
Poznań University of Technology 
 

 

 

 

 

Four perspectives of confirmation 

 
  

Salvatore Greco, Roman Słowiński, Izabela Szczęch  

 
 

Research Report  RA–01/2014 

 

Institute of Computing Science 

Piotrowo 2, 60–965 Poznań, Poland 



 2

Four perspectives of confirmation 

Salvatore Greco1,2
,  Roman Słowiński3,4,  Izabela Szczęch3 

1 Department of Economics & Business, University of Catania, Italy 
salgreco@unicit.it 

2 Portsmouth Business School, Operations & Systems Management  

University of Portsmouth, United Kingdom 
3 Institute of Computing Science, Poznań University of Technology, Poland 

{Roman.Slowinski, Izabela.Szczech} 

@cs.put.poznan.pl 
4 Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland 

Abstract. In the context of evaluation of if-then rules induced 

from data and properties that evaluation measures should possess, 

we discuss the fundamental property of confirmation. We 

distinguish four perspectives of such confirmation and compare 

them. We show logical equivalence of those four perspectives and 

propose a general definition of confirmation. 
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1. Introduction 

The evaluation of rule patterns induced from datasets is a valid and 

necessary step in the data mining process allowing to filter out rules that 

are useless or irrelevant. It is commonly done using measures of interest 

such as confidence, support, rule interest function, lift etc. (see [1], [7], 

[10], [12], [15] for a survey). Among the variety of measures, users are 

commonly interested in using those which reward the rules in which the 

premise confirms the conclusion (such measures are often referred to as 

measures of confirmation). But along with such a demand, there arises a 

question what does it mean that a premise confirms the conclusion? What 

does the confirmation stand for and how can we quantify it?  

In this article we aim at answering the above questions by studying the 

concept of confirmation from four perspectives. These four perspectives 

derive from the Bayesian confirmation measure and interpret in an 
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exhaustive way probabilistic relationship of confirmation type between 

premise and conclusion. These perspectives lead, moreover, to four 

mathematical formulations of confirmation. We show the logical 

equivalence of all four formulations and propose a general formulation 

that has the advantage of being always defined (as opposed to the other 

four formulations that become undefined in certain conditions).  

The rest of the paper is organized as follows. In the next Section we 

present preliminaries. Section 3 is the main part of this work- it 

distinguishes four perspectives of confirmation, shows their logical 

equivalence and proposes a general formulation of confirmation. Next, 

in Section 4 popular measures of confirmation are defined and their 

relation with the four perspectives is discussed. The paper ends with 

conclusions. 

 

Identification of different perspectives of confirmation and their 

comparison should be regarded as the first step towards identification of 

properties that valuable confirmation measures should possess. Thus, our 

future work shall concentrate on finding desirable properties in the 

context of different confirmation perspectives. As a result, we hope to 

determine the most useful and meaningful measures (i.e., enjoying the 

desirable properties) that should be recommended as a tool for evaluation 

of rules induced from data. 

2. Preliminaries about data, rules and supporting 

observations 

A dataset is composed of a number of observations, called objects, 

described by a number of variables. The objects constitute a universe U 

from which rules are induced. Each rule is a consequence relation 

denoted by E→H, read as “if E, then H”. It consists of a premise 

(evidence) E and a conclusion (hypothesis) H. In the context of a 

particular dataset, the relation between E and H may be quantified by 

four non-negative numbers a, b, c and d, corresponding to all possible 

cases of truth and falsity of E and H, presented in a 2 x 2 contingency 

table (see Table 1).  
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Table 1. Contingency table of E and H for rule E→H 

 H ¬H ∑ 

E a c a+c 

¬E b d b+d 

∑ a+b c+d |U| 

 

Precisely, the number of all objects in U supporting both the premise and 

the conclusion of a rule is quantified by a; b reflects the number of 

objects for which the premise in not satisfied, but the conclusion is, etc. 

Using a, b, c and d is common and intuitive for data mining techniques 

since all observations are collected in an information table describing 

each object by a set of variables. However, a, b, c and d can also be used 

to estimate probabilities: e.g., Pr(E)=(a+c)/|U| or Pr(H)=(a+b)/|U|, 

Pr(H|E)=a/(a+c) (which, however, is only defined when a + c > 0). 

The notation based on a, b, c and d can be effectively used for defining 

such interestingness measures as confidence, support, rule interest 

function, lift or measures of confirmation (see Section 4). 

3. Four perspectives of confirmation 

A common expectation with respect to the behavior of interestingness 

measures used for evaluation of rules is that they obtain: 

• values > 0 when the premise of a rule confirms its conclusion, 

• values = 0 when the rule's premise and conclusion are neutral 

to each other, 

• values < 0 when the premise disconfirms the conclusion. 

