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Abstract. We are considering properties of interestingness measures of rules 
induced from data. These are: Bayesian confirmation property, two properties 
related to the case of entailment or refutation, called Ex1 and logicality L, and a 
group of symmetry properties. We propose a modification of properties Ex1 and 
L, called weak Ex1, and weak L, that deploy the concept of confirmation in its 
larger sense. We demonstrate that properties Ex1 and L do not fully reflect such 
understanding of the confirmation concept, and thus, we propose to substitute 
Ex1 by weak Ex1 and L by weak L. Moreover, we introduce four new 
approaches to normalization of confirmation measures in order to transform 
measures so that they would obtain desired properties. The analysis of the 
results of the normalizations of the confirmation measures takes into account all 
considered properties. We advocate for two normalized confirmation measures: 
measure Z considered in the literature, and newly proposed measure A. Finally, 
we provide some ideas for combining them in a single measure keeping all 
desirable properties. 

Keywords: Rule interestingness measures; Properties of measures; 
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1. Introduction 

One of the main objectives of data mining process is to identify “valid, novel, 
potentially useful, and ultimately comprehensible knowledge from databases”  [9], 
[33]. The discovered knowledge (patterns) is often expressed in a form of 
“ if..., then...”  rules, which are consequence relations reflecting relationship, 
association, causation, etc., between independent (i.e. those in the premise of the rule) 
and dependent (i.e. those in the conclusion of the rule) attributes. The number of rules 
discovered in databases is often overwhelmingly large rising an urgent need to 
identify the most useful ones and filter out those that are irrelevant. In order to help to 
deal with this problem, various quantitative measures of rule interestingness 
(attractiveness) have been proposed and studied. Among the most commonly used 
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interestingness measures there are support, confidence, lift, rule interest function (for 
a survey on interestingness measures see [3], [15], [25], [27], [31]).  

Each of the measures proposed in the literature has been introduced to reflect 
different characteristics of rules. For example, measures like support [1] value 
genera li t y (also referred to as coverage) of the rule, i.e. favor rules that cover a 
relatively large subset of a dataset. In opposition, there are measures that bring forth 
pecul iar i ty,  believing that patterns far away from other discovered knowledge, 
according to some distance measure, may be unknown to the user and therefore 
interesting. The list of characteristics that are emphasized by different measures is 
long and covers conciseness, reliability, novelty, surprisingness, utility, actionability, 
among others [15]. 

Generally, interestingness measures can be categorized as objective and subjective 
measures. The first group can be established through statistical arguments derived 
from data to determine whether a rule is interesting or not. No knowledge about the 
user or application is needed. For example, rules that cover only very few objects 
from the dataset, and can therefore capture spurious relationships in data, are 
discarded by objective measures [21].  

On the other hand, the group of subjective measures takes into account both the 
data and the user, thus, those measures require interaction with the user to obtain 
information about the user’s background knowledge and expectations. Subjective 
measures regard a rule as uninteresting unless it reveals unexpected information about 
the data or provides knowledge that can lead to profitable actions [39], [40]. Thus, for 
subjective evaluation criteria rare cases in the data are often interesting and rules that 
cover them are of high value.  

All in all, objective measures depend on the structure of the rules and the 
underlying data used in the discovery process, whereas the subjective measures also 
rely on the class of users who examine the rule [35]. 

Moreover, measuring the interestingness of discovered patterns receives recently 
much attention from researchers developing the paradigm of granular computing (see, 
e.g., the rough-set-based granular computing in [2], [17], [18], [32], [37], [38]).  

A common conclusion stemming from this broad interest in measuring 
attractiveness of discovered rules is that there is no single way that would work the 
best on any real-life problem. The literature is a rich resource of ordinally non-
equivalent measures that reflect different characteristics of rules and rank them in 
different ways. As there is no agreement which measure is the best, the choice of an 
interestingness measure for a particular application is a non-trivial task that should 
closely relate to the domain of application and should take advantage of available 
domain knowledge. 

To help to analyze objective measures and to choose one for a certain application, 
some proper t ies  have been proposed. They express the user's expectations towards 
the behavior of measures in particular situations. Those expectations can be of various 
types, e.g., one could desire to use only such measures that reward the rules having a 
greater number of objects supporting the pattern. In general, properties group the 
measures according to similarities in their characteristics, thus using the measures 
which satisfy the desirable properties one can avoid considering unimportant rules. 
Different properties have been proposed and surveyed in [5], [8], [15], [16], [19], 
[25], [36], [39]. 
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Among the commonly used properties of rule interestingness measures there are: 
• property of confirmation related to quantification of the degree to which 

the premise of the rule provides evidence for or against the conclusion 
[5], [12]; 

• property Ex1 assuring that any conclusively confirmatory rule is assigned 
a higher value of interestingness measure than any rule which is not 
conclusively confirmatory, and any conclusively disconfirmatory rule is 
assigned a lower value than any rule which is not conclusively 
disconfirmatory [7], [20]; 

• property L, called logicality, for which any conclusively confirmatory 
rule is assigned the maximum value, and any conclusively 
disconfirmatory rule is assigned the minimum value [7], [12]; properties 
Ex1 and L can be regarded as strongly related, as both of them deal with 
the behavior of confirmation measures in cases of conclusive 
confirmation or conclusive disconfirmation;  

• properties of symmetry being a whole set of properties that describe 
desirable and undesirable behavior of measures in cases when the premise 
or conclusion in not satisfied, or when the premise and conclusion switch 
positions in a rule [4], [7], [8], [12].  

