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Abstract. The development of effective interestingness measures that
help in interpretation and evaluation of the discovered knowledge is an
active research area in data mining and machine learning. In this pa-
per, we consider a new Bayesian confirmation measure for ”if..., then...”
rules proposed in [4]. We analyze this measure, called Z, with respect to
valuable property M of monotonic dependency on the number of objects
in the dataset satisfying or not the premise or the conclusion of the rule.
The obtained results unveil interesting relationship between Z measure
and two other simple and commonly used measures of rule support and
anti-support, which leads to efficiency gains while searching for the best
rules.
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1 Introduction

When mining large datasets, the number of knowledge patterns, often expressed
in a form of 7if..., then...” rules, can easily be overwhelming for the human
capabilities to understand them and to find the useful results. To guide the
data analyst identifying valuable rules, various quantitative measures of inter-
estingness (attractiveness measures) have been proposed and studied (e.g. sup-
port, anti-support, measures of confirmation) [9]. They all reflect some different
characteristics of rules. The problem of choosing an appropriate interestingness
measure for a certain application is difficult because the number and variety of
measures proposed in the literature is so big. Therefore, studies analyzing theo-
retical properties of these measures, as well as relationships among them, is worth
consideration. Moreover, there are some theoretical properties of interestingness
measures which are particularly valuable for practical applications. Properties of
measures also naturally group them unveiling relationships between them, and
are helpful in choosing an appropriate measure for a particular application.

In this paper, we focus on a new interestingness measure, from the category
of Bayesian confirmation, proposed by Crupi et al. [4] and called the Z measure.



It is a measure that quantifies the degree to which the premise of a rule provides
support for or against the rule’s conclusion. We analyze it with respect to a
valuable property M, introduced by Greco et al. [7], of monotonic dependency
of the measure on the number of objects satisfying or not the premise or the
conclusion of the rule. Moreover, on the basis of satisfying the property M,
we draw some practical conclusions about very particular relationship between
measure Z and two other simple but meaningful measures of rule support and
anti-support.

The paper is organized as follows. In section 2, there are preliminaries on
rules and their quantitative description. Next, in section 3, we analyze Z with
respect to property M. Section 4 presents practical application of the obtained
results. The paper ends with conclusions.

2 Preliminaries

Let us consider discovering rules from a sample of larger reality given in a form of
a data table. Formally, a data table is a pair S = (U, A), where U is a nonempty
finite set of objects, called universe, and A is a nonempty finite set of attributes.
The set V, is the set of values of the attribute a € A.

Let us associate a formal language L of logical formulas with every subset of
attributes. Formulas for a subset B C A are built up from attribute-value pairs
(a,v), where a € B and v € V,, using logical operators = (not), A (and), Vv (or).

A rule induced from S and expressed in L is denoted by ¢ — ¢ (read as ”if ¢,
then 9 7). It consists of antecedent ¢ and consequent 1 , being formulas expressed
in L, called premise and conclusion (hypothesis or decision), respectively, and
therefore it can be seen as a consequence relation between premise and conclusion
(see critical discussion [7] about interpretation of rules as logical implications).
The rules mined from data may be either decision or association rules, depending
on whether the division of A into condition and decision attributes has been fixed
or not.

2.1 Support and Anti-support Measures of Rules

One of the most popular measures used to identify frequently occurring associa-
tion rules in sets of items from data table S is the support. Support of condition
¢, denoted as sup(¢), is equal to the number of objects in U having property
¢. The support of rule ¢ — 1) (also simply referred to as support), denoted as
sup(¢ — 1), is the number of objects in U having property ¢ and 1 . Thus,
it corresponds to statistical significance [9]. Naturally, support is a gain-type
criterion, i.e. its higher values are more desirable.

Anti-support of a rule ¢ — 1 (also simply referred to as anti-support), de-
noted as anti — sup(¢p — ), is equal to the number of objects in U having
property ¢ but not having property v . Thus, anti-support is the number of
counter-examples, i.e. objects for which the premise ¢ evaluates to true but



which fall into a class different than 1) . Note that anti-support can also be re-
garded as sup(¢ — —p). Thus, it is considered as a cost-type criterion, which
means that the smaller the value of anti-support, the more desirable it is.

