain interested in the set of dominated rules. Thus, analyz-
ing whether one can limit the set of rules, by imposing a confirmation
perspective on the spport—anti—support evaluations, is interesting.

4.1 The Confirmation Perspective on the Support—Anti—
support Evaluations

It has been analytically proved in [3] that for a fixed value of rule support,
any confirmation measure ¢(¢ — 1) having the desired property of mono-
tonicity (M) is anti-monotone (i.e. non—decreasing) wrt anti-support. Let
us observe that a simple transformation of definition (1) leads to the fol-
lowing result:

c(¢p — ¥) > 0 < anti — sup(¢p — ¥) < sup(¢d — 1) [SJI()J(L/)) _ 1] (4)

Having limited our consideration to rules with the same conclusion,
|Uland sup(v) should be regarded as constant values. Thus, the result
(4) shows that a simple linear function bounds rules that are charac-
terized by positive values of confirmation from those with non—positive
confirmation values (see Fig. 3).

X b =0, f o(W)/|U|=50%
anti-sup (- v) c(d—>w)=0, for sup(y)/|U|=33% A==, o s OO o [=30%

Dominated rules fall

into this area c(0—>y)=0, for sup(y)/|U|=66%

Non-dominated rules

Pareto-optimal border

sup (-v)

Fig. 3. Three examples of linear functions representing c¢(¢ — 1) = 0 in a support—
anti—support space. Lines were drawn according to a set of rules for conclusions different
in cardinality. Rules laying above them should be discarded from further analysis.



It is also interesting to investigate a more general condition ¢(¢ — ) >
k,k > 0. Let us consider again f(¢ — ).

Theorem 2. (See proof in [8])

F(6 = ) > k< anti — sup(¢ — ) < sup(é — ) (U — sup(¥)) sy (5)

4.2 Experiments with Rule Induction with respect to Support
and Anti—support

On Fig. 4, we show association rules generated, according to mentioned
threshold, for the conclusion: workclass="Private’.
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Fig. 4. Rules generated for a conclusion workclass="Private’ with positive (empty cir-
cles) and non—positive (solid circles) confirmation measure value in a support—anti—
support space. Fig. a — all generated rules, Fig. b — the Pareto-optimal border only.

This experiment makes it clear, that despite the valuable properties of
support—anti-support Pareto—optimal border, it is necessary to take un-
der consideration also the information brought by the sign of the confir-
mation measures. Within the Pareto-optimal set presented on Fig. 4, 22%
of rules need to be discarded as their value of confirmation is non—positive.
On Fig. 4, a linear function was placed separating the rules with positive
confirmation (situated under the line) from those with non—positive con-
firmation. Fig. 4 visualizes result (4). Tab. 3 presents the percentage of
rules to be discarded from the support-anti-support Pareto-optimal bor-
der. In the conducted experiment the set of rules to be analyzed could be
reduced by e.g. about 22% (workclass="Private’).

Table 3. Information about the percentage of rules with non-positive confirmation
laying on the support—anti—support Pareto—optimal border for different conclusions.

Considered No. of all rules | No. of all rules with | Reduction

conclusion on Pareto border | non—positive confirm.|percentage
workclass="Private’ 18 4 22%
sex=Male 8 3 38%
income<=50kUSD 15 4 27%




5 Conclusions

In this paper, we investigated rules induced for a fixed conclusion and
evaluated in spaces of support—confidence and support—anti—support. The
Pareto—optimal borders of those spaces have some valuable features. How-
ever, these worthy features, do not assure that the number of induced
rules would not exceed the human user capabilities to analyze them. In-
spired by the strength of the semantics of confirmation measures, we
show that it is reasonable to limit the set of rules by eliminating those
that are characterized by non—positive or small values of confirmation.
We have shown analytically that a simple constant line imposed on the
support—confidence space bounds the rules with positive values of confir-
mation measure from those with non—positive confirmation values. This
is a very practical result allowing to limit the set of analyzed rules only
to those with positive confirmation values, without actually calculating
the value of a particular confirmation measure for each of the induced
rules. Analogous analysis has been conducted for rules in support—anti—
support space. We have shown that a simple linear function separates the
rules with positive and non—positive values of confirmation. Again, this is
an easy approach to limit the set of analyzed rules. Experimental results
show how big the reduction can be.
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