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2. Introduction 

Computer systems are commonly used nowadays in vast number of application 

areas, including banking, telecommunication, management, healthcare, trade, 

marketing, control engineering, environment monitoring, research and science, among 

others. Moreover there is a trend to use them anytime and anywhere. As a result a huge 

amount of data of different types (text, graphics, voice, video) concerning in fact all 

human activity domains (business, education, health, culture, science) is gathered, 

stored and available.  For example there are collected business transactions, health 

records, account histories, results of scientific experiments, weather information, 

workload characteristics of computer network, logs of computer systems and users, web 

logs, etc. These data may contain hidden from a user interesting and useful knowledge 

represented (defined) by some non-trivial patterns, relationships, anomalies, rules, 

regularities, trends, and constraints.  

It is worth noting that very valuable knowledge can also be included in 

information systems in which data are collected just for presentation or simple 

processing of independent entities and aggregates.  As examples one can mention 

telecommunication billing systems, banking account systems and hospital information 

systems. These systems are completely sufficient and commonly accepted when 

considering some particular goals of information storing and processing, like invoice 

preparation, account checking or updating, diagnosis of disease or therapy ordering. 

However, it is easy to note that through carrying out global analysis on a whole group of 

entities (clients, patients) some new knowledge (rules, patterns, relationships, etc.) may 

be revealed.  

With the growth of amount and complexity of the data stored in contemporary, 

large databases and data warehouses, the problem of extracting knowledge from 

datasets becomes a real challenge, increasingly difficult and important. This problem is 

a  central research and development issue of knowledge discovery that generally is a 

non-trivial process of looking for new, potentially useful and understandable patterns in 

data [15]. However, it is subjective whether the discovered knowledge is new, useful 

and meaningful since it depends on the application.  
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The knowledge discovery process is composed of many steps that lead from raw 

data collection to the new knowledge  [61]: 

• getting familiar with the discipline to be analyzed, identifying accessible 

knowledge and users aims, 

• choosing data connected with the aims of the process, 

• data preprocessing,  

• choosing the task and algorithms for knowledge discovery, 

• knowledge extraction from the dataset, 

• interpreting and evaluating of the discovered knowledge, 

• preparing the knowledge for further usage.    

 

It is important to stress the role of a user in the process of knowledge discovery. 

He needs to have a firm understanding of the analyzed discipline, so that he can make a 

reasonable and correct decision of dataset for the analysis, decide on preferable 

computer representation form of knowledge (e.g., decision rules, decision trees, 

clusters, multi-dimension regression models, contingency tables [32]), choose 

algorithms for knowledge extraction according to particular dataset and aims of the 

analysis. Therefore, often a coalition of domain experts (e.g., medical experts) and 

computer scientists is made to assure deep discipline knowledge as well as firm 

understanding of methodological and practical computational aspects of knowledge 

discovery process itself.  

According to [15], knowledge discovery is an iterative and interactive process. 

Once the discovered knowledge is presented, the users can enhance its evaluation 

measures, select new data etc. in order to obtain different, more accurate results. Often, 

even partial results require expert's evaluation, which might bring modifications to 

initial specifications and force next process iterations.    

 The knowledge discovery from data is done by induction. It is a process of 

creating patterns (hypothesis, generalizations) which are true in the world of the 

analyzed data. Those patterns can take different forms of knowledge representation like 

decision rules or decision trees. However, it is worth mentioning, as Karl Popper did, 

that one cannot prove the correctness of generalizations of specific observations or 

analogies to known facts, but can refute them. 
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Knowledge discovering can be seen in perspective of  [61]: 

• prediction  or 

• description. 

 

Prediction is a form of data analysis that concerns predicting future or unknown 

values of attributes on the basis of available data. In particular, the aim of prediction can 

be to predict assignment of objects to certain classes (categories) on the basis of 

knowledge coming from analyzing objects that have been classified in the past.  

Description is a form of data analysis that consists in automated discovery of 

previously unknown patterns describing the general properties of the existing data and 

presenting it to the user in a clear form enabling further interpretations. 

 

The data which is the input for knowledge discovery process is a set of objects 

(also called cases, instances, samples or examples) described by a vector of values of 

attributes. Attributes taking quantitative values are called numerical and attributes with 

qualitative domains are referred to as nominal.  

With respect to particular, predefined goals of knowledge discovery one can 

distinguish many general approaches, where the most important ones are : classification, 

clustering, association analysis, characterization and discrimination. 

In the thesis, attention is focused on the first of the above-mentioned approaches. 

In classification the  goal is to find a concise, formal classification mechanism (model), 

called classifier, which for each objects described by a vector of condition attributes 

assigns this case (maximally) correctly  to an appropriate class stating a value for so 

called dependent (decision) attribute. To meet this goal, first, the classifier is built by 

analyzing a dataset of training objects described by condition attributes and one known 

dependent (decision) attribute. More precisely, each training object is vector of 

condition attribute values (i.e., a set of <attribute-value> pairs) with associated class 

(decision attribute). Then, the resulting model is verified estimating its prediction 

accuracy for a test set of objects with know decision attribute. The test objects are 

randomly selected and are independent of training objects. Thus, for the testing set the 

value of the decision attribute is known but for the time of classification it is hidden. A 

misclassification occurs when the classifier is presented with an object and classifies it 

incorrectly i.e., predicts for the object a class different than its real, pointed by decision 
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attribute class. Each misclassification is treated as an error. Accuracy is a measure of 

classifier's performance defined as a percentage of correctly classified objects. In 

general, distinction among different types of errors may occur and in that case errors 

may not be of equal value. If distinguishing among error types is important, then a 

confusion matrix can be used to lay out the different errors. The confusion matrix lists 

the correct classifications against the predicted classifications for each class. The 

number of correct predictions is placed along the diagonal of the matrix [69]. 

There are many methods of estimating classifier's accuracy on new objects. 

Among the most common is the k-cross fold-validation. In this technique, the objects 

are randomly divided into k mutually exclusive partitions of approximately equal size. 

There are k iterations of the method and in each of them k-1 partitions are used as a 

training set (i.e., a set from which knowledge in a particular representation is extracted) 

and the one left out as a training set (i.e., a set on which accuracy is calculated). The 

average accuracy over all iterations is taken as the classifier's accuracy [69]. 

Finally, if the estimated by the test set accuracy of the classifier is acceptable, 

then this model can be used to classify future objects for which the value of the 

dependent attribute is missing or unknown.  

 

There is a number of tools and methods for classifier construction: rough sets, 

instance-based learning and k-nearest neighbors, decision tree induction, statistical 

methods, etc. Each of them has its own way of dealing with missing values and 

inconsistencies in data. Moreover, the form of representation of the knowledge 

extracted from the data differs. Therefore, a comparison and evaluation of those 

methods, according to their predictive accuracy, interpretability and understandability 

on a real life dataset is an interesting task.   
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3. Aims and scope of the thesis 

The Polish Registry of Congenital Malformations PRCM is the biggest and 

unique database in Poland keeping information about children who have been diagnosed 

as having congenital malformations in period between their birth and 2nd year of life, 

and children with congenital malformations who were born dead or unable to survive. It 

was founded as a scientific project ordered by the Polish Ministry of Health in April 

1997 and since July 2000, it has been operating as part of the Government Programme 

of Monitoring and Primary Prophylaxis of Congenital Malformations in Poland. 

Fulfilling its objectives, the Registry provides the Polish Ministry of Health with 

important information necessary for healthcare management [73]. In June 2001 the 

PRCM joined the EUROCAT network, which is a European network of population-

based registries for epidemiological surveillance of congenital anomalies. The Polish 

Registry of Congenital Malformations covers 72% of Polish population and currently 

contains in its database information about 32,000 children with congenital 

malformations described by a few dozen attributes [73]. It is the only source of such big 

amount of information about congenital malformations in Poland and one of rare 

registries of this kind in Europe. 

In particular, the Polish Registry of Congenital Malformations is a unique source 

for data about children with Down syndrome suffering from congenital heart defects. 

The coexistence of Down syndrome and congenital heart defects has been examined 

and proved by many researches and reports. The incidence in the Polish Registry of 

Congenital Malformations of congenital heart defects among children with Down 

syndrome reaches 33%, which is much bigger than among the population of children 

without Down syndrome. The question of what the causes of such big incidence of 

congenital heart defects in population with Down syndrome are, remains open. The 

Down syndrome itself might be one of the main reasons, but it is also not out of the 

question that other factors like maternal and paternal age, birth weight, place of 

residence, etc., might have influence.      

 

The aim of this work is an attempt to verify the latter possibility that is to extract 

knowledge in form of relationships between attributes like maternal and paternal age, 

birth weight, place of residence etc., and existence of congenital heart defects among 
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children with Down syndrome using data gathered in the database of the Polish Registry 

of Congenital Malformations. 

This goal shall be attained by applying such different approaches to knowledge 

extraction as: 

• rough set theory, 

• instance based learning, 

• decision trees induction, 

• logistic regression. 

 

In this context, an additional aim of the thesis is examination and comparison of 

different performance characteristics of the considered approaches. 

 

The organization of the thesis is subordinated to the above aims and consists of 

7 Sections. In particular, Section 4 introduces the medical basic facts about Down 

syndrome, congenital heart defects and their co-appearance. It gives few information 

about history and work of the Polish Registry of Congenital Malformations. Later on, it 

presents facts about previous analysis of congenital heart defect in Down syndrome and 

describes in details the dataset chosen for the knowledge extraction in this research. 

Section 5 shows the application of rough set theory to knowledge extraction. 

First, it gives some methodological elements of the rough sets and rule based approach 

including classical rough set approach and generalization of rough approximation fro 

incomplete information systems. Later on, application of rough set theory to extraction 

of knowledge about congenital heart defects in Down syndrome is presented. This part 

talks about different experiments extracting knowledge in form of decision rules from 

the analyzed dataset and presents conclusions drawn from them. 

Section 6 describes the application of instance based learning to knowledge 

extraction. The nearest neighbor methods and IBL1-3 algorithms are presented. Apart 

from that, the Section contains description of the course and conclusions of experiments 

applying instance based learning to knowledge extraction about congenital heart defects 

in Down syndrome.  

Section 7 presents another approach to knowledge extraction - decision tree 

induction. It describes methodological elements of induction of decision trees, stressing 

the details of C4.5 implementation of tree induction algorithm. It also describes the 
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application of decision tree induction to knowledge extraction from the analyzed 

dataset, presenting carried out experiments and conclusions drawn from them. 

Section 8 is dedicated to application of a particular statistical method called 

logistic regression to knowledge extraction. A methodological background is firstly 

presented, followed by description and conclusions of experiments extracting 

knowledge about congenital heart defects in Down syndrome. 

Section 9  contains comparison of the rough set, instance based learning, 

decision trees and logistical regression approaches with respect to different performance 

characteristics. 

Finally, Section 10 summarizes the thesis with a discussion on the completed 

work and possible future research. 
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4. Congenital heart defects in Down syndrome  

4.1. Congenital malformations 

A congenital malformation is a physical defect present in a baby at birth, 

irrespective of whether the defect is caused by a genetic factor or by prenatal events that 

are not genetic. In a malformation, the development of a structure of an organ (e.g. 

heart, brain, lungs) is arrested, delayed, or misdirected early in embryonic life and the 

effect is permanent [68]. 

Congenital malformations are a serious medical and social problem. They carry 

a high burden to affected individuals, their families and the community in terms of 

quality of life, participation in community and need for services. They are a significant 

cause of difficulties in procreation as congenital diseases of embryo often lead to its 

death. Moreover, they contribute strongly to mortality rate of newborns and infants. In 

case of congenital malformations among live borns, one third of them will suffer from 

mental and/or physical disabilities for their entire life [18]. 

Therefore, it is extremely important both for medical and social reasons, to carry 

out researches which aim to find dependencies and relationships between genetic as 

well as environmental factors (e.g., mother's age, maternity history, smoking during 

pregnancy) and congenital malformations. Discovering those dependencies and 

regularities, is a way of undertaking actions finding the causes of congenital 

malformations and perhaps limiting their consequences.  

 

4.2. Down syndrome and congenital heart defects 

Chromosomes are thread structures composed of DNA and other proteins. They 

carry the genetic information needed for the development of all the cell of the body. 

Human cells normally have 46 chromosomes arranged in 23 pairs. The medical test 

checking blood samples in order to determine the number and type of chromosomes is 

called a karyotype.  
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Down syndrome (also known as trisomy 21) is a genetic abnormality which is 

characterized by an “ extra”  21st chromosome. All individuals with Down syndrome 

have extra chromosome 21 material. There are 3 genetic mechanisms for trisomy 21: 

• non-disjunction 

• translocation 

• mosaic 

 

Those mechanisms are responsible for the three types of Down syndrome 

respectively [5]: 

• trisomy 21  (standard) 

• translocation 

• mosaicism 

 

Human cells undergo two division processes called ‘mitosis’ and ‘meiosis’. 

Mitosis is a process of cell division which results in the production of two daughter cells 

from a single parent cell. The daughter cells are identical to one another and to the 

original parent cell [64]. Meiosis is the type of cell division by which germ cells (eggs 

and sperm) are produced. This process involves a reduction in the amount of genetic 

material [64].   

During those divisions some errors may occur and cause trisomy 21. One of 

them is called ‘non-disjunction’ and occurs when in meiosis division process one pair of 

chromosomes does not divide. In result, one cell will have 24 chromosomes and the 

other 22, where in normal situation each of them should have 23 chromosomes [35]. 

About 95% of all Down syndrome cases are caused by the event that the fertilized egg 

has three 21st chromosomes instead of two.  

Another 3-4% of Down syndrome cases are due to another error in cell division 

process called ‘translocation’. The point of translocation is that two divisions occur in 

separate chromosomes and usually the 14th and 21st chromosomes are involved. Due to 

such rearrangement some of the 14th chromosome is replaced by an extra 21st 

chromosome. In such case, even though the number of chromosomes remains normal, 

there is an extra part or whole 21st chromosome [35]. 
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A small percentage of cases of Down syndrome is caused by error called 

‘mosaicism’. In those cases people have some cell lines with normal set of 

chromosomes and  some with trisomy 21. 

The Down syndrome is verified by karyotype. An example of a male karyotype 

with trisomy 21 is shown in Figure 1. 

 

                                                               
Figure 1. Example of a male karyotype with trisomy 21 

 

Apart from distinguishing the three types of  Down syndrome research has also 

shown the relation of Down syndrome with congenital heart diseases. The reported 

incidence is 40-50% [53].  

Congenital heart diseases (CHD) are heart problems present at birth. There are 

many different types of congenital heart defects and more than one malformation may 

be present at the same time. The types of congenital heart defects include [63]:  

• Atrial septal defect (ASD) 

• Ventricular septal defect (VSD) 

• Atrioventricular septal defect (AVSD) 

• Patent ductus arteriosus (PDA) 

• Aortic Stenosis 

• Pulmonary Stenosis 

• Ebstein's anomaly 

• Coarctation of the aorta 

• Tetralogy of Fallot (TF) 

• Transposition of the great arteries 
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• Persistent truncus arteriosus 

• Tricuspid atresia 

• Pulmonary atresia 

• Total anomalus pulmonary venous connection 

• Hypoplastic left heart syndrome 

 

4.3. Polish Registry of Congenital Malformations  

In order to undertake any actions to limit the consequences of congenital 

malformations, let alone find its causes, it is necessary to thoroughly gather precise 

information about congenital abnormalities. This became one of the main reasons for 

the setting up of many registries throughout Europe collecting medical data. 

 

4.3.1. The history of the Polish Registry of Congenital 

Malformations 

The Polish Registry of Congenital Malformations PRCM was founded as a 

scientific project ordered by the Polish Ministry of Health and financed by the State 

Committee for Scientific Research in April, 1997. Since July 1st 2000, it has been 

operating as part of the Government Programme of Monitoring and Primary 

Prophylaxis of Congenital Malformations in Poland. Fulfilling its objectives, the 

Registry provides the Polish Ministry of Health with important information necessary 

for healthcare management [73]. In June 2001 the PRCM joined the EUROCAT 

network, which is a European network of population-based registries for 

epidemiological surveillance of congenital anomalies, started in 1979 and keeping in a 

standardized central database more than 160 000 cases of congenital anomaly among 

live births and stillbirths. More than 900 000 births per year in Europe are surveyed by 

36 registries in 17 countries joined in EUROCAT.  
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4.3.2. Area and population of Polish Registry of Congenital 

Malformations 

 The Polish Registry of Congenital Malformations covers 73.6% of the area of 

Poland i.e. 230 091 km2 with a population of 27 815 600 (72% of Polish population). 

According to data for the year 2001, about 265 000 births (live and still) a year are 

added to the registry's database, which makes about 72% of all births in Poland.  

Currently, the database contains information about 32,000 children with congenital 

malformations, born between January 1st 1997 and December 31st  2002 [73]. 

 

4.3.3. Process of data acquisition 

The Polish Registry of Congenital Malformations has been built on the 

experience of many local registers kept in Poland  through last decades. The PRCM 

registers children who have been diagnosed as having congenital malformations in 

period between their birth and 2nd year of life. Apart from that, children with congenital 

malformations who were born dead or unable to survive are registered. Each registration 

is made on the grounds of a one sheet printed form developed particularly for the 

purpose of gathering information for registration. The PRCM gathers all the registration 

forms sent by doctors from all over Poland and puts them into the PRCM’s computer 

database [74]. 

  

4.3.4. Database of the Polish Registry of Congenital 

Malformations 

 The database keeping the information gathered on children with congenital 

malformations is run on an Oracle 8.0 Database Server. All the operations connected 

with the edition of database entries is done through an application made in Oracle 

Forms Designer 6.0 [74].  The application has seven bookmark forms, each focused on 

different types of information gathered (personal data, description of pregnancy, 

previous pregnancies, malformations, death, parents, family). Several attributes have 

finite domains and therefore value lists are connected with them in the application. 
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Reports from the database are constructed by an application written in Visual Basic for 

Applications and can also be viewed and edited in MS Excel [74].    

 

4.4. Analysis of congenital heart defects in Down 

syndrome 

4.4.1. Incidence of congenital heart defects in Down 

syndrome 

Mental retardation and muscular hypotonia are present in all children with Down 

syndrome, while the congenital heart defects (CHD) are observed in certain percent of 

children (16 to 62), depending on the population. 

 

Table 1. Percentage of children with CHD in different world regions 

Country/Region 
Percentage of children with CHD 

among children with Down syndrome 

Poland (PRCM) 33% 

Dallas 52% 

Atlanta 44% 

Mexico City 58% 

Rio de Janeiro 51% 

 

 

The distribution of the types of congenital heart defects in children with Down 

syndrome is also different depending on population. According to the Polish Registry of 

Congenital Malformations [74], the most frequent heart defect was atrioventricular 

septal defect (AVSD) (33.8%), which is lower than the percentage among the US 

population of children with Down syndrome from around Dallas (45%). According to 

the Mexican authors [51], AVSD incidence in children with Down syndrome barely 

amounts to 14%. In the Rio de Janeiro population of children with Down syndrome the 

most frequent heart defect was ventricular septal defect (VSD) (51%). In children with 

Down syndrome in the PRCM, the VSD incidence was 17%; whereas in 41% of the 
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children a combination of VSD and atrial septal defect (ASD) was observed. A 

relatively large percent of children with Down syndrome in the PRCM had an isolated 

ASD (24.5%). The incidence of Fallot’s tetralogy was much lower than in the Brazilian 

population (2.8% vs. 20%). The percentage of Mexican children with ASD, VSD and 

patent ductus atreriosus (PDA) was 90%, whereas in the children from the PRCM only 

55.5%. 