In literature, there can also be found definitions of support and anti-support
as relative values with respect to the number of objects in the whole dataset. In
this paper, we will not take under consideration such interpretation of support
and anti-support, however, doing so would not influence anyhow the generality
of the conducted analysis and the obtained results.

2.2 Z measure

Among commonly used interestingness measures there is a large group of Bayesian
confirmation measures which quantify the degree to which the premise provides
”support for or against” the conclusion [6]. Thus, formally, a measure ¢(¢ — )
can be regarded as a measure of confirmation if it satisfies the following condi-
tion:

>0 if Pr(y|¢)> Pr(y),
c(p—Y)q =0 if Pr(y|o)=Pr(y), (1)
<0 if Pr@|¢) < Pr).

Under the ”closed world assumption” adopted in inductive reasoning, and
because U is a finite set, it is legitimate to estimate probabilities Pr(¢) and Pr(«))
in terms of frequencies sup(¢)/|U| and sup())/|U|, respectively. In consequence,
we can define the conditional probability as Pr(i|¢) = Pr(¢ A ¢)/Pr(¢), and
it can be regarded as sup(¢ — )/sup(¢). Thus, the above condition can be
re-written as:

>0 if SO o ),

sup(9)
oo —9)§ =0 if ML) supy)/U, @
<0 if %@)w) > sup(y)/U.

Over the years, many authors have proposed their own definitions of partic-
ular measures that satisfy condition 2 and now the catalogue of confirmation
measures proposed in the literature is quite large. Among the most commonly
used ones, there are those shown in Table (1).

Crupi et al. [4] have considered the above confirmation measures from the
viewpoint of classical deductive logic [2] introducing function v such that for any
argument (¢, 1), v assigns it the same positive value (e.g., 1) iff ¢ entails ¢ , i.e.
¢| = 1, an equivalent value of opposite sign (e.g., -1) iff ¢ entails the negation
of ¢, i.e. | = =, and value 0 otherwise. The relationship between the logical
implication or refutation of ¥ by ¢, and the conditional probability of 1 by ¢
requires that v(¢,¢) and ¢(¢ — 1) should always be of the same sign. However,
Crupi et al. [4] also argue that any confirmation measure ¢(¢ — ) should also



Table 1. Common confirmation measures

D6 — ) = “LEl) — sup(y) Carnap [2
_ sup(¢ —>¢) _ sup(=¢ — ¢) ristensen
M(p — o) = % — sup(¢) Mortimer [11]
_sup(d =) _ sup(d — <) | e
N(¢ - w) = Sup(’l/)) Sup(_\’L/J) N k [12]
O(¢ — w) — sup(rsUT w) _ sup((ﬁ)[}grp(w) Carnap [2]
_ sup(¢ = P)|U| _ inc
RO =0 =S @psupte) ! Fineh ]
Glp— ) =1 2uple = W)|U] Rips [13]

sup(¢)sup(—1))




satisfy principle (3):
if v(g1,¢1) > v(d2,1h2), then c(dr — ¥1) > c(P2 — Ya). 3)

They have proved that neither of the above mentioned confirmation measures
satisfies principle 3. However, their further analysis has unveiled a rather simple
way to obtain a measure of confirmation that does fulfill this principle from
either D, S, M, N, C, R, or G. They have normalized these measures by dividing
them by the maximum they obtain in case of confirmation (i.e. when sup(¢ —
) /sup(@) > sup(vp)/|U|), and the absolute value of the minimum they obtain
in case of disconfirmation (i.e. when sup(¢ — )/sup(¢) < sup()/|U]). It has
also been shown that those normalized confirmation measures are all equal:

Dnorm = Snorm = Mnorm = Nnorm = Cnorm = Rnorm = Gnorm- (4)

Crupi et al. have therefore proposed to call them all by one name: Z-measure.
They have proved that Z, and all confirmation measures equivalent to it, satisfy
principle 3. Thus, Z is surely a valuable tool for measuring the confirmation of
decision or association rules induced from datasets. Throughout this paper let
us consider Z defined as follows:

sup( = ) _sup(v)
swp@) U1 suplo =) - sup()

| suplv sup(@) = (U]
0]
2(6— v) )
sup(d — ) _sup(t)
wp@) UL supld =) _ sup(u)
sup(i) sup(@) <[0T

2.3 Property M of monotonicity

Greco, Pawlak and Stowiriski have proposed in [7] property M of monotonic
dependency of an interestingness measure on the number of objects satisfying or
not the premise or the conclusion of a rule. Formally, an interestingness measure
F satisfies the property M if:

Flsup(¢p — ), sup(=¢ — 1), sup(¢ — =), sup(—d — —p)] (6)

is a function non-decreasing with respect to sup(¢ — @) and sup(—¢ — ),
and non-increasing with respect to sup(—¢ — v) and sup(¢p — ).