Such requirements are referred to (informally) as the property of 

confirmation and thus, measures acting according to them are called 

confirmation measures. 

Moving to a formal definition of the concept of confirmation, we aim 

at reflecting the statement “E confirms H” in a more quantitative fashion. 

A commonly used definition of confirmation, called Bayesian 

confirmation, requires that an interestingness measure c(H,E) satisfies 

the following conditions: 
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    (1) 

 

 

The definition of Bayesian confirmation identifies confirmation with an 

increase in the probability of the conclusion provided by the premise, 

neutrality with the lack of influence of the premise on the probability of 

conclusion, and finally disconfirmation with a decrease of probability of 

the conclusion imposed by the premise [2]. In the literature [5], [11], 

such understanding of confirmation is sometimes also called incremental 

Bayesian confirmation, as opposed to the absolute confirmation which 

assumes that E confirms H, if some kind of a threshold k∈(0, 1) is 

surpassed by the conditional probability of H given E. This article 

however shall not cover the absolute confirmation. 

It is important to stress that the Bayesian confirmation is not the only 

definition of confirmation. In the literature (see also [5], [11]), there are 

three other ways of expressing that E confirms H: 

• Pr(H|E) > Pr(H|¬E), 

• Pr(E|H) > Pr(E), 

• Pr(E|H) > Pr(E|¬H). 

This gives four perspectives in which confirmation can be considered. 

Below, we propose a way of systematizing them, pointing out the 

differences between them and showing their logical equivalence. 

To better distinguish the perspectives of confirmation let us call them the 

following way (for clarity of the presentation, in brackets we put only 

the conditions under which a measure should obtain positive values, as 

the conditions for neutrality and negative values are analogously 

formed): 

(i) Bayesian confirmation (Pr(H|E) > Pr(H)), 

(ii) strong Bayesian confirmation (Pr(H|E) > Pr(H|¬E)), 

(iii) likelihoodist confirmation (Pr(E|H) > Pr(E)), 

(iv) strong likelihoodist confirmation (Pr(E|H) > Pr(E|¬H)). 

Those perspectives can be naturally grouped into pairs reaching to the 

debate between Bayesians and likelihoodists about confirmation’s 

probabilistic interpretation [6]. Let us note that rule E→H in the 

Bayesian viewpoint, corresponds to rule H→E in the likelihoodist 

approach. 

All those four perspectives have different philosophical background and 

motivations. They emphasize different faces of confirmation: 


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• the Bayesian confirmation states that E confirms H if H is more 

probable with E rather than without E, where “without E” means 

without knowing if E or ¬E is true,  

• the strong Bayesian confirmation stresses that E confirms H if H 

is more probable with E rather than with ¬E, 

• the likelihoodist confirmation says that E confirms H if E is more 

probable with H rather than without H, where “without H” means 

without knowing if H or ¬H is true, 

• finally, the strong likelihoodist confirmation states that E 

confirms H if E is more probable with H rather than with ¬H. 

 

To provide an interpretation of the four perspectives of confirmation let 

us use an illustrative example, in which the premise E is the evidence 

that a patient suffered from a fever and the conclusion H reflects that the 

patient had a flu. Then: 

• in case of Bayesian confirmation (i) if flu is more probable with 

fever rather than without knowing whether the fever occurred or 

not, then fever confirms flu, 

• in case of strong Bayesian confirmation (ii) if flu is more 

probable with fever rather than with no fever, than fever confirms 

flu, 

• in case of likelihoodist confirmation (iii) if fever is more probable 

with flu rather than without knowing whether the flu occurred of 

not, then fever confirms flu, 

• in case of strong likelihoodist confirmation (iv) if fever is more 

probable with flu rather than with no flu, then fever confirms flu. 

 

Let us stress that the difference between those four perspectives of 

confirmation does not only come from different philosophical 

backgrounds, motivations or interpretations. The particular formulations 

in terms of probabilities or frequencies involving a, b, c and d also result 

in differences with respect to undefined situations they may lead to.  

In particular, the perspective of Bayesian confirmation in terms of 

probabilities is formulated as Pr(H|E) > Pr(H), which can be estimated 

by the non-negative frequencies as a/(a+c)>(a+b)/|U|. Clearly, such 

formulation requires that Pr(E)≠0 (or more precisely Pr(E)>0) or 

equivalently a+c ≠0 (or more precisely a+c >0). 
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The perspective of strong Bayesian confirmation has even stronger 

requirements, since the formulation Pr(H|E) > Pr(H|¬E) (or equivalently 

a/(a+c)>b/(b+d)) in order to be defined wants that Pr(E)≠0 and Pr(¬E)≠0 

(or equivalently a+c ≠0 and b+d ≠0). 