The incidence of types of congenital heart defects in children with Down 

syndrome in the PRCM is shown in Figure 2. 

 

Heart defect type in children with DS 
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Figure 2. The incidence of types of CHD in children with Down 

syndrome registered in the PRCM. 

 

4.4.2. Factors influencing the incidence of congenital heart 

defects in children with Down syndrome  

4.4.2.1. Genetic factors  

The recent studies have indicated that the congenital heart defect incidence in 

children with Down syndrome is conditioned by genetic factors (probably, the gene on 
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chromosome 21) and environmental factors. The extra chromosome material in Down 

syndrome can lead to instability in the process of morphogenesis, which makes the fetus 

vulnerable to teratogens.  

The study of rare cases of patients with congenital heart defect and partial 

duplication of chromosome 21 made it possible to determine a congenital heart defect 

chromosomal region in Down syndrome. In patients with duplication of the region that 

is distal to 21q22 no heart defects were observed. In patients with duplication  of the 

21q22 region, heart defects were present in 50% of all cases.  

Barlow [4] proposed a candidate gene localized on the chromosome 21, coding 

an adhesion molecule, expressed during the heart morphogenesis. He called it Down 

Syndrome Cell Adhesion Molecule. According to him, three copies of the gene were 

responsible for the presence of congenital heart defect in fetus with trisomy of 

chromosome 21. 

Venugopalan [67] observed a much higher incidence of congenital heart defect 

in Down syndrome (60%) than in other populations. His study was carried out, 

however, on a relatively small group of children with Down syndrome (n=54). 

 

4.4.2.2. Environmental factors 

In the Alexandria study [42], the influence of environmental factors in early 

pregnancy on the incidence of congenital heart defects in infants with Down syndrome 

(n=514) was examined. The analysis concerned genetic, biological and environmental 

factors. Consanguinity of child’s parents, consanguinity of mother’s parents, taking 

antibiotics and hormonal contraceptives during pregnancy, and diabetes were observed 

to have influence on the incidence of congenital heart defects in the children with Down 

syndrome. 

On the other hand, the studies by Loffredo [37] failed to confirm the influence of 

mother’s diabetes on the incidence of complete AVSD in children with Down 

syndrome, despite the fact that mother’s diabetic condition and taking antitussives 

increased the risk of isolated complete AVSD incidence.  

The case control study in Dallas [65] focused on the influence of mother’s 

illnesses, taken medication and psychoactive agents, and exposure to chemicals, 

between at least 3 months before the last period and 3 months after the last period. No 

significant influence related to the mother’s age, income, parents’ education, maternity 
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history, smoking, contraceptives, alcohol consumption during pregnancy, exposure to 

chemicals and intoxicants, on congenital heart defect incidence in children with Down 

syndrome was observed. The groups of women with diabetes, thyropathy, epilepsy, 

arthritis, hypertension, fever in the periconceptional period were rather statistically 

insignificant (5-10 women in each group). Only 15 mothers were taking antibiotics, and 

the study of this particular parameter seems to be rather difficult as well. Overall the 

entire group under study was not large (171 children with Down syndrome in total). 

The study in Atlanta [28] focused on 243 cases of Down syndrome. Mother`s 

race or mother’s age had no influence on congenital heart defect or AVSD incidence in 

children with Down syndrome. It has been, so far, the only population-based study. 

 

On the basis of the results of the conducted studies the following conclusions 

can be made: 

1. Studies in different countries use different methodology and diagnostic 

standards of congenital heart defect detection and classification of children into 

the control group. 

2. The number of studied cases in total is fairly insignificant.  

3. Due to the differences between the results of the studies by various authors, a 

comprehensive population-based study of Down syndrome children with and 

without congenital heart defect is required. 

  

4.4.3. Dataset description 

4.4.3.1. Data preprocessing 

Preprocessing is an important phase of the knowledge extraction process in 

which dataset in being transformed so that it meets requirements of further analysis. 

Before applying  methods of pattern recognition to data, it is crucial to put the dataset 

into proper input form. Actions dealing with: extraction of data from different sources, 

"cleaning" the noisy data, solving the problem of incompleteness and inconsistencies, 

discretization etc. can be taken into account as parts of preprocessing. 
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Extraction of data from different sources and eliminating duplicates 

The dataset used in this analysis all comes from one database, therefore none of 

the possible problems appearing when taking data from  different sources had occurred. 

In some cases, however, duplicates occurred i.e., there was more than one entry of the 

same child in the database. Such situation took place if some additional information 

about child's malformation was gathered after child's first registration to Polish Registry 

of Congenital Malformations. Following entries formed  kind of a history of the patient. 

For the purpose of the analysis, such histories had to be put into one entry as no 

duplicates were allowed. The process of putting some entries into one i.e., eliminating 

the duplicates, was done using MS Excel after data extraction from the database.       

 

Dealing with noisy data 

Informational noise is understood as mistakes in attribute values. They can be 

accidental (a person entering the data to database had made a mistake) or can be caused 

by the alternations in the measured attribute. Fortunately, no alternations have been 

made to analyzed attributes. Thus, the noise could be caused by humans either in the 

phase of filling the printed registration form or later, at the time of entering the data 

from the registration forms into the database. Thanks to equipping the application for 

entering the data with value lists on all attributes which have finite domains, the latter 

could be avoided. Therefore, noise could be brought into the data only at the registration 

phase and are unfortunately impossible to identify after they have been entered to the 

database. One can only count on vigilance of the experts entering the data to the Polish 

Registry of Congenital Malformations. 

 

Inconsistencies in data 

Inconsistent data is understood as any two objects which are described by the 

same values of all condition attributes but are in different decision classes. The 

problems of inconsistent data were not tackled in the preprocessing phase but left to be 

dealt with by particular analysis methods. 

 

Incompleteness of data 

Any object that does not have values of all attributes is  considered as 

incomplete. In the database of the Polish Registry of Congenital Malformations there 

are all together 893 cases of children with Down syndrome. The value of the decision 
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attribute is given for each of those cases, however, some examples are incomplete due 

to missing values of condition attributes. It has been observed that 867 cases have not 

more than one value of condition attribute missing. The dataset has been reduced by 

leaving out cases with more than one attribute value missing.  The reduction of the 

dataset by 2,9% has brought improvement of the quality of classification (see chapter 3) 

and therefore all further analysis have been performed on the slightly reduced dataset. 

These missing values were not tackled in the preprocessing phase but left to be dealt 

with by particular analysis methods. 

 

Handling numerical values 

Attributes with real number or integer domains are called numerical attributes. 

Such large domains are difficult to handle by human perception. Rules or other 

knowledge representations are easier to understand and remember, and therefore more 

useful, if they are based on as small domains as possible. Therefore, it  is required to 

apply discretization techniques. Discretization is a process of changing the numerical 

attributes into discrete, ordinal ones. It is done by dividing the original domain of the 

numerical attribute into a certain number of cut-points and assigning certain symbolic 

codes to those cut-points. In general, no discretization method is optimal for all 

situations. There are 4 numerical attributes in the analyzed dataset: birth weight, fetal 

age, maternal age, paternal age. For the first two numerical attributes discretization 

compatible with the medical standards have been used. In case of two other numerical 

attributes (i.e., maternal age, paternal age) a version of a minimal entropy method with 

a stopping condition referring to a maximum number of intervals per discretized 

attribute has been applied.  The specific cut-points have been given in descriptions of 

particular attributes below.    

 

4.4.3.2. Description of attributes used in the analysis.  

All the data comes from the Polish Registry of Congenital Malformations and 

describes 867 cases of children with Down syndrome, among which 290 (about 34%) 

have a congenital heart disease (CHD). An exemplary subset of the dataset is shown in 

Table 2. Each case is described by ten condition attributes and one decision attribut 

telling whether the child has a congenital heart disease (CHD=yes) or not (CHD=no). 

All attributes with their possible values are listed in Table 3 and described with details 
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later on in this chapter. The distribution of objects among the two decision classes 

(CHD=yes / CHD=no) is highly imballanced with the favour of CHD=no class. Some of 

the objects have missing values on condition attributes denoted by '?'-value. 

 

 

Table 2. Exemplary subset of the dataset 
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1 country_side male non_disjunction 0 1 0 1 no no no no 

2 very_large_city female non_disjunction ? 1 0 1 no no no no 

3 very_large_city male non_disjunction 0 1 0 0 no no no yes 

4 large_city male non_disjunction 0 1 1 1 yes no no no 

5 country_side female non_disjunction 1 1 1 1 no no no no 

6 country_side female non_disjunction 1 1 0 1 no no no no 

7 country_side male non_disjunction 1 1 1 1 yes no no no 

8 country_side male non_disjunction ? 1 1 1 no no no no 

9 country_side male translocation 1 1 0 0 no no no no 

10 small_city male non_disjunction 1 1 0 0 no no no yes 

11 country_side male non_disjunction ? 0 1 0 no no no no 

12 country_side female non_disjunction 1 ? 0 0 no no no no 

13 small_city female non_disjunction 0 1 0 1 yes no no yes 

14 large_city male non_disjunction 0 1 0 0 yes no no no 

15 small_city female non_disjunction 0 0 0 0 no no no no 

16 ? female non_disjunction 1 1 0 0 yes no no no 

17 small_city female non_disjunction 0 0 0 1 no no no no 

18 small_city male non_disjunction 1 1 0 0 no no no no 

19 country_side male non_disjunction 1 1 0 0 no no no no 

20 small_city male non_disjunction 0 1 0 0 no no no no 

21 large_city ? mosaic 1 1 ? 1 yes no no no 

22 country_side female non_disjunction 1 1 1 1 no no no no 
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Table 3. Attribute names and their possible values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The input dataset is defined by a mixture of numerical and qualitative attributes. 

Six of the condition attributes had originally nominal domains and  four attributes had 

numerical (continuous) domains. Two of the numerical attributes have been discretized 

according to medical standards and two other according to results of  a minimal entropy 

method with a stopping condition referring to a maximum number of intervals per 

discretized attribute. The condition attributes are as follows: 

• birth weight 

• fetal age 

• sex 

• maternal age 

• paternal age 

• obstetrical history 

• smoking mother 

• smoking father 

• place of residence 

• results of cytogenetic examination 

 

 

 attribute name possible values 

1 birth weight underweight non-underweight ?   

2 fetal age premature non-premature ?   

3 sex male female ?   

4 maternal age <38 >=38 ?   

5 paternal age <34 >=34 ?   

6 obstetrical history yes no    

7 smoking mother yes no    

8 smoking father yes no    

9 place of residence country side small city large city very large city ? 

10 

results of cytogenetic  

examination 

(cytogenetic exam) non-disjunction translocation mosaic   

11 CHD-decision attribute yes no   
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Birth weight 

Birth weight is a nominal attribute with two possible values: underweight, non-

underweight. Originally in the database, the attribute has a numerical domain with unit 

of measure being one gram, and allowing all greater than 0 values. The original attribute 

has been discretized into a two-value domain, assigning the value underweight to cases 

with the birth weigh smaller than 2500 grams and value non-underweight to all others. 

This discretization corresponds well with the medical standards. Due to incompleteness 

on the birth weight attribute in the 24 cases, the domain of the attribute has been 

extended by adding a  '?'-value to indicate the missing value on this attribute. 

The distribution of values of this attribute according to the presence or absence 

of congenital heart defect is shown in Figure 3.  The number of underweight children in 

the analyzed dataset reached 80%, showing significant imbalance in the distribution of 

values of birth weight. Only 19% of all cases are children with proper birth weight. 

There is 1% of values missing.  

The distribution of cases with particular value between decision classes is 

similar to the distribution of cases in the whole dataset between decision classes. There 

are 34% of cases from the dataset that were assigned to CHD=yes class. From the 

subsets of children with underweight and without it, almost 33% and 37%, respectively, 

have congenital heart disease.    

 
Figure 3. The distribution of values of birth_weight attribute 

categorized by decision attribute 
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Birth weight may be significant in a twofold way, and it is quite hard to interpret 

the role of this attribute. First, lower birth weight may be a result of a number of fetal 

factors, including the presence of CHD in the fetus, and it is not the lower birth weight 

which is a factor influencing fetal CHD incidence. At the same time, lower birth weight 

for maternal reasons may influence a lower survival rate among children with CHD. 

 

Fetal age 

Fetal age is an originally numerical attribute with values expressed in number of 

weeks of pregnancy, transformed into a nominal attribute. The possible values are: 

premature baby (corresponding to children born before the 38th week of pregnancy) and 

non-premature baby (describing all children born in or after 38th week of pregnancy). 

The bounds of discretization match medical standards. In 46 cases from the database, 

the fetal age was not given and therefore '?'-value had been added to the domain of this 

attribute. 

The distribution of values of fetal age according to decision class is presented in 

Figure 4.  64% of case from the dataset were born prematurely and 33% were born in or 

after 38th week of pregnancy. For 4% of children the fetal age was not obtained.     

The distribution of cases with particular value between decision classes is 

similar to the distribution of cases in the whole dataset between decision classes as 33% 

of prematurely born children and 36% non-prematurely born ones have congenital heart 

disease.    
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Figure 4. The distribution of values of fetal age attribute 

categorized by decision attribute 

 

As in the case of birth weight, the role of this attribute is difficult to interpret. 

CHD in fetus may predispose to a preterm birth. There are also congenital heart defects 

such as FoA and PDA clearly related to prematurity. 

 

Sex 

Sex is a two value (male, female) nominal attribute. In 2 objects the sex of the 

baby was missing in database, so a third value '?' was added to the attributes domain. 

The distribution of male and female values according to decision class is 

presented in Figure 5. The majority of children from the dataset are boys (56%). Since 

less than 1% of values is missing, girls constitute 44% of all cases. From congenital 

heart disease suffer 30% of boys from the dataset and 38% of girls. All together, 34% of 

children have heart malformations. 
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Figure 5. The distribution of values of sex attribute categorized by 

decision attribute 

 

Overall, males are dominant in the children with Down syndrome. According to 

[34], mortality among Down syndrome children is higher in females, the major factor 

influencing the increase in mortality being CHD. It can be speculated that CHD could 

be a reason for fetus selection, and this would mostly concern females fetuses.  

 

 

Maternal age 

Maternal age is an originally numerical attribute with values expressed in 

number of years of mother at giving birth, transformed into a nominal attribute by 

discretizing it in order to minimize the entropy. Two ranges have been introduced: 

range 0 describing mothers under the age of 38, and range 1 for mothers 38 years old 

and older. The attribute domain also contains the '?'-value indicating missing values. 

In Figure 6, it is shown that most (67%) of mothers of children from the 

dataset were younger than 38 years old. Almost 33% of them were at least 38 years 

old at the moment of birth giving. Less than 1% of gathered data was missing. 

Children with congenital heart disease were born to almost 36% of mothers from the 

first group and to 28% of mothers from the latter.  
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Figure 6. The distribution of values of maternal age attribute 

categorized by decision attribute 

 

The analysis of this attribute is very complex. The advanced maternal age is an 

independent risk factor of Down syndrome incidence, thus a larger number of older 

mothers in the studied group can be observed. Maternal age is also linked to the fetal 

survival rate. Older women have a higher prevalence of conditions that could increase 

the risk of fetal death (diabetes mellitus, hypertension, placenta praevia, placental 

abruption). Cano [51] examined the survival rate of fetuses in women undergoing ovum 

donation  from young donors (women over 40 years of age compared with women 

below 40 years of age). It turned out that older mothers had more difficulties in keeping 

pregnancies. The results suggest that the mechanisms responsible for normal 

functioning of fetoplacental unit are delayed in older patients. The proper delivery of 

substrate seems to be of crucial importance, and the failure of the uterine vasculature in 

older women may be responsible for this delay. An increase in miscarriage rates in older 

women might be related to the ability for vascularisation in older pregnant uteri, which 

brings about worse adaptability to the increasing hemodynamic demand of pregnancy. 

The older mother’s age can be a risk factor in selection of fetuses with CHD. Therefore, 

more children with CHD will be born of young mothers, whose organism is able to keep 

pregnancy, despite the presence of CHD in the child.  
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Paternal age 

Paternal age is an originally numerical attribute with values expressed in number 

of years of father at child's birth, transformed into a nominal attribute by discretizing it 

in order to minimize the entropy. Two ranges have been introduced: range 0 describing 

fathers under the age of 34, and range 1 for all older fathers. The attribute domain also 

contains the '?'-value indicating missing values. 

The distribution of values of paternal age according to decision class is 

presented in Figure 7.  The division line set at the age of 34, resulted in almost equal 

subsets: almost 50% of fathers were younger than 34 and 48% at the age of 34 or older. 

For almost 3% of cases, the age of the father was not obtained.     

30% of fathers under 34, had children with congenital heart disease. This 

amount rose up to 38% in cases of older fathers. 

 
Figure 7. The distribution of values of paternal age attribute 

categorized by decision attribute 

 

Paternal age is often inseparably linked to maternal age. In the majority of cases 

there is an insignificant age difference between both partners. Therefore, the seeming 

influence of paternal age on the incidence of CHD in children with Down syndrome can 

be, in fact, the effect of the influence of the mother’s age on CHD incidence in the 

child. The future studies may concentrate only on the cases with larger age discrepancy 

between the partners. 
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Obstetrical history 

Obstetrical history is an attribute aggregating two other attributes appearing in 

the PRCM's database: miscarriages and fetal death. The obstetrical history is an 

attribute with two possible nominal values: yes if the mother of the child has a history of 

miscarriages or fetal deaths, and no if no miscarriages or fetal deaths had happened. No 

missing values were observed therefore, there was no need to introduce '?'-value. 

The distribution of values of this attribute according to the presence or absence 

of congenital heart defect is shown in Figure 8.  The number of mothers without 

obstetrical history in the analyzed dataset reached 75%, showing significant imbalance 

in the distribution of values of this attribute. 25% of mothers had miscarriages of fetal 

deaths.  

The distribution of cases with particular value between decision classes is as 

follows: 35% of cases without obstetrical history and 32% with it, were assigned to 

CHD=yes class. 

 
Figure 8. The distribution of values of obstetrical history attribute 

categorized by decision attribute 

 

The influence of previous miscarriages and fetal deaths in mother on the 

incidence of CHD in fetus with Down syndrome is difficult to interpret as the PRCM 

lacks data on the underlying causes of miscarriages. Maternal predisposition to 

miscarriages (immunological and hormonal causes, congenital malformations of the 
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uterus, mother’s illnesses) may be a factor limiting survival of the child with CHD. No 

precise analysis of the influence of this risk factor on CHD incidence in children with 

Down syndrome is possible without a detailed obstetrical history. As notifications to the 

PRCM are made by doctors from all over the country, we do not have full control over 

the precision of the obstetrical history related to them. Thus, the value of this parameter 

is rather doubtful.  

 

Smoking mother, smoking father 

These are  nominal attributes with yes or no possible values. In Figure 9 and 

Figure 10 respectively, it is shown that over 98% of mothers and 96% of fathers did not 

smoke cigarettes during the pregnancy period. These two attributes are characterized by 

the greatest imbalance out of all attributes taken under consideration in his analysis.  A 

bit over 33% of non-smoking parents had children with congenital heart disease. 