The property M with respect to sup(¢ — ) (or, analogously, with respect
to sup(—¢ — —p) ) means that any evidence in which ¢ and ¢ (or, analogously,
neither ¢ nor v ) hold together increases (or at least does not decrease) the
credibility of the rule ¢ — 1. On the other hand, the property of monotonicity
with respect to sup(—¢ — 1) (or, analogously, with respect to sup(¢ — —)) )
means that any evidence in which ¢ does not hold and ¢ holds (or, analogously, ¥



holds and ¢ does not hold) decreases (or at least does not increase) the credibility
of the rule ¢ — 1 . In order to present the interpretation of property M let us
use the following example used by Hempel [8]. Let us consider a rule ¢ — :

if x is a raven then z is black.

In this case ¢ stands for the property of being a raven and 1 is the property
of being black. If an attractiveness measure (¢ — 1) possesses the property M,
then:

— the more black ravens or non-black non-ravens there will be in the dataset,
the more credible will become the rule, and thus (¢ — 1) will obtain greater
(or at least not smaller) values,

— the more black non-ravens or non-black ravens in the dataset, the less cred-
ible will become the rule and thus, I(¢ — 1) will obtain smaller (or at least
not greater) values.

2.4 Partial Preorder on Rules in terms of Rule Support and
Anti-support

Let us denote by <., a partial preorder given by the dominance relation on a
set X of rules in terms of two interestingness measures support and anti-support,
i.e. given a set of rules X and two rules r1,79 € X, 11 <5 72 if and only if

sup(ry) < sup(re) A anti — sup(ry) > anti — sup(ra).

Recall that a partial preorder on a set X is a binary relation R on X that
is reflexive and transitive. The partial preorder <., can be decomposed into
its asymmetric part <;~, and its symmetric part ~4., in the following manner:
given a set of rules X and two rules r1,73 € X, 11 s~qr2 if and only if:

sup(ry) < sup(r2) A anti — sup(ry) > anti — sup(ra), or ™)
sup(ry) < sup(rz) A anti — sup(ry) > anti — sup(ra),
MOTeOVer, 71 ~s~q T2 if and only if:

sup(ry) = sup(ra) A anti — sup(ri) = anti — sup(ra). (8)

If for a rule r € X there does not exist any rule ' € X, such that r <sq
r’, then r is said to be non-dominated (i.e. Pareto-optimal) with respect to
support and anti-support. A set of all non-dominated rules with respect to these
measures is also referred to as a support—anti-support Pareto-optimal border. In
other words, it is the set of rules such that there is no other rule having greater
support and smaller anti-support.



3 Analysis of Z-measure with respect to property M

For the clarity of presentation, the following notation shall be used from now on:

a:S’LLp((ZSH’l/)), b:SUp(_‘(i)H’l/J), c:sup(d)%—'ﬂj), d:SUp(_‘(j)H _‘w)v
a+c=sup(p), a+b=sup(yp), b+d=sup(—-¢), c+d=sup(—),
a+b+c+d=|U|

We also assume that set U is not empty, so that at least one of a, b, c or d is
strictly positive. Moreover, for the sake of simplicity, we assume that any value
in the denominator of any ratio is different from zero. In order to prove that
a measure has the property M we need to show that it is non-decreasing with
respect to a and d, and non-increasing with respect to b and c.

Theorem 1. Measure Z has the property M.