Analogous considerations for the perspectives of likelihoodist 

confirmation and strong likelihoodist confirmation lead to requiring that 

Pr(H)≠0 (or equivalently a+b ≠0) or that Pr(H)≠0 and Pr(¬H)≠0 (or 

equivalently a+b ≠0 and c+d ≠0), respectively. 

3.1.  Logical equivalence of four perspectives of 

confirmation 

As the above considerations show, the four perspectives of confirmation 

should be regarded as alternative ways of formalizing this concept. 

Nevertheless, it is important to notice that the four formulations are 

logically equivalent, provided they do not lead to undefined values. By 

logical equivalence we understand that the conditions which need to be 

satisfied to switch between positive, zero and negative values are the 

same for all the formulations. Thus, they are not the same, but they 

“switch” in the same situations, which we will demonstrate below. 

Let us observe that the situation of confirmation with respect to 

Bayesian confirmation is represented by the following inequality: 

Pr(H|E)>Pr(H). Using the non-negative frequencies a, b, c and d, it can 

be expressed as a/(a+c) > (a+b)/|U| (of course, we require that a+c ≠0). 

Simple mathematical transformations show that a/(a+c) > (a+b)/|U| iff 

a|U| > (a+b)(a+c), which can be further simplified to ad-bc > 0. Thus, 

provided that Bayesian confirmation is defined (i.e., a+c ≠0), the 

ad−bc{>,=,<}0 are the conditions for switching between situation of 

confirmation, neutrality and disconfirmation, respectively. 

Regarding the strong Bayesian confirmation, the situation of 

confirmation is represented as Pr(H|E)>Pr(H|¬E), which can be also 

expressed as a/(a+c) > b/(b+d) (of course, we require that a+c ≠0 and 

b+d ≠0). Simple mathematical transformations show that 

a/(a+c) > b/(b+d) iff a(b+d) > b(a+c), which can be further simplified to 

ad−bc > 0. Thus, provided that the definition of the strong Bayesian 

confirmation is defined (i.e., a+c ≠0 and b+d ≠0), ad−bc{>,=,<}0 are the 

conditions for switching between situation of confirmation, neutrality 

and disconfirmation, respectively. 



 8

Analogous transformations can be performed for likelihoodist and 

strong likelihoodist confirmations, showing that again the 

ad−bc{>,=,<}0 are the conditions for switching between situation of 

confirmation, neutrality and disconfirmation, respectively. 

Summing up, we can formulate a general conclusion, that there are 

four (i) - (iv) alternative, different formulations of confirmation, but, 

provided they are defined, they all boil down to the following general 

definition of confirmation expressed in terms of the non-negative a, b, c 

and d, as:  

 

 

 

     (2) 

 

 

The logical equivalence of Bayesian confirmation, strong Bayesian 

confirmation, likelihoodist confirmation and strong likelihoodist 

confirmation with the “ad−bc” formulation is true provided that none of 

the (i)-(iv) formulations is undefined, which means that all the following 

sums: a+c, b+d, a+b and c+d are non-zero. 

The above general definition of confirmation has the advantage over 

the (i)-(iv) formulations of never being undefined. The fact that there are 

no denominators in it guarantees that for any dataset, and thus any 

particular contingency table with a, b, c and d, definition (2) determines 

whether we are in the situation of confirmation, neutrality of 

disconfirmation. On the other hand, working with Bayesian 

confirmation, strong Bayesian confirmation, likelihoodist confirmation 

or strong likelihoodist confirmation we can also obtain the undesirable 

undefined situations (when a+c =0, or b+d = 0, or a+b = 0, or c+d = 0). 

4. Popular measures of confirmation 

Measures that possess the property of confirmation defined as Bayesian 

confirmation strong Bayesian confirmation, likelihoodist confirmation 

or strong likelihoodist confirmation are referred to as confirmation 

measures or measures of confirmation. Sometimes an adjective comes 

into the denotation e.g. Bayesian confirmation measures.  


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Due to the logical equivalence of all the four analyzed formulations of 

confirmation (i)-(iv) we can conclude that a measure satisfying the 

Bayesian confirmation must also satisfy strong Bayesian confirmation, 

likelihoodist confirmation or strong likelihoodist confirmation, as long 

as we exclude undefined values. It is thus legitimate to call such 

measures simply measures of confirmation (or confirmation measures).  

Such measures quantify the degree to which the premise E provides 

“support for or against” the conclusion H [5], the degree to which E 

confirms/disconfirms H. By using confirmation measures in the rule 

evaluation process, we aim at limiting the set of rules proposed to the 

user [16]. 