 
Figure 9. The distribution of values of smoking mother attribute 

categorized by decision attribute 
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Figure 10. The distribution of values of smoking father attribute 

categorized by decision attribute 

 

The epidemiological analysis of the studied group has shown that only 2% of 

mothers and 4% of fathers smoked cigarettes, which seems to be rather understated. The 

reason for it could be the initial lack of NO DATA AVAILABLE label in the PRCM 

database. The cases in which the notifying doctor had no access to data about father or 

mother smoking used to be marked in the database as NO SMOKING. The recent 

adding of the NO DATA AVAILABLE category to the database will allow a more 

precise articulation of this feature. 

 The effect of mother’s smoking on the incidence of CHD in children with 

Down syndrome was examined by Fixler in  [16]. He pointed out to insignificant 

differences in the CHD incidence between smoking and non-smoking mothers. 

However, according to Fixler, a serious limitation to this type of analysis (as well as to 

the analysis of exposure to other teratogens) is the fact that his study concentrated only 

on live births. What should be taken into account is the seemingly protective influence 

of smoking on a developing fetus with CHD in the course of Down syndrome: if 

teratogen dramatically increases mortality in fetuses with CHD, then the incidence of 

exposure among the live births will be the same in children with heart defect and 

without heart defect, or higher in children without heart defect than in those with heart 

defect. 
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Place of residence 

Place of residence is a nominal attribute with values: country-side, small-town, 

big-town, very-big-town and a particular '?'-value indicating incompleteness of 

information in the database. 

The distribution of values of this attribute according to the presence or absence 

of congenital heart defect is shown in Figure 11.  In the dataset, there are 34% of cases 

coming from small city, 37% from country side, 9% from a very large city and almost 

19% from large city. Almost 2% of values of place of residence are missing in the 

dataset. Among children from large cities, 42% suffer from congenital heart disease. 

Taking under consideration every other value of the attribute separately, it can be seen 

that, about  33% of cases of a particular value have congenital heart disease. 

 

 
Figure 11. The distribution of values of place of residence attribute 

categorized by decision attribute 

 

Place of residence may influence detection of CHD among children with Down 

syndrome. This is also linked to the older maternal age (older mothers in the studied 

group come more often from villages and small towns). 
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Results of cytogenetic examination  

Results of cytogenetic examination is a nominal, completely filled-in in the 

database attribute with values: non-disjunction, mosaic, translocation. Figure 12 shows 

the distribution of values of results of cytogenetic examination according to the 

presence or absence of congenital heart defect.  

 
Figure 12. The distribution of values of results of cytogenetic 

examination  attribute categorized by decision attribute 

 

This is rather not an informative attribute as the most frequent (93%) 

chromosomal abnormality among children with Down syndrome is standard trisomy 21 

caused by non-disjunction (in our group  810 children out of 867 had standard trisomy 

of chromosome 21). Children with translocation and mosaicism constitute only 5% and 

2% of the dataset respectively. This is a significantly imbalanced in value distribution 

attribute. There were no missing values of this attribute in the dataset. In case of all 

values, the number of cases without congenital heart disease was larger than  those with 

it. 

 

4.4.3.2.1. Missing values 

The dataset contains cases with missing attribute values. There are 4 condition 

attributes that had all values complete: results of cytogenetic examination, obstertrical 

history, smoking mother and smoking father. All other condition attributes had some 
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gaps. Table 4 and Figure 13 present the number of cases with missing values for each 

attribute. Clearly, the most incomplete attribute is fetal age, with 31 empty values, but it 

is only 3.58% of all cases in the dataset and therefore cannot disqualify this attribute 

from further analysis. 

 

Table 4. Number of cases with missing attribute values 

attribute 

number of  

missing values 

percentage of  

missing values 

place of residence 17 1,96% 

sex 1 0,12% 

cytogenetic exam 0 0,00% 

fetal age 31 3,58% 

birth weight 10 1,15% 

maternal age 5 0,58% 

paternal age 19 2,19% 

obstetrical hist 0 0,00% 

smoking father 0 0,00% 

smoking mother 0 0,00% 
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Figure 13. Number of cases with missing values on particular 

attributes 

 

In Figure 14, distribution of objects with missing values among the whole 

dataset is shown. It is very interesting to see, how this distribution looks in each of the 
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decision classes. There are more incomplete objects in the class with congenital heart 

disease, but it is might be due to the fact that this class is larger in number of objects. 

Objects with missing values are rather equally distributed across the whole dataset.  

 

 
Figure 14. Distribution of cases with missing attribute values 

between decision classes of the dataset 

 

4.4.3.2.2. Crosstabulation and correlations 

Crosstabulation is a combination of two (or more) frequency tables arranged 

such that each cell in the resulting table represents a unique combination of specific 

values of crosstabulated variables. Thus, crosstabulation allows us to examine 

frequencies of observations that belong to specific categories on more than one variable. 

By examining these frequencies, we can identify relations between crosstabulated 

variables. Only nominal variables or variables with a relatively small number of 

different meaningful values should be crosstabulated. 

In the analyzed dataset, eight out of ten condition attributes have a two-value 

domain.  The place of residence and results of cytogenetic examination have five- and 

four-value domain respectively. Since discretization has been applied, all attributes are 

nominal and therefore ready as an input for the crosstabulation.  
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Table 5, Table 6 and Table 7 present more interesting results of crosstabulation. 

Cases with missing values are marked by '?'. Red-marked cells have counts >10. 

  

 

Table 5. Crosstabulation results for fetal age and birth weight 

 
 

The results of crosstabulation for fetal age and birth weight show that there is a 

positive correlation between those two attributes since for children with underweight 

there is majority of children born prematurely over non-premature, and moreover, for 

non-underweight children there is majority of non-premature ones. 

 

Table 6. Crosstabulation results for maternal age and paternal age 

 
 

The crosstabulation for maternal age and paternal age also shows a positive 

correlation between those attributes. That means that, partners tend to be of similar age. 

 

Table 7. Crosstabulation results for obstetrical history and smoking mother 

 
 

Obstetrical history and smoking mother are not correlated attributes. This may 

be due to strong imbalance in value distribution in smoking mother attribute. 

Correlation is a measure of the relation between two or more variables. The 

measurement scales used should be at least interval scales, but other correlation 
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coefficients are available to handle other types of data. If the 2x2 table can be thought of 

as the result of two continuous variables that were (artificially) forced into two 

categories each, then the tetrachoric correlation coefficient will estimate the correlation 

between the two.  

In Figure 15 there are diagrams presenting correlations between all possible 

combinations o pairs of attributes. Horizontal lines mean that there is no correlation 

between attributes according to the analyzed dataset. Diagonal lines appear in situations 

were a negative (falling line) or positive (rising line) correlation has been found. A 

correlation found through crosstabulation between fetal age and birth weight, and 

maternal and paternal age can be seen in the matrix as rising lines. 

 

 
Figure 15. Correlation diagram matrix 
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5. Application of rough set theory to knowledge 
extraction 

Rough set theory was introduced by Z. Pawlak [44] as a tool to deal with 

uncertainty and inconsistency in the analyzing information system. The granularity of 

the available data may be the cause of the inconsistency in objects' descriptions, but on 

the grounds of the rough set theory such inconsistencies can be dealt with. The theory is 

based on the assumption that having information represented in the form of attributes 

and their values on particular objects, it is possible to define an indiscernibility or other 

kind of relation between those objects [45], [47]. In the classical rough set theory the 

indiscernibility relation is used to build blocks of objects representing granules of 

knowledge about an universe. These granules are used in turn for approximation of sets 

or partitions of the universe that represent another knowledge about this universe.  

 

5.1. Methodological elements of the rough sets and rule 

based approach 

5.1.1. Classical rough set approach 

5.1.1.1. Information system 

An information system is a formal representation of the analyzed dataset and is 

defined as the 4-tuple 

〉〈= fVQUS ,,, , 

where U is a finite set of objects, Q is a finite set of attributes, U
Qq

qVV
∈

= and qV  is a 

domain of an attribute q, VQUf →×:  is a total information function, such that 

qUxQq Vqxf ∈∀ ∈∈ ),(,  . 

The information system is in fact a finite data table which columns are labeled by 

attributes, rows by objects and the entry in column q and row x has the value ),( qxf . 

Each row in the table represents the information about an object in S, i.e. each object 
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Ux ∈  is described by a vector of attribute evaluations from Q. Such a vector is referred 

to as description of x in S. 

 In practice we are mostly interested in a special case of an information 

system called a decision table, where the set of attributes Q is divided into two disjoined 

subsets C and D ( QDC =∪ ). The set C is a subset of condition attributes, and the set 

D contains decision attributes that determine the partition of U into decision classes.  

 

5.1.1.2. Indiscernibility relation 

The rough set theory is based on the observation that objects may be indiscernible 

(indistinguishable) due to limited available information. Objects with identical 

descriptions are called indiscernible. The indiscernibility relation on U can be 

associated with every non-empty subset of attributes QP ⊆  and is defined as follows: 

{ }PqP qyfqxfUUxyI ∈∀=×∈= ),,(),(:),( . 

We say that objects x and y are P-indiscernible by a set of attributes P if y IP x. 

The relation IP divides the set U into blocks of P-indescernible objects, called  

P-elementary sets. The P-elementary set containing objects  

P-indiscernible with  Ux ∈  is referred to as IP (x) and defined as: 

{ }xUyxI P PIy  :)( ∈= . 

 

5.1.1.3. Approximation of sets 

Let X  be a non-empty subset of objects from U and P be a non-empty subset of 

attributes from Q.  

An object  Ux ∈  belongs certainly to X if all objects from the P-elementary set 

)(xI P  also belong to X, i.e. XxI P ⊆)( . A set of all objects certainly belonging to X 

constitutes the P-lower approximation of X , defined as: 

})(:{)( XxIUxXI PP ⊆∈= . 

 

An object  Ux ∈  could belong to X if at least one object from the P-elementary 

set )(xI P  would belong to X, i.e. ∅≠∩ XxI P )( . A set of all objects that could belong 

to X constitutes the P-upper approximation of X , defined as: 
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})(:{)( ∅≠∩∈= XxIUxXI PP . 

The P-boundary (P-doubtful region of classification) is defined as the difference 

between the P-upper approximation and P-lower approximation of X: 

)()()( XIXIXBN PPP −=  

The set )(XBN P  is the set of elements which cannot be certainly classified to X using 

the set of attributes P. 

 With every subset UX ⊆ , an accuracy of approximation of set X by P can be 

associated. The accuracy of approximation of X by P takes values from the range <0,1> 

and is  defined as follows: 

|)(|
|)(|

)(
XI
XIX

P

P
P =α  . 

 

 The quality of approximation of UX ⊆  by attributes from P represents the 

relative frequency of objects from X, correctly classified using attributes from P. It is 

defined as a ratio: 

||
|)(|

)(
X

XIX P
P =γ  . 

 

Rough approximation of a subset UX ⊆  can be extended to partitions of U , in 

particular to classification of objects into decision classes.  

Supposing that CLASS is a partition of U into n decision classes,  

CLASS={ CL1,...,CLn }, and P a non-empty subset of attributes from C.  

Then, P-lower and P-upper approximation of CLASS is defined as: 

)}(),...,({)( 1 nPPP CLICLICLASSI = , 

)}(),...,({)( 1 nPPP CLICLICLASSI = . 

On such bases, the quality of classification can be defined as the ratio of all  

P-correctly classified objects to all objects in the decision table: 

 

||

|)(|
)( 1

U

CLI
CLASS

n

i
iP

P

∑
==γ . 
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A reduct is a minimal subset of attributes ensuring the same quality of 

classification as the entire set of attributes. More than one reduct can exist for one 

information system. The idea of reducts is interesting as it allows dataset size reduction. 

It is tempting to keep only those attributes that preserve approximation of classification 

and remove those that cannot worsen the classification. 

A core is an intersection of all reducts in the information system. 

 

5.1.2. Generalization of rough approximations for 

incomplete information systems 

The classical rough set approach requires the information table to be complete. Since 

many practical problems are characterized by incomplete information, a generalization 

of the classical approach was needed to allow the information tables to have some 

empty cells. Below, we present an approach for dealing with missing values in rough 

approximation proposed by Greco, Matarazzo and Słowiń ski [20],[21], [22]. 

 

5.1.2.1. Incomplete information system 

The incomplete information system is defined similarly to the information 

systems with the only change of adding to the set V a special symbol  *  to indicate a 

missing value. This augmentation  also introduces changes to the definition of  the 

information function itself. Therefore the incomplete information system is defined as: 

〉〈= *** ,,, fVQUS  

where {*}* ∪= VV , ** : VQUf →× , and {*}),(*
, ∪∈∀ ∈∈ qUxQq Vqxf . 

 

5.1.2.2. Cumulative indiscernibility relation  

The indiscernibility relation  from the classical approach was substituted by the 

cumulative relation on U associated with any non-empty subset P of Q: 

  }*,),(*),(),(),(:),{( ***** PqqxfqyfqxfqyfUUxyI P ∈∀=∨=∨=×∈= . 

 

Thus, y and x are P-indiscernible if for any xyIUyx P
*,, ∈ . 
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The P-elementary set containing objects P-indiscernible with Ux ∈  is defined 

as: 

{ }xUyxI P
*
P

* Iy  :)( ∈= . 

 

5.1.2.3. Cumulative approximations 

Let X  be a non-empty subset of objects from U and P be a non-empty subset of 

attributes from Q. The following definitions can be introduced: 

The P-lower approximation of X: 

})(:{)( *** XxIUxXI PPP ⊆∈= . 

The P-upper approximation of X: 

})(:{)( ***
∅≠∩∈= XxIUxXI PPP . 

The P-boundary of X: 

)()()( *** XIXIXBN PPP −= . 

The accuracy of approximation of set X by P: 

|)(|

|)(|
)( *

*
*

XI

XIX
P

P
P =α  . 

 

 The quality of approximation of UX ⊆  by attributes from P: 

||
|)(|

)(
*

*

X
XIX P

P =γ  . 

 

Rough approximation of a subset UX ⊆  can be extended to partitions of U , in 

particular to classification of objects into decision classes.  

Let CLASS be a partition of U into n decision classes, CLASS={CL1,...,CLn }, 

and P a non-empty subset of attributes from C.  

Then P-lower and P-upper approximation of CLASS is defined as: 

)}(),...,({)( *
1

**
nPPP CLICLICLASSI = , 

)}(),...,({)(
*

1

**

nPPP CLICLICLASSI = . 

The quality of classification: 
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||

|)(|
)( 1

*

*

U

CLI
CLASS

n

i
iP

P

∑
==γ . 

 

 

The generalized approach takes the form of classical situation if the information 

table is free of empty cells. Due to the fact that the analyzed information system had 

missing values, the generalized approach had been used in all the work. 

 

 

5.1.3. Decision rules  

5.1.3.1. Definition of a decision rule  

A decision table can be seen as a set of learning examples which enable 

induction of decision rules [61].  

The decision rule is a logical statement: 

if COND, then DEC 

where COND is the condition part of the rule (i.e. the complex, which is a 

conjunction of elementary conditions called selectors on particular attributes) and DEC 

is a decision part (i.e. a disjunction of assignments to decision classes driven by the 

decision attributes) [70]. 

If the information table is consistent, rules are induced from the decision classes. 

Otherwise, they can be generated from approximations of decision classes. As a 

consequence to that, induced decision rules are categorized into certain and 

approximate ones depending on the used lower and upper approximations, respectively 

[21], [22]. 

Rules are usually formed in the way that they contain the operator '='. Then the 

rule can be expressed as: 

if  
1

),( 1
*

qrqxf =  and ...  
pqp rqxf =),(* , 

then x is assigned to 
ktt orCLorCL ...

1 . 

where Cqi ∈ , 
ii qq Vr ∈  for i=1,2,...p   and CLASSCL

jt ∈  for j=1,2,..k 

If k=1, then the rule r is exact, otherwise it is approximate. 
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The rule r covers (exactly) the object Uy ∈  if y satisfies (exactly) the condition part  

of r. A set of objects from U that match (exactly) the rule r is called a cover of r and 

denoted as COV*(r) (COVx(r)). It is clear that )()( * rCOVrCOV x ⊆  [61]. 

 

5.1.3.1.1. Minimal rule 

An exact decision rule 

if  
1

),( 1 qrqxf =  and ...  
pqp rqxf =),( , 

then x is assigned to CLt. 

is minimal if and only if there is no other rule  

 if  
1

),( 1 huhxf =  and ...  
mhm uhxf =),( , 

then x is assigned to CLt. 

such that { { },...,,},...,, 2121 pm qqqhhh ⊆  and ww ru =  for all { },...,, 21 mhhhw ⊆ . 

An approximate decision rule 

if  
1

),( 1 qrqxf =  and ...  
pqp rqxf =),( , 

then x is assigned to
ktt orCLorCL ...

1
. 

is minimal if and only if there is no other rule  

 if  
1

),( 1 huhxf =  and ...  
mhm uhxf =),( , 

then x is assigned to 
ktt orCLorCL ...

1 . 

such that { { },...,,},...,, 2121 pm qqqhhh ⊆  and ww ru =  for all { },...,, 21 mhhhw ⊆ . 

 

5.1.3.1.2. Minimal set of rules 

A set of decision rules is complete if: 

• each )(*
tc CLIx ∈ supports at least one exact rule pointing at the class 

CLt, for each CLASSCLk ∈  

• each }),...,({
1

*
kttc CLCLBDx ∈ supports at least one approximate decision 

rule pointing at classes  
ktt CLCL ,...,

1
, for each CLASSCLCL

ktt ⊆},...,{
1

 . 

A set of rules is minimal if it is complete and if removing any of those rules 

would make the set non-complete.  
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5.1.3.2. Rule evaluation 

In order to introduce quantitative measures of rule evaluation, let us use the 

following contingency table presented in Table 8. 

 

Table 8. Contingency table for the rule if Cond then Dec  

 Cond ~Cond sum 

Dec nDecCond nDec~Cond nDec 

~Dec n~DecCond n~Dec~Cond n~Dec 

sum nCond n~Cond n 

 

In Table 8 nDecCond is the number of objects covering both Dec and Cond, 

nDec~Cond is the number of objects covering  Cond  but not covering Dec, etc, nDec is the 

number of all objects covered by the rule,  n is the number of all objects.  

Rules can be evaluated by several measures e.g.  

• relative strength of a rule, 

• confidence (also called discrimination level), 

• length of a  rule (also called simplicity), 

• total number of rules. 

The relative strength of a rule is a ratio of the number of positive examples covered 

by this rule to the number of all positive examples in the class, and can formally be 

defined as: 

Cond

DecCond

n
n

)|(Re =CondDeclStr . 

The confidence of a rule is a ratio of the number of positive examples covered by 

this rule to the number of all examples covered by this rule, and can be formally defined 

as follows: 

Dec

DecCond

n
n

)|( =DecCondConfience . 

The length of a rule is the number of selectors (elementary conditions  in the 

condition part of the rule). 

The total number of rules is the number of all induced rules under particular 

conditions. 
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5.1.3.3. Generation of decision rules 

Methods of generating decision rules can be divided into three groups: 

• minimal set of rules covering all objects from a decision table, 

• exhaustive set of rules containing all possible minimal rules for a 

decision table, 

• satisfactory set of rules containing all minimal rules that satisfy 

additional requirements (e.g. minimum acceptable strength of rules) [70].  