 
This paper concentrates on the abovementioned properties of objective 

interestingness measures. We propose a modification of properties Ex1 and L, called 
weak Ex1, and weak L, that deploy the concept of confirmation in its larger sense. In 
fact, according to the deep meaning of the confirmation concept, a confirmation 
measure should give an account of the credibility that it is more probable to have the 
conclusion when the premise is present, rather than when the premise is absent. We 
demonstrate that properties Ex1 and L do not fully reflect such understanding of the 
confirmation concept, and thus, we propose to substitute Ex1 by weak Ex1 and L by 
weak L.  

Moreover, since Crupi et al. [7] represent Bayesian approach to defining Ex1 and 
L, we enrich their point of view by considering also likelihoodist counterparts of 
those properties, denoted as L-Ex1 and L-L, respectively. 

Next, we introduce four new approaches to normalization of confirmation 
measures in order to transform measures so that they would obtain desired properties. 
The analysis of the results of the normalizations of the confirmation measures 
considers property Ex1, L-Ex1, weak Ex1, L, L-L, weak L, and the properties of 
symmetry.  

As the final contribution, we propose a new measure A that fulfils all the desirable 
symmetry properties. Its strength lies in the fact that it does not possess the property 
Ex1, but its likelihoodist counterpart L-Ex1. On  the basis of these remarks, we 
argument that measure A and measure Z proposed by Crupi et al. [7], should be 
considered as complementary tools for assessing the quality of rules. At the end, we 
provide some ideas for combining them in a single measure keeping all desirable 
properties. 
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2. Preliminaries 

A rule induced from a dataset on a universe U shall be denoted by E→H (read as 
“ if E, then H” ). It consists of a premise (evidence) E and a conclusion (hypothesis) H.  

In general, by sup(γ) we denote the number of objects in the dataset for which γ is 
true, e.g., sup(E) is the number of objects in the dataset satisfying the premise, and 
sup(H, E) is the number of objects satisfying both the premise and the conclusion of a 
E→H rule.  

Moreover, the following notation shall be used throughout the paper: a=sup(H, E), 
b=sup(H, ¬E), c=sup(¬H, E), d=sup(¬H, ¬E). Observe that b can be interpreted as 
the number of objects that do not satisfy the premise but satisfy the conclusion of the 
E→H rule. Analogously, c=sup(¬H, E) can be construed as the number of objects in 
the dataset that satisfy the premise but do not satisfy the conclusion of the E→H rule, 
and d=sup(¬H, ¬E) can be interpreted as the number of objects in the dataset that do 
not satisfy neither the premise nor the conclusion of the E→H rule. Moreover, the 
following relations occur: a+c=sup(E), a+b=sup(H), b+d=sup(¬E), c+d=sup(¬H), 
and the cardinality of the dataset U, denoted by |U|, is the sum of a, b, c and d. 

Reasoning in terms of a, b, c and d is natural and intuitive for data mining 
techniques since all observations are gathered in some kind of an information table 
describing each object by a set of attributes. However, a, b, c and d can also be 
regarded as frequencies that can be used to estimate probabilities:  
e.g., Pr(E)=(a+c)/|U| or Pr(H)=(a+b)/|U|. 

3. Desirable properties of objective measures 

The problem of choosing an appropriate interestingness measure for a certain 
application is non-trivial because the number and variety of measures proposed in the 
literature is overwhelming. Therefore, there naturally arises a need to analyze 
theoretical properties of measures, which allow for grouping the measures and 
unveiling relationships between them. 

3.1. Property of Bayesian confirmation 

Formally, an interestingness measure c(H, E) has the property of Bayesian 
confirmation if and only if it satisfies the following conditions: 
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In the contemporary literature [12], [26], this conception of confirmation is also 

known as incremental Bayesian confirmation, in order to distinguish it from the 
absolute confirmation which assumes that the premise E confirms the conclusion H, if 
some kind of a threshold k∈(0, 1) is exceeded by the probability of H given E. This 
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article concentrates only on the incremental Bayesian confirmation, which shall be 
denoted as conf irmation for simplicity.  

The (BC) definition identifies confirmation with an increase in the probability of 
the conclusion provided by the premise, neutrality with the lack of influence of the 
premise on the probability of conclusion, and finally disconfirmation with a decrease 
of probability of the conclusion imposed by the premise [5].  