Proof. First, let us consider Z in case of confirmation, i.e. when: sup(¢ —

$)/sup(d) = sup(¥)/[U]:

Y aThiera

_arc a+dtcH+

Z = c+d ' )
at+b+c+d

Through simple mathematical transformations we obtain:

ad — be
2= ar et d (10)

Let us verify if Z is non-decreasing with respect to a, i.e. if an increase of a
by A > 0 will not result in decrease of Z. Simple algebraic transformations show
that:

(a+ A)d — be ad — be cdA + becA

Gt A700c+d) @rie+d @idtoetdatg =" W

Thus, Z (in case of confirmation) is non-decreasing with respect to a.
Clearly, Z is also non-increasing with respect to b, as increase of b by A > 0
will result in decrease of the numerator of (10) and therefore in decrease of Z.
Now, let us verify if Z is non-increasing with respect to ¢, i.e. if an increase
of ¢ by A > 0 will not result in increase of Z. Simple algebraic transformations
show that:
ad*b<C+A) ad — be

(a+c+A)c+A+d) (a+c)(c+d)

(12
(cA+ A?)(bc — ad) — ad(bA 4 cA + aA + dA) )
(a+c+A)(c+ A+d)(a+c)(c+d)

Let us observe that: cA+ A? > 0, ad(bA+cA+aA+dA) > 0, and (be—ad) < 0
because we consider the case of confirmation. Thus, the numerator of (12) is



negative. Since the denominator is positive, we can conclude that Z (in case of
confirmation) is non-increasing with respect to c.

Finally, let us verify if Z is non-decreasing with respect to d, i.e. if an increase
of d by A > 0 will not result in decrease of Z. Simple algebraic transformations
show that:

a(d+ A) — be ad —bc acA + bcA S0, (13)
(a+c)c+d+A) (a+c)c+d) (a+c)(ct+d)(c+d+ A) '
Thus, Z (in case of confirmation) is non-decreasing with respect to d.
Since all four conditions are satisfied, the hypothesis that Z measure in case of
confirmation has the property M is true. The proof that in case of disconfirmation
Z has the property M is analogous.

4 Practical application of the results

The approach to evaluation of a set of rules with the same conclusion in terms of
two interestingness measures being rule support and anti-support was proposed
and presented in detail in [1]. The idea of combining those two dimensions came
as a result of looking for a set of rules that would include all rules optimal with
respect to any confirmation measure with the desirable property M.

Theorem 2. [1] When considering rules with the same conclusion, rules that
are optimal with respect to any interestingness measure that has the property M
must reside on the support—anti-support Pareto-optimal border.

It means that the best rules according to any of confirmation measures with
M are in the set of non-dominated rules with respect to support—anti-support.
This valuable result unveils some relationships between different interestingness
measures. Moreover, it allows to identify a set of rules containing most interesting
(optimal) rules according to any interestingness measures with the property M
simply by solving an optimized rule mining problem with respect to rule support
and anti-support.

As we have proved, measure Z satisfies the property M. This result allows
us to conclude that this interestingness measure is monotonically dependent on
the number of objects satisfying both the premise and conclusion of the rule (or
neither the premise nor the conclusion) and anti-monotonically dependent on
the number of objects satisfying only the premise or only the rule’s conclusion.
Moreover, possession of property M means that rules optimal with respect to Z
reside on the Pareto-optimal border with respect to support and anti-support
(when considering rules with the same conclusion).

It is a very practical result as it allows potential efficiency gains:

— rules optimal with respect to Z can be mined from the support—anti-support
Pareto-optimal set instead of searching the set of all rules,

— we can concentrate on mining only the support—anti-support Pareto-optimal
set instead of conducting rule evaluation separately with respect to Z, or any
other measure with property M, as we are sure that rules optimal according
to Z, or any other measure with property M, are in that Pareto set.
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Fig. 1. Support—anti-support Pareto-optimal border

5 Conclusions

Measures of confirmation are an important and commonly used group of inter-
estingness measures. The semantics of their scales is very useful for the purpose
of elimination of rules for which the premise does not confirm the conclusion
to the desired extent [14,15]. In this paper we considered a recently proposed
confirmation measure Z [4]. A theoretical analysis of Z with respect to valu-
able property M has been conducted. It has been proved that measure Z does
satisfy property M, which means that it is a function non-decreasing with re-
spect to sup(¢p — ) and sup(—¢ — —), and non-increasing with respect to
sup(—¢ — ) and sup(¢ to—1)). Moreover, the possession of property M implies
that rules optimal according to Z will be found on the support—anti-support
Pareto-optimal border (when considering rules with the same conclusion). Thus,
one can concentrate on mining the set of non-dominated rules with respect to
support and anti-support and be sure to obtain in that set all rules that are op-
timal with respect to any measure with the property M, which includes measure
Z.
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