 

For the purpose of the analysis, the method of generating the satisfactory set 

of rules was used. It is implemented as the Explore algorithm in the ROSE2 

environment. 

 

Table 9. The  Explore algorithm 

---------------------------------------------------------------------------------------------------------- 
procedure Explore ( 
 Input 
  dec : decision, for which rules are generated 
  pos : set of positive objects 
  neg : set of negative objects 
  max_len: maximum length of generated rules 
  min_sup: minimum power of support of generated rules 
 Output 
  rs : set of generated rules 
) 
begin  

1 rs = {} 
2 ss = { s | COV*(s) ∩  pos ≠  {}∧  COV*(s)≠  pos ∪  neg } 
3 for each selector s in ss do begin 
4      if |COV*(s) ∩   pos| < min_sup then 
5          ss = ss – { s } 
6      else if |COV*(s) ∩  neg| = {} then begin 
7       ss = ss – { s } 
8       r = ‘if s, then dec’ 
9      rs = rs ∪  { r } 
10     end 
11 end 
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12 cq = form a queue with all remaining selectors s1,…,sn from ss 
13 while cq ≠  {} do begin 
14     f = remove the first complex from cq 
15     h = the highest index of selector involved in c 
16     cs = {} 
17     for i = h + 1  to n do begin 
18        if COV*(f) ∩  si ≠  {}then  
19       append f ∧  si to cs  
20     end 
21     for each complex c in cs do begin 
22        if |COV*(c) ∩  pos| < min_sup or len(c)> max_len 

then 
23         cs = cs – { c } 
24      else if |COV*(c) ∩  neg| = {} then begin  
25        cs = cs – { c } 
26      r = ‘if c, then dec’ 
27      if r is minimal then rs = rs ∪  { r } 
28      end 
29     end 
30     cq = cq ∪  cs 
31 end 

end { procedure }  

 

The Explore algorithm first finds all acceptable selectors that are 

characterized by a non empty intersection of their exact cover and the set of positive 

objects. At the same time, those selectors should not cover all the objects in the 

information table.  

Each selector goes through checking if a single condition rule, satisfying the 

specific requirements, can be formed on its basis (lines 3-11). Only selectors covering 

only the positive objects are transformed into rules (line 8). They are removed  (line 7) 

just like selectors with insufficient cover (line 4). All other selectors are put into a queue 

(line 12).  

From line 13 begins a loop creating at least two-condition-long rules. In each 

pass, the first complex is taken from the queue and expanded by adding such selectors 

that have a non-empty intersection of their exact covers and exact cover of the complex. 

Complexes that meet the specific requirements (line 22) and cover only the 

positive objects, form rules (line 26). Newly created rules are added to the resulting set 
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if they are minimal. The remaining complexes that fulfill the specific requirements but 

satisfy also negative objects are added to the queue for further processing in the loop. 

 

5.2. Application of rough set theory to extraction of 

knowledge about congenital heart defects in 

Down syndrome 

The analysis of congenital heart diseases in Down syndrome has been performed 

according to the following steps: 

step 1: application of various preprocessing techniques to the dataset, 

step 2: attribute selection and determination of attribute importance based on 

rough set theory, 

step 3: induction of decision rule set, 

step 4: discussion of results. 

  

All rough set calculations have been performed by the means of ROSE2 software 

developed in the Laboratory of Intelligent Decision Support Systems of the Institute of 

Computing Science, at Poznań  University of Technology [52]. 

 

5.2.1. Application of preprocessing techniques to the data  

Before applying  methods of knowledge extraction to data, preprocessing had 

been performed. Following actions were taken: 

• duplicates were eliminated by putting all database entries of the same child 

into one entry, 

• dataset was reduced by 2,9% by expelling cases with more than one 

attribute value missing, 

• numerical attributes were discretized in the following manner: 

bith_weigth: (-inf; 2500) <2500; +inf),   

fetal_age: (-inf; 38) <38; +inf), 

maternal_age: (-inf; 38) <38; +inf), 

paternal_age: (-inf; 34) <34; +inf). 
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The former two attributes were discretized according to medical standards, and 

for the latter two a version of a minimal entropy method with a stopping condition 

referring to a maximum number (i.e., 2)of intervals per discretized attribute was 

applied.  

 

5.2.2. Attribute selection and determination of attribute 

importance 

Attribute selection and identification of  "the best" subset of attributes is 

connected with rough set approaches of looking for reducts and core of attributes. 

Unfortunately, calculating a core in the analyzed dataset of congenital heart 

malformations with Down syndrome, did not result in a proper subset of attributes. In 

other words, the only reduct contained all ten condition attributes. Therefore no 

expected gain of dataset size reduction was obtained.  

 

5.2.3. Induction of decision rule set 

At this point of the analysis process it was aimed to extract from dataset some 

hidden information regularities represented in a form of interesting and useful to 

medical doctors decision rules. The obtained set of rules should facilitate understanding 

or interpreting collected medical experience. 

The physicians were interested in extracting all rules that satisfy their 

requirements referring to the strength of decision rules. It has been performed by the 

means of the Explore algorithm. The parameter of the minimal relative strength was set 

to 7% both for the class with congenital heart disease (CHD=yes) and for the class 

without it (CHD=no) and the minimal discrimination of the rule was set to 75%, i.e. no 

rule with a ratio of number of cases matching it to number of cases covering only its 

condition part smaller than 75% has been accepted.. Having set the minimal relative 

strength, number of tests was made under changing the maximal length of the rule i.e. 

the number of elementary conditions  in the condition part of the rule. The best quality 

of approximation has been obtained for the maximal rule length equal to 7. Under such 

conditions total number of 31 rules was induced, with the quality of approximation of 

0,1880. They are presented in Table 10 sorted according to the strength of the rule. 
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The applied conditions on the rule strength were too severe to obtain rules from 

class CHD=yes. From medical point of view, correct assignment of children with 

congenital heart disease is more important as misclassifying unhealthy children to 

CHD=no class can have very serious results. Therefore, it was crucial to adjust the 

parameters of the rule induction algorithm in such a way that some rules from CHD=yes 

class would be induced. The total number of  4 rules was induced under the following 

conditions: 

- the minimal relative strength = 2%  

-the minimal discrimination = 75%  

-the maximal length = 7. 

These rules are presented in Table 11. 
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Table 10. Induced rules for the decision class of children without congenital  

heart disease 

no. rule 

relative 

strength 

[%] 

confidence 

[%] 

1 (cytogenetic_exam=nondisjunction)& (birth_weight=1) & 

(maternal_age=1) =>(CHD=no) 
28.60 75.00 

2 (fetal_age = 1) & (birth_weight = 1) & (maternal_age = 1) =>(CHD=no) 21.49 75.61 

3 (sex = M) & (maternal_age = 1) =>(CHD=no) 20.28 75.00 

4 (residence = small town) & (cytogenetic_exam = nondisjunction) & 

(fetal_age = 1) & (birth_weight = 1) =>(CHD=no) 
18.89 76.22 

5 (residence = small town) & (sex = M) & (birth_weight = 1) =>(CHD=no) 18.89 75.17 

6 (sex = M) & (fetal_age=1) & (birth_weight=1) & (paternal_age=1) 

=>(CHD=no) 
18.37 75.18 

7 (residence = country-side) & (cytogenetic_exam = nondisjunction) & 

(birth_weight = 1) & (paternal_age = 1) =>(CHD=no) 
17.33 75.19 

8 (residence = small town) & (fetal_age = 1) & (birth_weight = 1) & 

(obstetrical_history = no) =>(CHD=no) 
16.64 75.59 

9 (residence = country-side) & (birth_weight = 1) & (paternal_age = 1) & 

(smoking_father = no) =>(CHD=no) 
16.64 75.00 

10 (residence = small town) & (cytogenetic_exam = nondisjunction) & 

(fetal_age = 1) & (obstetrical_history = no) =>(CHD=no) 
15.77 75.83 

11 (fetal_age=1) & (birth_weight=1) & (obstetrical_history=yes)=>(CHD=no) 15.25 75.21 

12 (fetal_age=1) &(maternal_age=1) & (obstetrical_history=no)=>(CHD=no) 14.73 75.22 

13 (residence = small town) & (sex = M) & (fetal_age = 1) =>(CHD=no) 14.04 77.88 

14 (residence = country-side) & (fetal_age = 1) & (birth_weight = 1) & 

(paternal_age = 1)  =>(CHD=no) 
13.34 75.49 

15 (sex= M) & (birth_weight = 1) & (obstetrical_history = yes) =>(CHD=no) 13.00 75.76 

16 (residence = small town) & (maternal_age = 1) =>(CHD=no) 12.48 75.00 

17 (sex=M) & (paternal_age = 1) & (obstetrical_history = yes)  =>(CHD=no) 11.44 75.00 

18 (residence = small town) & (sex = M) & (paternal_age = 1) =>(CHD=no) 11.27 76.47 

19 (residence = country-side) & (sex = M) & (paternal_age = 1) & 

(smoking_father = no) =>(CHD=no) 
11.09 75.29 

20 (residence = country-side) & (birth_weight = 1) & (maternal_age = 1) & 

(smoking_father = no) =>(CHD=no) 
10.57 75.31 



 54 

 

Table 10. Induced rules for the decision class of children without congenital  

heart disease- continuation 

no. rule 

relative 

strength 

[%] 

confidence 

[%] 

21 (sex = M) & (cytogenetic_exam = nondisjunction) & (fetal_age = 0) & 

(paternal_age = 1) =>(CHD=no) 
10.57 75.31 

22 (residence = small town) & (cytogenetic_exam = nondisjunction) & 

(fetal_age = 1) & (paternal_age = 1) =>(CHD=no) 
10.23 77.63 

23 (residence = small town) & (fetal_age = 1) & (birth_weight = 1) & 

(paternal_age = 1) =>(CHD=no) 
10.23 75.64 

24 (sex = M) & (fetal_age = 1) & (obstetrical_history = yes) =>(CHD=no) 9.71 76.71 

25 (residence = country-side) & (sex = M) & (birth_weight = 1) & 

(paternal_age = 1) =>(CHD=no) 
9.01 76.47 

26 (residence=country-side) & (maternal_age=1) & (obstetrical_history= no)    

=>(CHD=no) 
9.01 75.36 

27 (residence=country-side) & (birth_weight=1) & (obstetrical_history=yes) 

=>(CHD=no) 
8.67 76.92 

28 (residence = country-side) & (sex = M) & (paternal_age = 1) & 

(obstetrical_history = no)  =>(CHD=no) 
7.97 76.67 

29 (residence = country-side) & (sex = M) & (fetal_age = 0) =>(CHD=no) 7.80 75.00 

30 (sex = M) & (fetal_age = 0) & (birth_weight = 0) =>(CHD=no) 7.63 77.19 

31 (sex = M) & (cytogenetic_exam = nondisjunction) & (maternal_age = 0) & 

(obstetrical_history = yes) & (smoking_father = no)  =>(CHD=no) 
7.28 75.00 
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Table 11. Induced rules for the decision class of children with congenital  

heart disease 

no. rule 

relative 

strength 

[%] 

confidence 

[%] 

1 (residence=big_town) & (sex=F) & (birth_weight=0) & (paternal_age=0)& 

(obstetrical_history = no) =>(CHD=yes) 
2.76 80.00 

2 (residence = small_town) & (fetal age = 0) & (birth_weight = 1) & 

(maternal_age = 0) & (paternal_age = 1) & (obstetrical_history = no) &  

(smoking_father = no) =>(CHD=yes) 

2.41 77.78 

3 (residence = small_town) & (sex =F) & (fetal age=0) & (birth_weight=1) & 

(maternal_age = 0) & (paternal_age = 1) =>(CHD=yes) 
2.07 75.00 

4 (residence = big_town) & (sex = F) & (fetal age = 0) & (birth_weight=0) & 

(paternal_age = 0)  =>(CHD=yes) 
2.07 75.00 



5.2.4. Discussion of results 

 Application of rough sets to knowledge extraction resulted in a set of 35 

rules, which could facilitate understanding or interpreting of collected medical 

experience.  

  

 Although no unambiguous rule has been obtained in the analysis, it is clear 

that the induced rules can greatly enhance further epidemiological studies on congenital 

heart defects in children with Down syndrome. Without a doubt, they allow divagations 

concerning difficult links between the attributes, which might have seemed totally 

unrelated before. The rough set analysis is an excellent introduction to epidemiological 

studies on the role of individual parameters in congenital heart defects epidemiology in 

Down syndrome and the potential, interesting, relations between them. 

 

 The quality of approximation of the classification was low (0.1880). It 

means that the analyzed dataset is full of inconsistencies. Let us stress that this is a 

feature of the dataset, independent of the data analysis method used. Hence, 

unfortunately, the 10-fold cross-validation test of rules cannot be expected satisfactory 

as it is impossible to derive knowledge from ignorance. One of the reasons for such low 

quality of approximation can be the fact that there is no quality control over data at the 

phase of registration of a new case of congenital malformation. The paper registration 

forms filled in by physicians all over Poland sometimes contain information wrongly  

classified, interpreted or omitted. A kind of quality control should be introduced by 

substituting the paper registration forms by registration through a web side. This 

solution would ensure that no crucial information would be omitted. Applying value 

lists to as many attributes as possible would standardize physicians responses to 

registration form questions. Moreover, registration through a web site would eliminate 

the phase of inserting the information from the paper forms into the database, as the 

data could automatically be send to database. Many, difficult or even impossible to 

detect mistakes can be made at this phase if the data is inserted manually, not 

automatically. Switching to a computer solution at all data gathering phases would 

result in a better quality of the data and that could cause a better quality of 

approximation. 
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 The gathered data is not an easy set to analyze. Unfortunately, the dataset did 

not allow to use all benefits of applying rough set theory - no proper reducts were 

found.  

 

 An experiment consisting in observing the quality of classification of 

different subsets of condition attributes was conducted. All possible subsets containing 

one or two condition attributes had 0.000% quality of classification. Moreover, there 

was one three-attribute subset that had the quality of classification just below 0.05%. 

The following attributes belong to that subset: smoking mother, smoking father  and 

birth weight. This is the largest subset of attributes for which  the quality o classification 

did not exceed the level of 0.05%. Therefore, we consider this subset as the subset of 

the least valuable and most noisy attributes.  

 

 There were 31 rules induced for the class without congenital heart disease 

(CHD=no). The best relative strength obtained was 28,6%. Three rules attained the level 

of 20% strength. The minimal strength boundary was 7%. The rules are mostly long (up 

to seven elementary conditions) but in general, their strength is satisfactory. Of course, 

none of the rules can be treated as a ready to use formula, but they can facilitate 

understanding or interpreting collected medical experience.  

 

 Only four rules were induced for the class of children with congenital heart 

disease (CHD=yes) and their relative strength was around 2%. In other words, the rule 

with the highest strength of matched only 2,76% of all cases from CHD=yes class i.e., 

the rule is supported by 8 objects. This result is rather poor, especially in the situation 

when distinguishing children from this class is more important from the medical point 

of view than children from the other decision class.  

The dataset was characterized by a strong imbalance in the number of cases 

belonging to each of the decision classes (34% of cases belonging to class CHD=yes, 

66% to class CHD=no). This could cause such an  imbalance in the number and strength 

of induced rules for each decision class.  

 

 In order to evaluate the set of induced rules a 10-fold cross-validation test 

was performed: the dataset was divided into 10 subsets and in each of 10 iterations one 

of the 10 subsets was used as the test set and the other 9 subsets were put together to 
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form a training set, then the average error across all 10 trials was computed. So far, we 

do not have access to objects that did not appear in the decision table during rule 

generation, therefore 10-fold cross-validation was applied.  

 

 A confusion matrix contains information about actual and predicted 

classification done by the classification system (i.e., set of rules). Confusion matrix was 

made to evaluate the performance of  induced set of rules. 

 The results are shown in Table 12. 

 

Table 12. 10-fold cross-validation results 

Confusion Matrix (sum over 10 passes) 

           PREDICTED 

ACTUAL  CHD=no    CHD=yes   

CHD=no          566            11      

CHD=yes         287             3        

Average Accuracy [%] 

                          Correct             Incorrect               

Total              65.64 (+-6.41)    34.36 (+-6.41)      

CHD=no           98.18 (+-2.24)            1.82 (+-2.24)            

CHD=yes          1.27 (+-1.08)     98.73 (+-1.08)      

 

The total average accuracy exceeds 65%.  It is very high (over 98%) for the 

decision class without congenital heart disease and, unfortunately, very low (over 1%) 

for the CHD=yes class. From medical point of view, it is much more important to 

receive high accuracy for the class with heart disease. The confusion matrix shows that 

the induced rules allowed to classify well only 3 out of 290 cases with congenital heart 

disease i.e. over 98% of examples from that class were incorrectly classified. This is an 

insufficient result, since a misclassification of ill patient costs much more that 

misclassification of patient without heart problems. Therefore, it is necessary to lead 

further research after working on dataset consistency.    
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5.2.4.1. Clinical interpretation 

 In most of rules (19/31) concerning children with Down syndrome without 

CHD the place of residence is usually a village or a small town. On one hand it might be  

the result of a lower exposure to the harmful effect of environmental pollution on 

pregnant women who live away from big urban centers. On the other side it could be 

connected with the limited access to echocardiographic diagnosis, thus with a lower 

detection rate of CHD in children whose mothers live away from the major academic 

centers.  

 

 In the rules concerning children without CHD, the male sex is dominant. 

This may be related to a higher survival rate of female fetuses with DS and coexisting 

CHD. Rule 3 seems to be very interesting; it indicates absence of CHD in male children 

of mothers in advanced age. This could be a confirmation of our hypothesis, with regard 

to the fact that older mothers carry to full term more seldom, in the cases in which the 

fetus has a CHD. 

 

 According to rule 30, boys are born more often without CHD, even if their 

birth weight is low and they are born prematurely.  Do girls with low birth weight and 

born prematurely –  due, for instance, to mother’s disease –  display a lower survival rate, 

if with CHD? We are not able to confirm that yet.  

  

 Rules 13 and 5 should be taken into closer consideration as well. They 

indicate that boys whose mothers live in small towns are born often without CHD, if 

they have proper birth weight and are born at term. We should wonder whether the 

absence of CHD predisposes to the proper birth weight and the birth at term or perhaps 

the fetuses - unexposed to mother’s harmful factors –  tolerate better the CHD incidence. 

The analysis into the rules in which absence of CHD correlates with previous 

miscarriages and fetal deaths in mother's obstetrical history will be very significant. 

Rule 11 indicates that infants with correct birth weight and born at full term, are born 

without CHD by mothers who have experienced miscarriages earlier. We assume these 

are mothers, whose risk of miscarriage is higher than in mothers who have never 

miscarried before. Is it then not a confirmation of our hypothesis that in the mothers 

with diseases constituting a potential risk of losing the fetus, the most prone to survive 
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are the strongest fetuses developing in a relatively correct manner (i.e. without CHD 

and with physical conditions allowing proper birth weight and birth at full term)? 

Moreover, this concerns boys, as illustrated by rules 24 and 15.  

 

 

5.2.5. Further experiments 

Selection is an operation that selects only some rows (cases) from the table 

(dataset) while discarding other rows.  