Let us observe, that the constraints put on a measure by any of the four 

(i)-(iv) formulations of confirmation are that a measure assigns positive 

values in the situation when confirmation occurs, negative values in case 

of disconfirmation, and zero otherwise. In consequence of that many 

alternative, non-equivalent measures of confirmation have been defined. 

Among the most commonly used ones, there are (see also [4]):  

 

Table 2. Popular measures of confirmation 

���, �� = Pr��|�� − Pr��� = �� + � − � + �|�|  [2] 

���, �� = Pr��|�� − Pr��� = �� + � − � + �|�|  [13] 

���, �� = Pr��|�� − Pr��|¬�� = �� + � − �� + � [3] 

���, �� = Pr��|�� − Pr��|¬�� = �� + � − �� + � [14] 

���, �� = Pr��∧�� − Pr��� Pr��� = �|�| − �� + ���� + ��|�|�  [2] 

���, �� = Pr��|�� − Pr	��|¬��Pr��|�� + Pr	��|¬�� = �� − ���� + �� + 2�� [9] 

���, �� =
���
�� 1 − Pr�¬�|��Pr�¬�� = �� − ���� + ���� + �� 	in	case	of	confirmationPr��|��Pr��� − 1 = �� − ���� + ���� + �� 	in	case	of	disconfirmation

 [4] 
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,��, �� =
���
�� Pr��|�� − Pr���1 − Pr��� = �� − ���� + ���� + �� 	in	case	of	confirmation
Pr��� − Pr��|¬��1 − Pr��� = �� − ���� + ���� + �� 	in	case	of	disconfirmation

 [8] 

�-��, �� =
���
�� . + /,��, ��		in	case	of	confirmation	when	c	=	0.���, ��		in	case	of	confirmation	when	c	>	0.���, ��		in	case	of	disconfirmation	when	a	>	0−. + /,��, ��		in	case	of	disconfirmation	when	a=0

 [8] 

����, �� =
���
�� . + /���, ��		in	case	of	confirmation	when	b	=	0.,��, ��		in	case	of	confirmation	when	b	>	0.,��, ��		in	case	of	disconfirmation	when	d	>	0−. + /���, ��		in	case	of	disconfirmation	when	d=0

 [8] 

�5��, �� = 6 ,��, �����, ��	in	case	of	confirmation−,��, �����, ��	in	case	of	disconfirmation [8] 

�7��, �� = 6 min	�,��, ��, ���, ���	in	case	of	confirmation	max	�,��, ��, ���, ���	in	case	of	disconfirmation [8] 

 

Application of popular confirmation measures (e.g. all measures from 

Table 2 except for measure C(H,E)) for evaluation of rules induced from 

datasets may lead to obtaining undefined values in particular cases, e.g. 

for any rule characterized by a contingency table with a+c = 0 an 

undefined value of measure D(H,E) is obtained. Such situations are 

inconvenient and troublesome for data analysts and are generally 

undesirable. In such situations a measure simply cannot evaluate a rule. 

In our opinion, the more often undefined values can occur for a measure, 

the less useful the measure is.  

Let us observe, however, that taking advantage of the general definition 

of the confirmation (2), we can avoid situations when for a particular 

measure, the answer id undefined. Since the condition ad−bc = 0 requires 

that a measure obtains value 0, we can assume that any measure (despite 

its actual definition) defaults to 0 whenever ad−bc = 0. This way, we 

would not even calculate the value of a measure but basing on the fact 

that ad−bc = 0 assign it to  0. Such an approach would allow us to 
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eliminate some undefined values, e.g. for a contingency table where 

a = c = 0, we would obtain an undefined value of measure D(H,E) (the 

denominator would be equal to 0), however using the general definition 

of confirmation, we see that a = c = 0 results in the situation of neutrality 

because ad−bc = 0, and thus instead of an undefined value we could say 

that D(H,E) states neutrality. 

Let us stress that the above proposition is inspired by practical 

experiments, in which dealing with undefined values perturbs the rule 

evaluation procedure. 

5. Conclusions 

It is commonly expected that in rules presented as a result of data mining 

tasks, the premise should confirm the conclusion. The paper aimed at 

answering what such a confirmation means. In particular we have 

distinguished four perspectives of confirmation and compared them. We 

have arrived at the conclusion that all of those perspectives are logically 

equivalent and can be boiled down to a general formulation of 

confirmation.  

The results presented in this paper are a proper starting point towards 

determination which properties of measures are desirable in the light of 

different confirmation perspectives. Thus, our future work will 

concentrate on the identifying which properties are valuable for 

measures of confirmation. Possession of such properties would then be 

regarded as responding to the user’s expectations, and particular 

measures would be highly useful for practical applications. 
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