Projection, on the other hand, is an operation that selects only certain columns 

(attributes) from the table (dataset) and discards the other columns. 

The dataset obtained from the Polish Registry of Congenital Malformations 

underwent several selection and projection processes: 

1. random selection of 290 cases from both decision classes 

2. set of projections on 9 different condition attributes 

3.  set of projections on 8 different condition attributes 

 

As a result we have obtained number of modified datasets to which application of rough 

set approach was applied. By the means of the Explore algorithm, sets of decision rules 

have been obtained from each modified dataset. The algorithm has been performed 

twice on each new dataset with the parameter of minimal strength of the decision rules 

firstly set to 7%, and then to 2%.  We have observed the changes in the quality of 

approximation, number of attributes in the core and number of decision rules for each of 

the decision classes, depending on the change applied to the dataset. 

 

5.2.5.1. Experiment 1: selection  

This experiment has been carried out on a dataset in which the number of objects 

from both decision classes was equal. In the original dataset the decision classes were 

imbalanced, favoring the CHD=no class to which belonged 66% of all cases. This 

imbalance as well as low quality of some attributes caused extremely low quality of 

approximation in the original dataset. Moreover, only 4, very weak in strength, rules foe 

the class with congenital heart disease have been obtained. 
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Therefore, an experiment on a dataset with balanced decision class has been 

prepared. The balance was obtained by random selection of 290 cases from the 

CHD=no class and adding all (i.e., 290) cases from the CHD=yes class. The  results of 

this experiment are presented in Table 13, for comparison the results obtained on the 

original dataset are shown in Table 14. 

 

 

Table 13. Results after selection of dataset with a balanced in decision class 

number of rules 
experiment 

number 

quality of  

approximati

on 

number of  

attrib 

in core 

min rule 

strength [%] CHD=yes CHD=no 

7 5 1 

1 0.2397 10 2 75 35 

 

 

Table 14. Results on the original dataset 

number of rules quality of  

approximati

on 

number of  

attrib 

in core 

min rule 

strength [%] CHD=yes CHD=no 

7 0 31 

0.1880 10 2 4 80 

 

Selection of the same number of cases from both decision classes resulted in 

over 27%-rise of the quality of approximation. Moreover, the number of rules obtained 

for the CHD=yes class exceeded the number for CHD=no class and from medical point 

of view, rules talking about presence of congenital heart disease are more valuable.  

This experiment has shown that better results, in terms of quality of 

approximation and number of rules for congenital heart disease, can be obtained for a 

dataset with balanced decision class. 

 

5.2.5.2. Experiment 2: projection to 9 attributes     

Since no reducts had been found through the analysis of the original dataset, ten 

new datasets have been prepared, each containing only nine out ten original condition 

attributes, and rough set approach has been applied to them. Through projection to 9 
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attributes, 10 different datasets have been obtained and therefore ten rounds of 

experiment conducted.    

The  results of this experiment are presented in Table 15, for comparison the 

results obtained on the original dataset are shown again in Table 16. 

 

Table 15. Results after projection - 9 attributes left 

number of rules 

experiment 
number 

number 
of  

condition 

attrib omitted attrib 

quality of  
approximation 

number of 
attrib in 

core 

min rule 
strength CHD=yes CHD=no 

7 0 31 

1 9 smoking mother 0.1765 9 2 4 75 

7 0 27 

2 9 smoking father 0.1603 9 2 3 65 

7 0 15 

3 9 birth weight 0.1384 9 2 0 43 

7 0 19 

4 9 paternal age 0.1373 9 2 0 45 

7 0 24 

5 9 

results of 

cytogenetic 

exam 0.1349 9 2 4 60 

7 0 23 

6 9 maternal age 0.1338 9 2 2 54 

7 0 16 

7 9 fetal age 0.1292 9 2 1 42 

7 0 16 

8 9 sex 0.1223 9 2 1 49 

7 0 20 

9 9 

obstetrical 

history 0.1211 9 2 2 41 

7 0 12 

10 9 

place of 

residence 0.0704 9 2 0 31 
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Table 16. Results on the original dataset 

number of 

rules experiment 

number 

number of 

condition 
attrib 

omitted 

attrib 

quality of  

approximation 

number of  

attrib in core 

min rule  

strength CHD=yes CHD=no 

7 0 31 

1 10 - 0.1880 10 2 4 80 

 

 

Series of ten projections allowed to determine a kind of an attribute rank. Sorted 

in order of decreasing quality of classification   Table 15, shows elimination of which 

attributes would have the least effect on quality of the classification. None of the 

examined ten subsets is as good, in terms of quality of classification, as the whole 

dataset (after all, no reducts were found) but it can be observed that eliminating smoking 

mother attribute worsens the quality of classification the least out of all attributes. That 

means that this attribute is the least informative, which could be caused by low quality 

control over the process of data acquisition and resulting from it high imbalance in 

value distribution ( 98% of all cases had value no on this attribute).  

Low quality and imbalance in value distribution could also result in low 

informative abilities of attribute smoking father.  

Attributes birth weight and paternal age were found to have correlation 

respectively with fetal age and maternal age and that may be one of the reasons for such 

high position of those attributes in the result Table 15. 

 

5.2.5.3. Experiment 3: projection to 8 attributes     

This experiment is  continuation of the previous one. Four attributes which had the least 

decreasing effect on quality of approximation in Experiment 2 (smoking mother, 

smoking father, birth weight, paternal age) were eliminated in pairs from the original 

dataset. In the result five new datasets were prepared through the process of projection.  

By the means of the Explore algorithm, sets of decision rules have been obtained from 

each modified dataset and the results are presented in Table 17. 
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Table 17. Results after projection - 8 attributes left 

number of rules 

experiment 

number 

number 

of  
condition 

attrib 

omitted 

attrib 

quality of  
approximati

on 

number of  

attrib in core 

min rule  

strength CHD=yes CHD=no 

7 0 15 

1 8 

smoking 

mother, 

birth weight 0.1269 8 2 0 42 

7 0 19 

2 8 

smoking 

mother, 

paternal age 0.1257 8 2 0 44 

7 0 13 

3 8 

smoking 

father, 

birth weight 0.1130 8 2 0 35 

7 0 17 

4 8 

smoking 

father, 

paternal age 0.1119 8 2 0 37 

7 0 17 

5 8 

smoking 

father, 

smoking 

mother 0.0957 8 2 2 33 

 
 

Surprisingly, elimination of the two worst, according to Table 15, did not give 

the best result in terms of quality of approximation. Eliminating smoking mother and 

smoking father worsened the quality of approximation strongly, but only in that dataset 

rules for CHD=yes class were obtained. Since projection to 8 attributes resulted in 

extremely low quality of approximation and/or did not allow to obtain rules for the class 

with congenital heart disease, no further projections to even smaller number of 

attributes were performed.      
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6. Application of instance based learning to 
knowledge extraction 

6.1. Nearest neighbor methods 

The nearest neighbor method is one of the simplest learning methods. In order to give 

classification decision for a case, the method takes under consideration the case's 

nearest neighbor i.e., a case from a training set that is the closest to the case being 

classified in terms of a chosen distance metric of closeness. The distance metric 

expresses how similar the case being classified is to a case from the training set. The 

shorter the distance, the more similar the cases are. Among the most commonly used 

distance measures of closeness are: 

• absolute distance 

• Euclidean distance 

• various normalized distances 

 

Typically, the distance is calculated  attribute (feature) by attribute and then 

summed up. When using the absolute distance, the absolute difference between features 

is summed up. In case of Euclidean distance, the difference between the values of each 

feature is squared and summed up for all features and the square root of this sum 

becomes the actual Euclidean distance.    

 The nearest neighbor classifier takes as an input the whole training set of 

samples, stores it and makes the classification decision for new samples using the 

training set. The classification decision is made in the following manner:  

When a new case arrives, the nearest neighbor classifier calculates the distance 

between a new case and every case in the training set. If the training set contains a case 

exactly the same as the new case (i.e., a case the least possibly distant), then the 

classifier places the new sample into the training case's decision class. If, however, such 

a case is not found, then the nearest neighbor classifier pick the class of the closest 

training case [69].  

The nearest neighbor method belongs to a family of methods known as the  
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k-nearest neighbors methods (k-NN). Instead of finding the single nearest neighbor, 

these classifiers look for k-nearest neighbors, where k is a constant. A new case is 

classified to the class that appears most frequently among the k-neighbors, and 

therefore, it is advisable to use an odd number of neighbors in order to eliminate 

possible ties.  

 The nearest neighbor method makes computationally no effort in learning from 

the samples, but the computation for predicting the classification of a new case is 

relatively large as the new case needs to be compared with every case in the training set. 

Therefore, the division for computation in learning phase and classification of new 

cases phase, is opposite to other classification methods like decision rules or decision 

trees. For those other methods, learning can be quite expensive, where as the 

classification and prediction on a new case typically involves a simple, computationally 

inexpensive matching step [69].  

The weak point  of the nearest neighbor algorithms is that they are non-incre-

mental and their primary goal is to maintain perfect consistency with the initial training 

set. Although they summarize the data, they do not attempt to maximize classification 

accuracy on new cases and this ignores problems like noise, often met in the real life 

datasets.  In order to overcome those problems, the idea of new group of algorithms 

called instance based learning (IBL) was presented. They are instead incremental and 

their goals include maximizing classification accuracy on subsequently showed 

instances [3].  

 

6.2. Methodological elements of instance based 

learning 

Instance based learning is, in general, a computer method that attempts to study 

solutions that were used to solve problems in the past in order to solve the current 

problem, by analogy or association. In this work, the focus was put on the group of 

instance based algorithms called IBL1-IBL3.  

IBL1, IBL2, IBL3 were originally proposed and developed by David Aha and 

his collaborators [2] [3] [1]. In general, all of them are based on a variant of the nearest 

neighbor algorithm. The IBL algorithm takes as an input a set of training examples 

(traditionally called instances) and produces as an output a particular set of instances 
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called concept description (CD). An instance-based concept description includes a set 

of stored instances and, possibly, some information concerning their past performance 

during classification (e.g., their number of correct and incorrect classification 

predictions). This set of instances can change after presenting each training example [3]. 

Learning phase of such classifier finishes after having seen all instances from the 

training set and producing the final concept description. The phase of prediction of a 

classification for a new instance is  done according to the nearest neighbor method with 

the concept description used as a set in which the nearest neighbor is searched for.  

The learning phase of all IBL algorithms is composed of three parts: 

• similarity function, 

• classification function, 

• concept description updater. 

The similarity function computes the similarity between a training instance and 

the instances in the concept description. 

The classification function receives as the input the computed similarities 

between the newly presented instance from the training set and each of the instances 

from the concept description and  yields a classification for the new instance. For each 

instance from the training set, the yield classification is compared with the actual one, 

which is known since the new instance is a training instance, and on these grounds a 

classification accuracy (i.e., a ratio between the number of correctly classified instances 

and the number of all instances in the training set) of the concept description can be 

worked out. The concept descriptions' classification accuracy (accuracy) will be used to 

measure the performance of the instance-based learning algorithms. 

The concept description updater maintains records on classification performance 

and decides which instance to add to the concept description and/or which to drop from 

the concept description. 

    

In the prediction of classification for new instances from the training set or 

outside of it, IBL algorithms assume that similar (i.e. least distant according to some 

similarity function) instances have similar classifications. This leads to their local bias 

for classifying new instances according to their most similar neighbors' classification 

[1]. 

The similarity function used in IBL1, IBL2 and IBL3 is: 
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It is assumed that missing values are maximally different from the presented 

value (i.e., they take the maximal possible for this type of attributes value of Feature-

dissimilarity) and if they are both missing, their similarity is taken as 1. 

 

6.2.1. The IBL1 algorithm 

The IBL1 algorithm is the simplest instance-based learning algorithm. It is 

identical to the nearest neighbor algorithm with the exception that it normalizes its 

attributes' ranges, tolerates missing values, processes the examples incrementally and 

saves all processed training examples in the concept description (CD). 

Table 18 presents the learning phase of the IBL1 algorithm. Later, new instances 

will be classified according to the nearest neighbor schema with concept description as 

the set from which the nearest neighbor is taken. 

 

Table 18. The IBL1 algorithm 
---------------------------------------------------------------------- 

procedure IBL1 ( 
 Input 
  TS : Training Set 
 Output 
  CD : concept description  
) 
begin 
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1 CD = {} 
2 if CD ≠ {}then  
3    begin 
4       for each x in TS do 
5          for each y in CD do 
6             Sim[y] = Similarity (x,y) 
7       ymax = some y in CD with maximal Sim[y] 
8       if class(x) == class(ymax) then 
9          classification = correct 
10       else classification= incorrect 
11    end 
12 CD = CD ∪  {x} 
end { procedure } 

---------------------------------------------------------------------- 
 

The IBL1 algorithm first initiates an empty concept description (line 1). This 

makes the condition from line 2 true and therefore the first instance from the training 

set is added to the concept description (line12). This makes the condition from line 2 no 

longer true, and therefore each next instance from the training set goes through more 

complex processing (lines 3-11) before it is also finally added to the concept description 

(line12). For each not-first instance from the training set its similarity with every 

instance already belonging to concept description is calculated (line 6). Then, an 

instance from the concept description with the highest similarity value is chosen (line 7) 

and the classification proposed by this instance is compared with the real classification 

for the training instance (lines 8-10). Note, that these statements (lines 8-10) can be 

easily extended to count the number of correct and incorrect classifications. Such 

counters could be helpful when calculation the accuracy of classification.  

The final output concept description contains all the instances from the training 

set.   

As it was shown in several computational studies [2] [1]. this simple algorithm 

performs relatively well compared to other machine learning algorithms. 

The weak side of this algorithm is its large storage requirements as it puts to the 

concept description all instances from the training set. That means that, the storage 

requirements will grow with the enlargement of the training set. It seems that the bigger 

the training set the better classification accuracy will be obtained, but those growing 
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storage requirements are a strong disadvantage. Therefore, a modification of IBL1 

addressing that problem was proposed under a name of IBL2. 

 

6.2.2. The IBL2 algorithm 

The IBL2 algorithm was proposed to reduce the time needed to find the similar 

stored case matched and to reduce the storage requirements i.e. the number of instances 

remembered in concept description. The IBL2 learning phase, described in Table 19, is 

identical to IBL1's except that it saves only misclassified instances. 

  

Table 19. The IBL2 algorithm 

---------------------------------------------------------------------------------------------------------- 
procedure IBL2 ( 
 Input 
  TS : Training Set 
 Output 
  CD : concept description 
) 
begin 

1 CD = {} 
2 for each x in TS do 
3    if CD == {}then       
4       CD = CD ∪  {x} 
5    else 
6       begin 
7          for each y in CD  do 
8             Sim[y] = Similarity (y,x) 
9          ymax = some y in CD with maximal Sim[y] 
10          if class(x) == class(ymax) then 
11             classification = correct 
12          else 
13             begin  
14                classification = incorrect 
15                CD = CD ∪  {x} 
16             end 
17        end 

end { procedure } 
---------------------------------------------------------------------------------------------------------- 
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The algorithm at the beginning initiates an empty concept description (line 1). 

Like in IBL1, the first instance from the training set is added to the concept description 

unconditionally. Then each next instance from a training set goes through calculations 

(lines 6-17) in order to determine whether this instance should be added to the concept 

description or not. For each not-first instance from the training set its similarity with 

every instance already belonging to concept description is calculated (line 8), an 

instance from the concept description with the highest similarity value is chosen (line 9) 

and the classification proposed by this instance is compared with the real classification 

for the training instance (lines 10-16). Note, that these statements (lines 10-16) can be 

easily extended to count the number of correct and incorrect classifications. Such 

counters could be helpful when calculation the accuracy of classification. The not-first 

instance from the training set shall be join the concept description only if its real 

classification differed from the classification proposed by its most similar neighbor 

from the concept description.  

The output is a concept description that contains those instances from the 

training set that have been incorrectly classified by its nearest neighbor. 

The idea of saving only misclassified instanced has an intuitional justification by 

the fact that if the concept description is good enough to correctly classify a new 

instance from the training set, then there is no need to add such low-informative 

instance to the concept description. But in situations in which the classification of 

concept description failed, it is obvious that this instance from the concept description 

cannot classify the new training instance well. Therefore, the training instance is added 

to the concept description. 

Empirical results obtained by D. Aha [2] [3] [1] show that IBL2 can 

significantly reduce IBL1's storage requirements only slightly decreasing classification 

accuracy. 

IBL2's storage requirements can be potentially significantly reduced comparing 

to IBL1. The reduction is the greatest when none of the training instances is noisy. 

However, the storage requirements increase with the increase of noise level as noisy 

instances, with a high probability, will be misclassified and consequently saved. These 

noisy instances will probably misclassify the non-noisy examples and cause the growth 

of the concept description. 

IBL2's classification accuracy drops more quickly than IBL1's when the level of 

noise in data increases (i.e., when the number of noisy instances increases). The reason 
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for that is that the noisy instances are almost always misclassified. Since IBL2 saves 

only a small percentage of non-noisy training instances, its saved noisy instances  are 

more often used to generate classification decisions [3]. A solution aiming to tolerate 

noisy instances was presented as further modification of IBL2 called IBL3. 

 

6.2.3. The IBL3 algorithm 

The IBL3 algorithm is a noise-tolerant extension of IBL2 that keeps additional 

information about stored instances and tries to evaluate which of them will perform well 

during classification. IBL3 maintains a classification record i.e., the number of correct 

and incorrect classification attempts, with each saved instance. Moreover, IBL3 

employs a significance test to determine which instances are good classifier and which 

ones are believed to be noisy (the former are added to CD, the latter discarded from it). 

The details of IBL3 learning phase are presented in Table 20. 

  

Table 20. The IBL3 algorithm 

---------------------------------------------------------------------------------------------------------- 
procedure IBL3 ( 
 Input 
  TS : Training Set 
 Output 
  CD : concept description 
) 
begin 

1  CD = {} 
2  for each x in TS do 
3     if CD == {}then       
4        CD = CD ∪  {x} 
5     else 
6        begin 
7           for each y in CD  do 
8              Sim[y] = Similarity (y,x) 
9           if ∃ {y in CD | acceptable(y)} then 
10              ymax = some acceptable y in CD with maximal Sim[y] 
11           else 
12              begin 
13                 i = a randomly selected value in [1|CD] 
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14                 ymax = some y  in CD  that is the ith most similar  
    instance to x 

15              end 
16           if class(x) == class(ymax) then 
17              classification = correct 
18           else 
19              begin 
20                 classification = incorrect 
21                 CD = CD ∪  {x} 
22              end 
23           for each y in CD do 
24              if Sim[y] ≥ Sim[ymax] then 
25                 begin 
26                    Update y’s classification record 
27                    if y’s record is significantly poor then 
28                       CD = CD – {y} 
29                 end 
30        end 

end { procedure } 
----------------------------------------------------------------------
 

 
The algorithm at the beginning initiates an empty concept description (line 1). 

Like in IBL1 and IBL2, the first instance from the training set is added to an empty 

concept description unconditionally and calculation go on for next instances. Then  

similarity is calculated between the analyzed instance from the training set and all 

instances from the concept description (line 8). Next, the most similar neighbor is found 

(line 10) in the subset of acceptable neighbors (line 9) i.e., in the subset of those 

instances whose classification accuracy is significantly greater than its class's observed 

frequency (i.e., the percentage of processed training instances that are members of this 

class). If the classification proposed by the found neighbor is different from the real 

classification of the analyzed training instance (line 18), then the instance from the 

training set is added to the concept description (line 21). But once added to the concept 

description, the instance does not have to stay there. It shall be discarded from the 

concept description (line 28) if a significance test (line 27), which uses information 

gathered in the classification records, points it as believed to be noisy (i.e., its 

classification record is significantly poor).    
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For each training instance x, classification records are updated (line 26) for all 

saved instances that are at least as similar as x's most similar acceptable neighbor (line 

24). If none of the saved instances are acceptable (line 11), a random number i  between 

1 and the number of saved instances is taken (line 13) and the i most similar saved 

instances' classification records are updated (line 26). Based on the information in the 

classification record, instances accuracy is counted and instances are dropped from the 

concept description (line 28) if their accuracy is not significantly greater than theirs 

class's observed relative frequency. 

Comparing a saved instance's accuracy with its class's observed frequency, 

decreases its sensitivity to skewed distributed concepts. Naturally, instances in concept 

description with high observed relative frequencies are expected to have relatively high 

classification accuracies as a relatively high percentage of its possible classification 

attempts will be for instances in its class. Analogically, instances from the concept 

description that have low observed relative frequencies are expected to have relatively 

low classification accuracies. IBL3 can more easily tolerate skewed concept 

distributions thanks to the mechanism of comparing instance's accuracy wit its class's 

frequency [3]. 

IBL3 assumes that the classification records of noisy instances will distinguish 

them from non-noisy instances as the former will have poor classification accuracies 

because their nearby neighbors in the instance space will invariably have other 

classifications [1]. This way, IBL 3 potentially will have less noisy instances in its 

concept description than IBL2 and therefore it is often referred to as a noise-tolerant 

extension of IBL2.  

 

6.2.4. Modifications of the IBL algorithms 

All IBL calculations were performed by the means of a slightly modified 

implementation of D. Aha's IBL algorithms developed at Poznan University of 

Technology by J. Stefanowski and S. Urbaniak. The introduced modifications extended 

original IBLs' abilities by adding more sophisticated approach to: 

• handling nominal attributes 

• working with data containing missing attribute values 

 



 75 

6.2.4.1. Modification to handling nominal attributes  

The original metric for nominal attributes was substituted by the value difference 

metric (VDM). It defines the distance between two nominal values xi and xj as: 

∑
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where k is the identifier of nominal attribute, c is the number of decision classes, 

Ci,h,k is the number of learning instances that have xi value of k attribute and belong to h-

th decision class; 

and Ci,k is the number of all learning instances that have xi value of k attribute. 

This metric is always 0 if i=j. It is greater if the values of xi and xj discriminate well 

decision classes. The distance metric for numerical attributes is computed as before and 

both metrics are aggregated in the final similarity measure [62]. 

 

6.2.4.2. Modification to working with data containing missing 

attribute values 

A technique based on substituting the missing value by the most common value of 

this attribute was proposed. Preprocessing of the input instances is needed to calculate 

the most common value. While calculating the most common value only instances 

belonging to the same decision  class were taken into account [62]. 

The software turns those modifications on on the user's demand. 

 

6.3. Application of IBL1-IBL3 to extraction of knowledge 

about congenital heart defects in Down 

syndrome 

The analysis of congenital heart disease in Down syndrome has been performed 

using the IBL1-3 implementation extended by modifications handling nominal 

attributes and missing values. Missing values have been filled in by the most commonly 

appearing value from the particular attribute domain.  
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The parameters used to measure the performance of the classifiers were the 

classification accuracy (i.e., the concept description's classification accuracy, defined as 

the percentage of correct classification attempts) and the storage requirements (i.e., the 

size of the concept description, defined as the number of saved instances used for 

classification decisions). They were calculated during the 10-fold cross-validation 

process. 

During the test we have manipulated with the following parameters: number 

most similar of neighbors when making classification decision (the k parameter for the 

k-NN algorithm) and turning on/off the modification for handling nominal values, in 

order to obtain the best classification accuracy on the analyzed dataset of children with 

Down syndrome and congenital heart malformations.  

Number of tests has been carried out with changing parameters and the most 

informative results of IBL1 are presented in Table 21. For IBL2 and IBL3 algorithms 

the same tests have been performed but the result, in terms of classification accuracy 

obtained by IBL1 has not been beaten. In Table 22 are gathered the best results obtained 

by means of IBL2 and IBL3 algorithms. 

 

Table 21. Results obtained from IBL1 algorithm  

IBL1 test 1 test 2 test 3 test 4 test 5 
no. of neighbors taken 

for classification 
k=1 k=1 k=5 k=11 k=11 

modification for 

handling nominal 

values 

off on on on off 

modification for 

handling missing 

values 

on on on on on 

no. of examples in  

concept description 
867 867 867 867 867 

classification accuracy 54.07  

(+-1.46) 

53.73 

(+-2.27) 

59.56 

(+-2.15) 

62.52 

(+-1.06) 

64.50 

(+-1.34) 
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Table 22. Results obtained from IBL2 and IBL3 algorithms 

type of algorithm IBL2 IBL3 
no. of neighbors taken for 

classification 
k=11 k=11 

modification for handling 

nominal values 
off off 

modification for handling 

missing values 
on on 

no. of examples in  

concept description 
267 35 

classification accuracy 56.27 

(+-1.45) 

54.96 

(+-4.35) 

 

 

In results obtained by IBL1 algorithm a growth of classification accuracy is 

observed with the increasing the number of nearest neighbors taken under consideration 

when making classification decision. Finally, classification accuracy has reached its 

highest value of 64.5% for k=11. Surprisingly, the results were better when the 

modification for handling nominal attributes was turned off. The modification did not 

bring the expected improvement in the result. The obtained classification accuracy, 

however, seems to be low. In a dataset where 64% of all cases belongs to one decision 

class, classification accuracy at 64.5% is not satisfying. If without any calculations, all 

cases would be classified as not having congenital heart disease, the classification 

accuracy would reach 64%. Therefore, obtained 64.5%  is rather disappointing result. 

Moreover, classification accuracy in the decision class with congenital heart disease, 

presented in Table 23, is below expectations, as it is only 0.69%.    
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Table 23. 10-fold cross-validation results for IBL1 (test5) 

Confusion Matrix (sum over 10 passes) 

           PREDICTED 

ACTUAL  CHD=no    CHD=yes   

CHD=no          557            20      

CHD=yes         288             2        

Average Accuracy [%] 

                          Correct             Incorrect               

Total              64.50 (+-1.34)    35.50 (+-1.34)      

CHD=no           96.53 (+-2.24)            3.47 (+-2.24)            

CHD=yes          0.69 (+-0.58)     99.31 (+-0.58)      

 

 

In tests 1-5 there were 867 cases taken as training instances and they all were 

added to the concept description according to IBL1's rule to take to concept description 

all the instances from the training set. Thus, no improvement on storage requirements 

was expected as long as working with IBL1.    

 

For algorithms IBL2 and IBL3 analogical as for IBL1 tests have been carried 

out. Unfortunately, applying those algorithms did not result in improving classification 

accuracy. The best results obtained by means of IBL2 and IBL3 are presented in  

Table 22.   

For IBL2 the highest classification accuracy was obtained in the same conditions 

(k=11, modification for special handling nominal values off) as the highest one for IBL1 

and its value was 56.27%. Its a very low result, which shown that the strategy of 

remembering in the concept description only the misclassified instances, brought a 

decrease in classification accuracy by 8.23%. However, it resulted in reduction by over 

two thirds of the storage requirements. 

In case of IBL3 algorithm, the classification accuracy dropped even more down 

to 54.96%. That was the best result obtained by IBL3 and it was done for k=11 and the 

modification for special handling of nominal attributes turned off. However, this 

algorithm, brought as expected the biggest reduction of storage requirements. In concept 

description there were only 35 instances.  This shows that even though IBL3 did not 
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exceed the best classification accuracy of IBL1, its results comparing with IBL2's are 

very good. IBL2 needed 267 instances in concept description to reach 56.27% 

classification accuracy, while IBL3 kept only  35 instances in concept description and 

its classification accuracy dropped only by 1.31%. 

 

All in all, obtained classification accuracies were disappointingly low and this 

brings us back to the discussion about dataset quality. Perhaps, introduction of quality 

control in the phase of data acquisition, would reduce the amount of noise and thereby 

also inconsistency in the dataset which could give an effect of higher classification 

accuracies. However, it also undeniable that the analyzed dataset is difficult with its 

imbalances of value distribution, inconsistencies and missing values. This also has an 

effect on achieved classification accuracies. One cannot forget, that the analyzed data is 

a real life dataset, in which inconsistencies might not only be caused by noise but also 

be the effect of existence of conflicting observations in the real life.   

 

6.3.1. Further experiments 

Since IBL1 algorithm had performed the best in terms of classification accuracy 

on the analyzed dataset, it was also additionally applied to the datasets prepared for the 

purpose of further experiments using the rough set approach (see chapter 5.2.5). 

Therefore, three experiments using IBL1 algorithm were carried out on:   

1. random selection of 290 cases from both decision classes 

2. set of projections on 9 different condition attributes 

3. set of projections on 8 different condition attributes 

 

For each of the new datasets, missing values had been filled in by the most 

commonly appearing value from the domain of a particular attribute. The modification 

for handling nominal values was turned off. The k parameter was set to 11. The 

classification accuracy obtained during a 10-fold cross-validation process was observed. 

Since only IBL1 algorithm was used, the storage requirements were not observed or 

compared as they did not change in the experiments. 
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6.3.1.1. Experiment 1: selection  

This experiment has been carried out on a dataset in which there were 290 cases 

from both decision classes. This way we obtained balance in distribution of decision 

attribute values. In this experiment we aim to observe the changes of classification 

accuracy obtained for the whole dataset and the one produced through selection. The 

comparison of results on those two datasets in presented in Table 24. 

   

Table 24. Comparison of classification accuracy obtained on the whole 

dataset and the dataset after selection 

classification 

accuracy  

whole dataset 

(867 cases) 

dataset after selection 

(580 cases) 

total 
64.5% 

(+-1.34) 

65.20% 

(+-1.65) 

CHD=no 
96.53% 

(+-2.24) 

62.60% 

(+-1.63) 

CHD=yes 
0.69% 

(+-0.58) 

67.80% 

(+-1.67) 

 

The classification accuracy for the set after selection was a bit higher than for 

the original dataset. It could be due to the balanced distribution of decision attribute 

values, but it is also possible that there was less noise or inconsistencies in that 

randomly selected set than in the original one.  

The classification accuracy in CHD=yes class in the dataset after selection 

reached 67.8% and exceeded the classification accuracy  in the other decision class. 

This is, in general, a desired situation as CHD=yes class is more important from the 

medical point of view. 
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6.3.1.2. Experiment 1: projection to 9 attributes  

Through projection to 9 attributes, 10 different datasets have been obtained and 

therefore ten rounds of this experiment conducted. In each round we observed what 

effect on classification accuracy had the elimination of one condition attribute.     

The  results of this experiment are gathered in Table 25. 

 

Table 25. Results after projection - 9 attributes left 

experiment 
number 

number of  
condition 

attrib omitted attrib classification accuracy 

1 9 smoking mother 58.12% 

2 9 smoking father 58.26% 

3 9 paternal age 59.37% 

4 9 birth weight 60.20% 

5 9 

results of 

cytogenetic exam 60.28% 

6 9 fetal age 60.86% 

7 9 maternal age 61.48% 

8 9 sex 61.50% 

9 9 

obstetrical 

history 62.68% 

10 9 

place of 

residence 62.86%  

 

The results show that, elimination of any attribute causes a decrease in the 

classification accuracy. Elimination of smoking mother or smoking father attributes has 

the worst effect on classification accuracy. It drops respectively by 6.38% and 6.24% 

comparing to the classification accuracy obtained for the dataset containing all 10 
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condition attributes. The attribute place of residence caused the least decrease of the 

classification accuracy. It is very interesting to observe that, even though the 

classification accuracy in all of those experiments was lower than the best classification 

accuracy obtained by IBL1 on the whole dataset, it still exceeded the best classifications 

obtained on the whole dataset by IBL2 and IBL3 algorithms. Perhaps, it is worth 

consideration, whether the tradeoff between storage requirements reduction and 

classification accuracy is better when using IBL2, IBL3 or perhaps IBL1 but with a 

reduced number of attributes.   

The ranking of attributes obtained in this experiment is different from the 

ranking obtained in an analogical experiment using rough set approach (see chapter 

5.2.5.2). In this experiment, the elimination of attribute smoking mother causes the 

greatest reduction in classification accuracy, and therefore it should be the last attribute 

to be eliminated. In experiment from chapter 5.2.5.2 that elimination of that attribute 

results in the smallest reduction of quality of approximation. That means that removing 

this attribute would cause the least harm. 

 

6.3.1.3. Experiment 3: projection to 8 attributes  

This experiment has been carried out on five datasets prepared for the 

experiment 3 using rough set approach (see chapter 5.2.5.3). These datasets have been 

chosen in order to keep the same input in respective experiments using different 

approaches. The number of condition attributes has been reduced to 8 in each of the 

prepared datasets. In each dataset we observed the effect of elimination of two particular 

condition attribute on classification accuracy.     

The  results of this experiment are presented in Table 26. 
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Table 26. Results after projection - 8 attributes left 

experiment 
number 

number 

of  
condition attrib 

omitted 
attrib classification accuracy 

1 8 

smoking mother, 

paternal age 55.41% 

2 8 

smoking 

mother, 

birth weight 53.98% 

3 8 

smoking father, 

birth weight 53.67% 

4 8 

smoking father, 

smoking mother 52.34% 

5 8 

smoking father, 

paternal age  50.89% 

 

With the elimination of two attributes the classification accuracy dropped 

comparing to the experiments where only one attribute was omitted. All, examined by 

IBL1 algorithm, sets with 8 condition attributes had lower classification accuracy than 

the whole set with 10 condition attributes to which IBL2 was applied (then 

classification accuracy reached 56.27%).  In the first experiment, where attributes 

smoking mother and paternal age were eliminated, the classification accuracy was a bit  

higher than the best classification accuracy obtained on the whole dataset by using IBL3 

algorithm (then classification accuracy reached 54.96%). But even with elimination of 

two attributes, the storage requirements in first situation are larger than in the second.  
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7. Application of decision tree induction method to 
knowledge extraction 

 

7.1. Methodological elements of induction of decision 

trees 

A decision tree is a structure that consists of nodes and branches. The starting 

node is usually referred to as the root. Each non-terminal node represents a single test 

that checks the value of a condition attribute (called splitting or test attribute) connected 

with that node. For every possible test result a branch, representing particular value of 

the attribute, leads to a node on a lower level. In the end, a terminal node, also called a 

leaf, is reached. Each leaf is labelled with one class label representing a given class 

samples. When a leaf is reached and a decision on the class assignment can be made 

according to which class has been associated with that leaf [69]. 

Classification process using decision tree is done in a following manner: Starting 

from the root, the value of an attribute in the currently checked node is verified. Next, 

the branch corresponding to a particular value of the attribute leads us to a lower-level 

node. The process is repeated for a sub-tree associated with a lower-level node until a 

terminal node, pointing decision class, is reached [31]. 

All trees can be generally divided into  

• binary trees and 

• non-binary trees. 

 

In binary trees from every non-terminal node there are always two branches 

leaving it. There is always only one branch entering any node except the root, which is 

not entered by any branch. For every binary tree there are n terminal nodes and n-1 non-

terminal nodes. It is conventional to make true decisions branch right and false branch 

left. 

In case of non-binary trees, more than two branches may leave a non-terminal 

node, but again only one can enter every non-root node. For non-binary trees, a test 
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performed at a node results in a partition of two or more disjoint sets that all together 

cover every possibility [69]. 

Any decision tree can be alternatively represented as a set of rules specifying 

allocation of cases to decision classes. Each path, in a tree leading to a terminal node 

corresponds to a decision rule that is a conjunction of various tests. All paths in a 

decision tree are mutually exclusive, and for any new cases there can only be one path 

in a tree that shall be satisfied. 

 

7.1.1. Decision tree induction algorithm 

The process of learning the structure of a decision tree from the data is known as 

tree induction. Most of the tree learning algorithms are based on a heuristic schema of 

Top Down Induction of Decision Trees (TDIDT) presented in Table 27.  

 

Table 27. Basic schema of Top Down Induction of Decision Trees 

---------------------------------------------------------------------------------------------------------- 
function BuildTree 
    (Input: S – set of training examples, 
       A – set of condition attributes, 
                 SS – split selection method 
     Output: a decision tree rooted at node N 
          ); 
begin 

1 initialize a root node N of the tree 
2 if all cases of TS are of the same decision class C then 
3    return N as the leaf node labeled with the class label C 
4 else 
5    if attribute-list A == {} then 
6       return N as the leaf node labeled with the most common 

class in    TS 
7    else 
8       begin 
9          Apply SS to select best-split attribute from A 
10          Label node N best-split attribute 
11          for each value ai of the best-split attribute do 
12             begin 
13                Let Si denote a set of samples in S with  
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best-split==ai 
14                        Let Ni = 

BuildTree (Si, SS, A\{best-split attribute}) 
 

15                Create a branch from N to Ni labeled with the  
test: best-split = ai 

16                    end 
17       end 

end { function }  
   -------------------------------------------------------------------------------------------------------- 

 

 It is assumed, that as an input, a set S of training examples is available. The 

construction of the tree starts with making a single node N representing the whole 

training set. If all cases from the S are from the same decision class (line 2), then the 

node N  becomes a leaf labelled C (line 3) and algorithm stops. Otherwise, the set A of 

condition attributes is examined according to the split selection method SS in order to 

select a splitting attribute called the best split (lines 9-10). The splitting attribute is used 

to partition the training set S into a set of separate classes S1,...Sv, where Si,  i=1..v 

contains all those cases from S for which splitting attribute=ai (line 13). For each value 

ai of the splitting attribute a branch labelled Vi is created and to each branch Vi a set Si 

of cases is assigned (line 15). The partitioning procedure is repeated recursively for 

each descendant node to form a decision tree for each partition of cases (line 14). it is 

important to note, that once an attribute has been chosen as a splitting attribute at a 

given node, it does not have to be considered in any of the descending nodes (line 14). 

    The main issue in TDIDD algorithm is choosing the splitting attribute for 

building the test, according to which the set of examples in the node will be divided. It 

is aimed to find such a test which when applied shortens the path leading through the 

node to the leaves, pointing the decision class [8]. This will be achieved, when in every 

subset connected to the branches coming out of the node, all or at least majority of 

examples will be from the same decision class. The choice of test should be made on the 

grounds of a split selection method which should maximize the accuracy of the 

constructed decision tree or, in other words, minimize the misclassification rate of the 

tree. Most of the split selection methods used in such tools as ID3 or C4.5 belong to the 

class called impurity-based split selection methods and find the splitting attribute of a 

node by minimizing an impurity measure such as e.g.  the entropy.  
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7.1.2. Split selection methods 

 One of the most popular split selection method is information gain used in 

algorithm of decision tree induction called ID3 [49] created by Quinlan. In order to 

define it, lets introduce entropy measure.  

Let S be  a training set containing examples belonging to one of k decision 

classes, denoted by K1,..., Kk. Let n be the number of examples in S and ni be the 

cardinality of class Ki.  

Entropy connected with the classification of set S is defined as: 

 ∑
=

−=
k

i
ii ppSEnt

1
2log)(     

where pi is the probability that a randomly chosen example from S belongs to 

class Ki, estimated by 
n
ni . 

The smaller the entropy value is, the greater imbalance in set S of distribution of 

cases between decision classes  

Entropy measures expected number of bits needed to code information about 

randomly chosen example from S [8] and therefore, in the formula above, the bases of 

logarithm is equal to 2. 

In case of a binary classification (i.e., there are only two possible classes and  

k=2) entropy takes value from <0;1>. The maximum value of 1 is reached when 

5.021 == pp  that is when there is a equal distribution of cases between the two 

decision classes. The minimal value of entropy is observed when all examples belong to 

one class. 

In situation when an attribute a is used in the test in a node of a decision tree, 

conditional entropy is calculated.  

Let attribute a take p different values {v1,..vp}. The test constructed in a tree 

node by ID3 asks what the value of attribute a is, i.e., a division of set S to subsets 

{S1,...,Sr}. Subset Sj contains examples having value vj on attribute a (j=1,...,p). Let the 

cardinality of subset Sj be denoted as 
jSn . 

Conditional entropy of division of set S into subsets according to attribute a is 

defined as follows: 
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The smaller the value of  )|( aSEnt , the greater homogeneity of classification 

for the examples divided into subsets. 

The information gain resulted by using attribute a for building the test dividing 

the training set S is defined as: 

)|()(),( aSEntSEntaSGain −= . 

 

),( aSGain  is the expected reduction of entropy caused by knowing the value of 

attribute a. In other words, it represents the gain of information about classification of 

examples, when the value of attribute a is given. 

 ID3 algorithm calculates the information gain for every attribute and divides a 

node according to the attribute with the highest information gain. 

 

 It has been observed that information gain puts in favour attributes with large 

domain. Since it is not a desired feature, an additional measure called split information 

was created in order to judge the division of set of examples in terms of values from the 

attribute a's domain.  

Split information measure is defined as follows: 

   ∑
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where Sj is a subset of S containing examples characterized by jth value of attribute a, 

r is the number of different possible values of attribute a. 

 

Split information is used to define a new split selection method for a node of a decision 

tree called gain ratio. 

It is defined as follows: 

Gain ratio
)|(
),()|(

aSSplit
aSGainaS = . 
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It is used in a proposed by Quinlan C4.5 [50] algorithm of decision tree induction, 

which is a successor of ID3. C4.5 chooses the attribute which maximizes the gain ratio 

as a test in a node but optionally it can also be asked be a user to use the information 

gain measure.  

 

All the analysis in this work were performed using implementation of the original C4.5 

algorithm inducing decision trees proposed by Quinlann. This algorithm has been 

chosen because it is equipped with approach to dealing with missing values. 

 

7.1.3. Dealing with missing values 

Real datasets often have missing or unknown values of some attributes. Such is 

also the analysed dataset of children with congenital heart diseases and Down 

syndrome. Existence of missing values has influence on the process of induction of the 

decision tree but also on the process of classification of test or  new cases. In literature, 

many approaches to dealing with missing values in decision trees have been  proposed. 

Some of them simply fill in the missing values by a particular value fro the attributes 

domain (e.g., the most often occurring or the average value) in the pre-processing phase, 

but there are also more sophisticated approaches like the one used in C4.5 decision tree 

induction algorithm. 

Let S be the set of cases on the basis of which a splitting attribute for a node is 

selected. Let a be a potential attribute for the test in a node and let S0 be the subset of 

cases from S for which the value of a is not known. Obviously, for cases from S0 it is 

not possible to determine the result of the considered test. Therefore, to solve this 

problem, a modification in form of "penalty" function dependent on relative frequency 

of unknown values of attribute a  has been introduced to information gain measure. The 

information gain, which is a part of gain ratio split selection method used by C4.5, is 

calculated on the basis of those cases for which the value of a is not missing (i.e., for 

cases from subset (S-S0)) but with respect to the "penalty" function and therefore is 

defined in the following manner: 

),(),( 0
0 aSSGain

S
SS

aSGain −
−

=   
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If attribute a has been selected to form a test in a node, then a case from the 

subset S0 is divided and is "partially" assigned to subsets Sj of cases resembling the 

results of the test in a created node. During such division, a "partial" case is given a 

weight which is the probability that attribute a will have a particular value. This 

probability is estimated by the frequency of appearance of different values of the 

attribute among the set of cases in the node. For example, the weight for subset Sj will 

be 
0SS

S j

−
 . Divided in such manner, the cases with missing value of attribute a are 

considered in the split selection method for nodes at lower levels, but they are taken for 

the calculations with the assigned weight. 

 

7.1.4. Decision tree pruning 

The aim of classification is to find a simple classifier that fits well to the training 

set and can be well generalized to future, unknown cases. However, during the 

induction process, a tree might overfit the training set i.e., fit to the training set very 

well, but loose its ability to classify well new data. In situation of overfitting, the 

classifiers generalization abilities drop. The process of pruning of decision tree 

addresses the problem of overfitting by removing some branches and nodes of the 

constructed tree. Two basis approaches to avoid overfitting are distinguished: 

• prepruning, 

• postpruning. 

In the prepruning approach, the decision not to further split the training set at a given 

node, is made during the phase of tree construction when a chosen measure (e.g., 

information gain) reaches a given threshold. Upon stopping, the node becomes a leaf 

labelled with the class to with the majority of cases at the node belong. 

 

In the postpruning approach, some branches and nodes are removed from a tree after its 

construction phase has been completed. A subtree rooted at a node is replaced with a 

leaf node labelled with class that was the most frequent one among the former branches. 

The detailed postpruning method used by C4.5 algorithm is described [30]. 
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7.1.5. Windowing technique to induction of decision trees 

So far, the proposed methods of decision tree induction assumed having as the 

input the whole training set. However, C4.5 has an option of creating a decision tree on 

the basis of only a subset of training examples and then modifying the tree according to 

results of classification on the remaining (not used for induction) set of examples. This 

technique is called windowing. It follows this basis schema: From the whole training set 

a subset of chosen cardinality is selected and called a window. The tree is induced from 

this window, and then used to classify the examples that were not part of the window. A 

certain number of incorrectly classified examples is added to the window and the 

construction of the decision tree starts again. This whole procedure can be repeated for a 

certain number of times.  

 

7.2. Application of C4.5 to extraction of knowledge 

about congenital heart defects in Down 

syndrome 

The analysis of congenital heart disease in Down syndrome has been performed 

using Quinlan's implementation of C4.5 algorithm of decision tree induction. The effect 

of different split selection methods (information gain, gain ratio) as well as pruning and 

windowing techniques on estimated classification accuracy of the created tree was 

observed. The most informative results are gathered in Table 28. 

Table 28. Results obtained from using C4.5 

tree split selection windowing before pruning 

 

info  

gain 

gain  

ratio trials 

initial  

window 

size 

window  

increment size 

total 

accuracy [%] 

CHD=yes 

accuracy [%] 

CHD=no 

accuracy [%] 

1 yes  125 72.6 (+-1.40) 20.69(+-1.20) 98.90(+-1.91) 

2 yes  138 72.0 (+-1.21) 18.71(+-1.19) 98.78(+-1.87) 

3 yes 50 20 10 134 72.7 (+-1.61) 20.62(+-1.21) 98.92(+-1.90) 

4  yes 50 20 10 149 71.9 (+-1.73) 18.75(+-1.30) 98.70(+-1.88) 

5 yes 40 10 10 130 72.1 (+-1.67) 18.70(+-1.29) 98.78(+-2.10) 

6  yes 40 10 10 141 71.6 (+-1.57) 18.54(+-1.18) 98.26(+-2.13) 



 92 

During the first two tests, windowing option was not tested, we only compared 

the two split selection methods: information gain (info gain) and gain ratio. Later, 

different experiment with windowing technique have been performed. In the  Table 28 

we present the four best results of these experiments. The comparison of the induced 

tree before pruning and after pruning was done in terms of size of the induced tree and 

its classification accuracy calculated through 10-fold cross-validation. The results show, 

that no matter what parameters have been taken, the pruning process always made a 

one-node-tree. This single node had the label of CHD=no class and therefore, the tree 

after pruning assigned all cases to the decision class without congenital heart disease. In 

that situation, all cases from CHD=yes were misclassified. This is unacceptable, as 

correct classification of children with congenital heart disease is especially important 

for doctors. Therefore, we take under consideration only the trees before pruning. They 

are much bigger as they consist of over 100 nodes, but their classification accuracy is 

over 70%. This accuracy seems a very high score comparing to results obtained by other 

analyzed methods, but the complexity of knowledge representation in form of such a 

tree is also very high. The tree of over 100 nodes is too big and too complex to easily 

used by medical experts. There would be a few dozens of rules if we transformed the 

tree to a decision rule set and again. Many of them would be of weak strength and 

confidence. Thus, even though the obtained classification accuracy is high, those trees 

were not a welcomed form for medical experts.  

 Using the windowing technique, did not any bring better results. The number of 

trials (iterations), initial window size and window increment size has been changed in 

many ways in order to obtain as good results as possible. The best results are presented 

in  Table 28., but again they are characterized by large tree size, even though the 

classification accuracy is good (exceeds 70%). 

It is interesting to note, that in analogical experiments (1&2; 3&4; 5&6), the 

ones where information gain was used as the split selection method  had a bit better 

classification accuracy and a bit smaller tree size, comparing to the experiments using 

gain ratio. Since, none of the attribute domains is continuous, and their cardinalities are 

rather similar, then the measure of information gain is enough and there is no need to 

introduce gain ratio. 
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7.2.1. Further experiments 

Decision tree induction was also additionally performed on the datasets prepared 

for the purpose of further experiments using the rough set approach (see chapter 5.2.5). 

Therefore, three experiments using C4.5 algorithm were carried out on:   

1. random selection of 290 cases from both decision classes 

2. set of projections on 9 different condition attributes 

3. set of projections on 8 different condition attributes 

 

The split selection criterion remain unchanged in all experiments and it is 

information gain. We observe changes in tree size and classification accuracy measured 

during 10-fold cross-validation. 

 

7.2.1.1. Experiment 1: selection  

This experiment has been carried out on a dataset in which the number of cases 

from both decision classes was equal i.e., there was a balance in distribution of decision 

attribute values. The  results of applying decision tree approach to this dataset are 

presented in Table 29. 

 

Table 29. Comparison of results obtained on the whole dataset and the dataset 

after selection 

set before pruning after pruning 

 size 

total 

accuracy  

[%] 

CHD=yes 

accuracy 

 [%] 

CHD=no 

accuracy 

[%] size 

total 

accuracy 

[%] 

CHD=yes 

accuracy 

[%] 

CHD=no 

accuracy 

[%] 

whole set 125 

72.60 

(+-1.40) 

20.69 

(+-1.20) 

98.90 

(+-1.91) 1 

66.60 

(+-0.10) 

0.00 

(+-0.10) 

100.00 

(+-0.10) 

set after  

selection 134 

68.60 

(+-1.39) 

69.20 

(+-2.01) 

68.28 

(+-1.83) 32 

62.60 

(+-2.03) 

67.24 

(+-1.99) 

57.93 

(+-1.98) 

 

For the tree before pruning, the tree induced from the whole dataset is smaller 

and has a better classification accuracy.  
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However, the pruned tree induced from the set after selection is much better than 

the tree created from the whole dataset. First look at the results in Table 29, could be 

misleading as the tree from the whole set is smaller in size and has higher total  

classification accuracy, but comparison of the classification accuracies in each class 

prove, that the tree from the smaller set is better. The pruned tree created from the 

whole set has just one node and classifies all cases to CHD=no class. This way, all 

important cases with congenital heart disease are misclassified. The pruned tree induced 

from the dataset with balanced classes is a 32-node tree. This size is still acceptable for 

medical experts. Moreover, this tree classifies correctly over 67% of cases from 

CHD=yes class. The classification accuracy in the class with congenital heart disease is 

higher than in class without it, which is a very desired situation, from medical point of 

view. 

   

 

7.2.1.2. Experiment 2: projection to 9 attributes  

Through projection to 9 attributes, 10 different datasets have been obtained. For 

each of those sets we observed the effect of elimination of one condition attribute on 

classification accuracy.     

The  results of this experiment are gathered in Table 30. 

 

Table 30. Results after projection - 9 attributes left 

tree number of omitted before pruning after pruning 

 condition attributes attribute size accuracy [%] size accuracy [%] 

1 9 smoking father 125 71.0 1 66.6 

2 9 smoking mother 123 71.6 1 66.6 

3 9 results of cytogenetic exam 139 71.6 1 66.6 

4 9 sex 97 69.9 1 66.6 

5 9 fetal age 91 70.2 1 66.6 

6 9 birth weight 89 69.8 1 66.6 

7 9 paternal age 115 70.5 1 66.6 

8 9 maternal age 114 72.1 1 66.6 

9 9 obstetrical history 97 70.7 1 66.6 

10 9 place of residence 56 68.5 1 66.6 
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Each of the 10 pruned trees is actually a one-node tree which classifies all cases 

to CHD=no class. It is unacceptable from the medical point of view, therefore we shall 

turn to trees before pruning. Elimination of attribute maternal age or smoking mother or 

results of cytogenetic examination has the smallest decreasing effect on classification 

and therefore, these attributes could be dropped as the first ones. Place of residence 

should be at the end of the list of candidates for elimination as its elimination from the 

dataset causes the biggest reduction in classification accuracy. Again, we can observe 

that the "ranking" of attributes obtained using decision trees differs from the rankings 

obtained by other approaches in previous Sections. It is due to methodological 

difference between approaches. 

  

7.2.1.3. Experiment 3: projection to 8 attributes  

This experiment has been carried out on five datasets prepared for the 

experiment 3 using rough set approach (see chapter 5.2.5.3). These datasets have been 

chosen in order to keep the same input in respective experiments using different 

approaches. We aim at observing the changes in classification accuracy for different 

sets with 8 condition attributes. The  results of this experiment are gathered in Table 31. 

 

 

Table 31. Results after projection - 8 attributes left 

tree number of omitted before pruning after pruning 

 condition attribute attribute size accuracy [%] size accuracy [%] 

1 8 smoking mother, smoking father 123 71.0 1 66.6 

2 8 smoking father, paternal age 107 70.2 1 66.6 

3 8 smoking mother, birth weight 89 69.9 1 66.6 

4 8 
 

smoking father, birth weight 79 69.4 1 66.6 

5 8 smoking mother, paternal age 111 70.5 1 66.6 

 

Again, we face the problem of one-node pruned trees, which are not acceptable 

for medical experts. About trees before pruning, it can observed that their classification 

accuracy is still quite high despite elimination of two attributes. The tree induced from 

dataset with omitted smoking father and smoking mother has almost the same size and 

accuracy as trees from sets where only one of those attributes was eliminated. Those 
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two attributes, in that situation, can be seen as rather uninformative. Moreover, the 

results show that, from the examined pairs of attributes, the pair smoking father, birth 

weight brings the biggest reduction in classification accuracy, when eliminated from the 

dataset. 
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8. Application of logistic regression to knowledge 
extraction 

8.1. Methodological elements of logistic regression 

Logistic regression is a linear statistical method for classification [23]. It is 

aimed at modeling the posterior probabilities of decision classes via function in 

condition attributes. To describe this approach more precisely, let us introduce the 

following notation:  

A set of condition attributes is referred to as an input variable and denoted by 

the symbol X. If X is a vector, its components can be accessed by subscripts Xj. A set of 

decision attributes (in our research there is only one decision attribute) is referred to as 

an output variable and denoted by G (for group). Observed values of variables are 

written in lowercase; hence the ith observed value of X is written xi (where xi is again a 

scalar or vector). Thus, the training set is composed of measurements (xi, gi). The task is 

to make a good prediction, of the output G, denoted by Ĝ on the basis of the value of an 

input vector X. 

    

In general, the logistic regression model has the form: 
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where )Pr( xXjG ==  is the probability that an input cases x will be classified 

to class j, and 0iβ  is an interceptor, and iβ are coefficients. 

As seen the model is specified in terms of logit or logistic transformations which 

are generally defined as:  
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where p is a probability value.  

 

Note, that the value of this logarithm can theoretically assume any value between minus 

and plus infinity. 
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Logistic regression models are fit by maximum likelihood, using the conditional 

likelihood of G given X. Since Pr(G | X) completely specifies the conditional 

distribution, the multinominal distribution is appropriate. The log-likelihood for N 

observations is 
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where );Pr();( θθ iik xXkGxp === . 

 We discuss in detail the two-class case, since the algorithms simplify 

considerably. It is convenient  to code the two-class gi via a 0/1 response yi, where yi = 1 

when gi = 1 and  

yi = 0 when gi = 2. Let );();(1 θθ xpxp i =  and );(1);(2 θθ xpxp −= . The log-

likelihood can be written  
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 Here }{ 110 , βββ = , and we assume that the vector of inputs xi includes the 

constant term 1 accommodate the intercept. 

 To maximize the log-likelihood, we set its derivatives to zero. These 

score equations are 
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which are p + 1 equations nonlinear in β. Notice that since the first component 

of xi is 1, the first score equation specifies that ∑ ∑= =
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number of class ones matches the observed number (and hence also class twos). 

 

Solving this equation using, for example, the Newton-Raphson algorithm we 

find iteratively required constant β . 

 

Logistic regression models are used mostly as a data analysis and inference tool, 

where the goal is to understand the role of the input variables in explaining the outcome. 

Typically many models are fit in a search for a parsimonious model involving a subset 

of the variables, possibly with some interactions terms. 

 

In practice, for a two-class model  the values of intercept and coefficients β  are 

in fact the values of appropriate statistics. Thus, it is necessary to verify statistic null 

hypothesis that the intercept or coefficient in question is zero, while all the others are 
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not (in the tool (STATISTICA 6.0) we used for the calculations, it is done using Wald's 

test [60]). To simplify testing of this hypothesis so called p-level is calculated for the 

interceptor and each coefficient. The p-level represents the probability of erroneous 

rejection of the null hypothesis. Thus, the p-level represents the probability of error that 

is involved in accepting our observed result as valid, that is, as "representative of the 

population". The higher the p-level, the less we can believe that the observed relation 

between variables in the sample set is a reliable indicator of the relation between the 

respective variables in the population. In many areas of research, the p-level of 0.05 is 

treated as a "border-line acceptable" error level, and so was in this thesis. Thus, any β  

will be treated as statistically insignificant if its p-level was greater than  0.05 i.e., there 

were no grounds to reject the null hypothesis.         

 

The above mentioned two-sided test of hypothesis is very close to inference 

based on confidence intervals.  

Let L and U be two statistics of the training set such that L≤ U. The interval 

<L,U> such that  

Pr(L≤ β≥ U) ≥ 1- α, 

where α is a given probability,  

is called (1- α)100% confidence interval for β parameter. The probability 1- α is called 

confidence level for the <L,U> interval. 

It means that the confidence interval includes the estimated parameter β with the 

probability 1- α. 
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8.2. Application of logistic regression to extraction of 

knowledge about congenital heart defects in 

Down syndrome 

The analysis of congenital heart disease in Down syndrome has been performed 

using Statistica 6.0 -a tool for statistical analysis. Missing values have been filled in by 

the most commonly appearing value from the particular attribute domain.  

In order to perform logistic regression calculations, nominal attributes have been 

recoded to numerical. Each of the possible values from particular attribute's domain has 

been given the following natural number starting from 1. Since most attributes had a 

two-value domain, the given numbers were 1 and 2. Table 32 gives few details about 

the values of the attributes after transformation. Attributes place_of_residence and 

cytogenetic_exam had the largest domains and therefore, they have the two highest 

maximum values. 

 

Table 32. Means, standard deviations, minimum and maximum values of 

original attributes transformed to numerical attributes  

 
  

The results of performing logistic regression on the dataset of children with 

congenital hear disease and Down syndrome are gathered in Table 33. In column 

Estimate are presented the calculated values of intercept and coefficients, column Wald 

Stat. presents the values of Wald statistic calculated during the Wald test and the 

column p shows the p-level corresponding to particular value of the Wald statistic. 

Marked red are the results for the attribute for which the p-level was below the border 
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value of 0.05. For that attribute, there grounds to reject the null hypothesis and 

therefore, we consider the coefficients for that attribute as statistically significant.     

 

Table 33. Results of logistic regression on the whole dataset 

 
 

The results show, that only coefficients for attribute sex are statistically 

significant. In particular, the p-level of the intercept reached 0.98 which indicates that 

there is a 98% probability that the relation between variables found in our dataset is a 

"fluke".  

Table 34 presents confidence intervals of the Estimates. The wider the interval 

is, the less precise we can be about results of the attribute. The best, in terms of having 

the smallest interval, is attribute sex and the worst results were obtained for the 

intercept.    

 

Table 34. Confidence intervals of Estimates for the whole dataset 
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All those results, prove that the analyzed dataset cannot bring satisfactory results 

in terms of classification accuracy. The classification accuracy was calculated through 

10-fold cross-validation. For every case from the test set, the posterior probability of 

belonging to decision class with congenital heart disease was calculated. An error 

(misclassification) occurred when the probability was lower than 0.5 while the case was 

actually classified as belonging to CHD=no class or when it was equal or above 0.5 

while the case was actually classified as belonging to CHD=yes class.  We have 

obtained classification accuracy of 67,24% , which is not high, but still the highest from 

those obtained by other analyzed methods. The confusion matrix is shown in Table 35. 

The number of misclassified cases from the CHD=yes class is sadly high. The accuracy 

for this class is only 3,79%. From medical point of view, accuracy in classification on 

CHD=yes class is much more important the other class. However, it must be admitted 

that the number of correctly classified cases with congenital heart disease is a bit higher 

than in other analyzed methods. 

   

Table 35. Confusion matrix for the whole dataset 

Confusion Matrix (sum over 10 passes) 

           PREDICTED 

ACTUAL  CHD=no    CHD=yes   

CHD=no          572                5      

CHD=yes         279             11        

Average Accuracy [%] 

                         Correct            Incorrect               

Total              67.24 (+-1.24)  32.76 (+-1.24) 

CHD=no           99.13 (+-1.43)        0.87 (+-1.43)  

CHD=yes          3.79 (+-1.01)      96.21 (+-1.01) 

 

 

The graphical illustration of accuracy  of classification as well as the confusion 

matrix is presented in Figure 16. 

It can be observed that for most cases from the analyzed set the calculated probability 

was lower than 0.5. Therefore, all most all cases from the CHD=no class (marked as 0 

on the observed values ax) were classified correctly, and most all the cases from 
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CHD=yes class (marked as 1 on the observed values ax) were misclassified. The fact 

that 66% of all cases belong to the class without congenital heart disease, had a strong 

effect on the value of classification accuracy.   

 

 
Figure 16. Predicted values by observed values for the whole dataset 

 

8.2.1. Further experiments 

Logistic regression was also additionally performed on the datasets prepared for 

the purpose of further experiments using the rough set approach (see chapter 5.2.5). 

Therefore, three experiments using logistic regression were carried out on:   

1. random selection of 290 cases from both decision classes 

2. set of projections on 9 different condition attributes 

3. set of projections on 8 different condition attributes 

 

8.2.1.1. Experiment 1: selection  

This experiment has been carried out on a dataset in which the number of cases 

from both decision classes was equal. In the original dataset the decision classes were 

imbalanced, favoring the CHD=no class to which belonged 66% of all cases. The 

balance was obtained by random selection of 290 cases from the CHD=no class and 
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adding all (i.e., 290) cases from the CHD=yes class. The  results of applying logistic 

regression to this dataset are presented in Table 36 and Table 37.  

 

 

Table 36. Results of logistic regression for the dataset after selection 

 
 

Table 37. Confidence intervals of Estimates for the dataset after selection 

 
 

The coefficients for attribute sex and the intercept are statistically significant 

(marked red in Table 36) and they have the best (i.e., the smallest) confidence intervals 

presented in Table 37.  The results have improved comparing to the results obtained o 

the whole dataset where the intercept was not statistically significant. 

However, the classification accuracy reached 61,2% and was lower than 

accuracy observed for the whole dataset. The positive aspect, though, is that, as shown 

in Table 38,the number of correctly classified cases with congenital heart disease 
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increased up to 178 cases which is 61,4%. Note, that for the whole dataset, the accuracy 

on CHD=yes class was only 3,79%. 

 

Table 38. Confusion matrix for the selected dataset 

Confusion Matrix (sum over 10 passes) 

           PREDICTED 

ACTUAL  CHD=no    CHD=yes   

CHD=no          177            113     

CHD=yes         112            178 

Average Accuracy [%] 

                         Correct            Incorrect               

Total              61.20  (+-1.17) 38.80 (+-1.17) 

CHD=no           61.03 (+-1.20)       38.97 (+-1.20) 

CHD=yes          61.38 (+-1.98)      38.62 (+-1.98) 

 

Figure 17 can be treated as an illustration to the confusion matrix in Table 38. It shows 

that many cases from the CHD=no class (marked as 0 on the observed values ax) were 

misclassified because the probability calculated for them exceeded 0.5, but also many 

cases from CHD=yes class (marked as 1 on the observed values ax) were incorrectly 

classified because the probability calculated for them was lower than 0.5.  

 
Figure 17. Predicted by observed values for the dataset after selection 
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8.2.1.2. Experiment 2: projection to 9 attributes  

Through projection to 9 attributes, 10 different datasets have been obtained and 

therefore ten rounds of experiment conducted. In each round we observed the effect of 

elimination of one condition attribute on classification accuracy.     

The  results of this experiment are gathered in Table 39. 

 

Table 39. Results after projection - 9 attributes left 

experiment 

number 

number 
of  

condition 
attrib omitted attrib 

classification 

accuracy 

number of estimates 

statistically significant 

1 9 smoking mother 65.74% 1 (sex) 

2 9 smoking father 65.74% 1 (sex) 

3 9 birth weight 65.86% 2 (sex, place of residence) 

4 9 

obstetrical 

history 65.86% 2 (sex, maternal age) 

5 9 fetal age 65.86% 1 (sex) 

6 9 maternal age 65.86% 1 (sex) 

7 9 paternal age 65.97% 1 (sex) 

8 9 sex 66.44% 0 

9 9 

results of 

cytogenetic 

exam 66.09% 1 (sex) 

10 9 

place of 

residence 66.09%  1 (sex) 

 

For all of those sets, all cases from decision class CHD=yes were misclassified. 

Elimination from the original dataset attributes paternal_age and in the next test 

birth_weight had the effect on number of statistically significant estimates (the number 
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rose up to two). The smallest reduction in classification accuracy was observed after 

elimination of attribute sex. Surprisingly, the attributes that had the least effect on 

quality of approximation in rough set approach, in logistic regression bring the biggest 

decrease in classification accuracy. Therefore, the ranking of attributes when talking 

about logistic regression, would be as the Table 39 is sorted. 

  

8.2.1.3. Experiment 3: projection to 8 attributes  

This experiment has been carried out on five datasets prepared for the 

experiment 3 using rough set approach. These datasets have been chosen in order to 

keep the same input in respective experiments using different approaches. In each 

dataset there are 867 cases described by 8 condition attributes. In each dataset we 

observed the effect of elimination of two particular condition attribute on classification 

accuracy. The  results of this experiment are gathered in Table 40. 

 

Table 40. Results after projection - 8 attributes left 

experiment 
number 

number 
of  

condition 
attrib 

omitted 
attrib 

classification 
accuracy 

number of estimates 
statistically significant 

1 8 

smoking 

mother, 

birth weight 65.74% 2 (sex, place of residence) 

2 8 

smoking 

mother, 

paternal age 65.97% 2 (sex, maternal age) 

3 8 

smoking 

father, 

birth weight 65.86% 2 (sex, place of residence) 

4 8 

smoking 

father, 

smoking 

mother 65.86% 2 (sex, maternal age) 

5 8 

smoking 

father, 

paternal age 65.97% 1(sex) 
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It is interesting to observe that four situations elimination of two attributes 

caused increase in the number of statistically significant estimates. The classification 

accuracy did not drop much comparing to results obtained on 9-condition-attribute-sets 

in the previous experiment. However, elimination of an attribute brings reduction to the 

set size. The smaller, the set is, the faster go the computations, although, the analyzed 

dataset was still too small to observe reduction in processing time.   
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9. Comparison of results obtained using rough set 
theory, IBL, C4.5 and logistic regression 

9.1. Obtained classification accuracies comparison 

In Table 41 classification accuracies obtained by application of different 

approaches to the dataset of children with congenital heart diseases and Down 

syndrome are gathered. Each of those approaches has been applied to the analyzed 

dataset a couple of times with different parameters and the accuracies presented in 

Table 41 are the best results obtained for those approaches. 

 

Table 41. Classification accuracies obtained using different approaches 

classification 

accuracy [%] 

rough sets IBL1 C4.5  

before 

pruning 

C4.5  

after 

pruning 

logistic 

regression 

total 65.64  

(+-6.41) 

64.50 

(+-1.34) 

72.60 

(+- 1.40) 

66.60 

(+-0.01) 

67.24 

(+-1.24) 

CHD=no 98.18 

 (+-2.24) 

96.53 

 (+-2.24) 

98.90 

(+-1.91) 

100.00 

(+-0.01) 

99.13 

 (+-1.43) 

CHD=yes 1.27  

(+-1.08) 

0.69  

(+-0.58) 

20.69 

(+-1.20) 

0.00 

(+-0.01) 

3.79  

(+-1.01) 
   
 

The classification accuracy varies from 65.50% to 72.6%. It reached the highest 

value for unpruned decision tree induced by C4.5 algorithm, however it should be 

stressed that the complexity of this tree decreases very much its usefulness. But 

comparing the classification accuracies, one should take under consideration also the 

percentage of correctly classified cases from the decision class with congenital heart 

malformation as it is a more important class from medical point of view. The logistic 

regression approach had the best classification accuracy in class CHD=yes, which 

reached 3.79%, We shall not consider the 20.69% accuracy in this class for decision tree 

before pruning as such tree is too complex to use easily. The classification accuracy in 
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CHD=yes class for a decision tree after pruning turned out to be a total disaster and 

makes this tree completely useless. The pruned tree consists of only one node and 

classifies all objects to CHD=no class and therefore, it does not classify correctly even a 

single object with congenital heart defect. Also for the IBL1 algorithm, the 

classification accuracies in CHD=yes class is unacceptable low. It is a bit higher for the 

rough set approach. 

Such results of classification accuracy in CHD=yes class are due to too many 

inconsistencies among the dataset. It is a feature of the dataset itself, independent of the 

used method. 

 

9.2. Advantages and disadvantages of knowledge form 

representation in different approaches 

9.2.1.  Rough sets  

The rough set approach induces a set of decision rules. This knowledge 

representation is very easy to understand and use. Many medical experts consider 

decision rules as their favorite knowledge representation. The big advantage of rough 

set approach is that it gives both certain and uncertain rules.  

One of the disadvantages of decision rules representation, in general, is that its 

usefulness decreases when the rules are too long or when the set contains too many 

rules. The rough set approach solves this problem by introducing a rule length 

parameter that can limit the length of induced rules, and strength which can limit the set 

of rules only to rules that are characterized by the strength above that given level.  

 

9.2.2. Instance Based Learning - IBL 1-3 

There is no explicit knowledge representation form for IBL 1-3 approaches. 

These algorithms are like "black boxes" that give only the classification decision based 

on concept description and calculated similarities. Definition of the similarity measure 

is, moreover, arbitrary to a large extent. One cannot see the relations and dependencies 

between attributes. 
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9.2.3.  Decision tree induction - C4.5 

C4.5 algorithm induces knowledge in a form of decision tree. It is a very 

intuitive representation form. Its hierarchical form can be a guidance for medical 

experts on which questions and in which order to pose to the patient. Moreover, the 

decision trees have the advantage that the induced from them knowledge can be 

alternatively presented in form of decision rules. Each paths in the tree can become one 

decision rule. However, a set of such rules should also be checked in order to verify if 

there are no redundant rules. 

One disadvantage of tree representation is that the more complex the tree is, the 

more difficult to use it becomes. Tree complexity is also connected with the problem of 

overfitting. However, these problems can be addressed by tree pruning. Unfortunately, 

for the analyzed dataset, the decision tree after pruning is completely useless as it 

misclassifies all the objects from the medically more important  decision class (i.e., 

CHD=yes class). 

 

9.2.4. Logistic regression 

This form of knowledge representation is very interesting and not very 

commonly used. The knowledge  is represented in form of posterior probabilities of 

decision classes modeled via linear function in condition attributes. This way we not 

only receive classification decision, but also find out what the probabilities of 

classifying the analyzed case to each class are. The form of the regression function 

hides, however, the actual influence of the particular attributes and subsets of these 

attributes on final decision. 
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10. Conclusions and final remarks 

In this thesis a dataset from the database of the Polish Registry of Congenital 

Malformations has been dealt with. A part of the Registry concerned with children with 

Down syndrome became the special interest of the analysis. The chosen dataset 

describes 867 children with Down syndrome, among which 290 also suffer from 

congenital heart defect. Each object from the dataset is described by 10 condition 

attributes and one decision attribute, telling whether the child does or does not have a 

congenital heart defect. This dataset has been gathered by many different physicians 

treating children with Down syndrome and congenital heart defects, however, without 

any control of the quality of the data. This might be a reason why the dataset contains 

both missing attribute values and many inconsistencies. Some preprocessing techniques 

like discretization, elimination of duplicates, etc.,  have been applied to the dataset, 

which do not decrease, however, the data inconsistency. Then, an attempt to extract 

knowledge about existence of congenital heart defect among children with Down 

syndrome from this dataset has been made. The following approaches to knowledge 

extraction have been applied to the dataset: 

• rough set theory, 

• instance based learning, 

• decision trees induction, 

• logistic regression. 

 

The average classification accuracy obtained by different approaches varies from 

65.5% to 72.6%. The highest value was observed for a decision tree before pruning. It 

needs to be noted, however, that the complexity of this tree has a negative effect on its 

usefulness and therefore, it had been excluded from further analysis. The lowest 

classification accuracy was obtained by instance based learning approach. The 

classification accuracy for particular classes ranges from 96.5-99.13% for the class of 

children without congenital heart defect and from 0-3.79% for the class of children with 

congenital heart defect. The low classification accuracy for the decision class with 

congenital heart defect brings us to the conclusion that the analyzed dataset contains too 

many inconsistencies. Let us stress that this is a feature of the dataset, and not of the 

data analysis method being used.  
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Such a large amount of inconsistencies appearing in the analyzed dataset might be 

due to the fact that there is no quality control over data at the phase of registration of a 

new case of congenital malformation. The paper registration forms filled in by 

physicians all over the country sometimes contain information wrongly classified, 

misinterpreted or omitted. Introducing a registration through web side, could be a 

solution to this problem. Switching to a computer solution at all data gathering phases 

would have a positive effect on data quality and would surely eliminate many 

inconsistencies. 

Moreover, the inconsistencies in the dataset might have been caused by the fact 

that there were too few condition attributes considered in the analysis. Perhaps, some 

attributes which distinguish well the decision classes, were not taken under 

consideration or are not available in the database of the Polish Registry of Congenital 

Malformations. Therefore, a thorough extension of gathered information about children 

with congenital malformations should be considered.  

 

Putting aside the question of the quality of data, an important aim of the thesis 

was a comparison of the different approaches to knowledge extraction from the data. 

The rough set approach induces knowledge in form of a set of decision rules. This 

representation is very legible for showing relations between condition attributes or 

groups of attributes and the decision attribute. The distinction between certain and 

uncertain rules is a very valuable aspects of this approach. Moreover, such parameters 

as rule strength or confidence are informative parameters that show the value of each 

rule and can be also used to manipulate the size of the decision rule set. A very 

important advantage of the rough set approach is that it points out existing in the 

analyzed dataset reducts i.e.,  minimal subsets of attributes ensuring the same quality of 

classification as the entire set. The idea of reducts is very interesting as it allows 

identification of redundant attributes. By eliminating them, a dataset size reduction can 

be made. Moreover, the rough set approach shows an intersection of all reducts in the 

information system called a core. This allows us to identify the subset of attributes that 

is absolutely necessary to preserve the classification accuracy obtained on the whole set 

of attributes. 

The instance based learning approach does not have an explicit form of 

knowledge representation, which might be considered as a disadvantage as relations and 

dependencies between attributes are not seen. Moreover, the definition of the similarity 
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measure is, arbitrary to a large extent. The fact that the instance based learning is an 

incremental approach might be considered as its advantage as the classifier is modified 

whenever a new training objects arrives, without the need to start the construction of the 

classifier from the scratch.  However, this also makes the instance based learning 

approach vulnerable to the order of appearance of the objects from the training set. All 

in all, the instance based approach is  commonly used due to its simplicity and the fact 

that its results of classification accuracy are comparable to results of other methods.  

The decision tree induction approach is characterized by a very intuitive form of 

knowledge representation. Its hierarchism shows the importance of different attributes 

at different stages of classification. Decision trees can adjust well to the training set and 

give very good classification accuracies on the training set. This is, however, very often 

connected with a  big complexity of its structure and a possible danger of overfitting. 

Therefore, decision trees undergo the process of pruning. The pruned tree is meant to be 

of smaller size and not significantly lower classification accuracy. However, the process 

of pruning might end with loss of valuable information. 

 The logistic regression is a statistical approach. It has an interesting but not as 

intuitive and understandable as decision rules or trees, form of knowledge 

representation. The knowledge is represented in a form of posterior probabilities of 

decision classes. Thus, we find out what the probabilities of classifying an analyzed 

object to each of the decision classes are. This is an additional and very interesting 

information apart from receiving the classification decision itself. The disadvantage of 

the logistic regression approach is that this form of the regression function does not 

show the actual influence of the particular attributes and groups of attributes on the final 

classification decision.   

 

The problem considered in this thesis could also be investigated further along the 

following possible lines: 

• extension of the analysis to a dataset with more decision classes, indicating 

not only the presence or absence of the congenital heart defect, but telling 

also what particular kind of a heart defect it is; 

• knowledge extraction from other parts of the Polish Registry of Congenital 

Malformations; 
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• application of other knowledge extraction approaches, e.g., neural 

networks or approaches taking into account preference order in domains of 

condition and decision attributes; 

• analysis of the performance and scalability of applied knowledge 

extraction methods. 
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