Estimating probabilities in terms of frequencies, the (BC) conditions can be 
expressed in terms of a, b, c and d: 
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The above conditions are used to check if for a given rule E→H we have the case 

of confirmation or the case of disconfirmation, respectively. 
If one adopts Kolmogorov theory of probability [24] (i.e., assumes that Pr is a 

Kolmogorov probability function) there are many different, but logically equivalent, 
ways of expressing that E confirms H: 

Pr(H|E) > Pr(H) 
Pr(H|E) > Pr(H|¬E) 
Pr(E|H) > Pr(E|¬H). 
Since they are equivalent (see also [12], [26]), one can also express the (BC) 

conditions as: 
( ) ( )
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To avoid ambiguity, we shall denote the above formulation as (BC’). Taking this 

formulation into account, it can be concluded that E confirms H when E raises the 
probability of H, and E raises the probability of H if the probability of H given E is 
higher than the probability of H given non E. 

Measures that possess the property of confirmation are referred to as confirmation 
measures or measures of confirmation. They quantify the degree to which the premise 
E provides “support for or against”  the conclusion H [12]. Thus, for a given rule 
E→H, interestingness measures with the property of confirmation express the 
credibility of the following proposition: H is satisfied more frequently when E is 
satisfied, rather than when E is not satisfied. This interpretation stresses the very 
valuable semantics of the property of confirmation. By using the interestingness 
measures that possess this property one can filter out rules which are misleading and 
disconfirm the user, and this way, limit the set of induced rules only to those that are 
meaningful [36]. 

The only constraints that the conditions (BC) put on a measure is that it assigns 
positive values in the situation when confirmation occurs, negative values in case of 
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disconfirmation, and zero otherwise. As a result many alternative, non-equivalent 
measures of confirmation have been proposed. Now, the catalogue of confirmation 
measures available in the literature is quite large and the condition (BC) itself does 
not favor one single measure as the most adequate [11]. The most commonly used 
ones are gathered in Table 1 (selection provided in [7]):  

Table 1. Popular confirmation measures 
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3.2. Properties Ex1 and L 

To handle the plurality of alternative confirmation measures, Crupi, Tentori and 
Gonzalez [7] have proposed a property (principle) Ex1 resorting to considering 
inductive logic as an extrapolation from classical deductive logic. On the basis of 
classical deductive logic they construct a function v: 

( )
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For any argument (H, E) function v assigns it the same positive value V (e.g., +1) if 

and only if the premise E of the rule entails the conclusion H (i.e. E |= H). The same 
value but of opposite sign −V (e.g., −1) is assigned if and only if the premise E refutes 
the conclusion H (i.e. E |= ¬H). In all other cases (i.e. when the premise is neither 
conclusively confirmatory nor conclusively disconfirmatory for the conclusion) 
function v obtains value 0. 

From definition, any confirmation measure c(H, E) agrees with function v(H, E) in 
the way that if v(H, E) is positive, then the same is true of c(H, E), and when v(H, E) 
is negative, so is c(H, E). According to Crupi et al., the relationship between the 
logical implication or refutation of H by E, and the conditional probability of H 
subject to E should go further and demand fulfillment of the following principle 
(Ex1): 

),(),(),(),( 22112211 EHcEHc   then   EHvEHv if >>      (Ex1) 
Property Ex1 guarantees that the measure will assign a greater value for any 

conclusively confirmatory rule (i.e. such that E |= H) than for any rule which is not 



 7

conclusively confirmatory. Moreover, rules that are conclusively disconfirmatory (i.e. 
such that E |= ¬H) will obtain smaller values of interestingness measures than any 
rule which is not conclusively disconfirmatory.  

Let us now explain the consequences of property Ex1 by considering three rules: 
• E→H, such that there are only positive examples to the rule and no 

counterexamples, i.e. a>0 and c=0, which implies that v(H, E) = 1; 
• E’→H’, such that there are some positive examples and some 

counterexamples to the rule, i.e. a’>0 and c’>0, which implies that 
v(H’,E’) = 0; 

• E’’→H’’, such that there are no positive examples and some 
counterexamples to the rule, i.e. a’’=0 and c’’>0, which implies that 
v(H’’,E’’) = −1 . 

If a confirmation measure satisfies Ex1, then the ordering based on function v: 
v(H, E) > v(H’, E’) > v(H’’, E’’), implies the following relations between 
confirmation measures:  c(H,E) > c(H’,E’) > c(H’’,E’’). 

 
Another property which is closely related to Ex1 is logicality property L, discussed 

among others by Carnap [5] and Fitelson [13], that can be expressed as follows: 
• c(H, E) is maximal when E |= H  
• and c(H, E) is minimal when E |= ¬H.          (L) 

In terms of conditional probability, property L can be expressed as follows:  
• c(H, E) attains its maximum if Pr(H|E)=1  
• and c(H, E) attains its minimum if Pr(H|E)=0.  

Equivalently, a confirmation measure possessing property L obtains its maximum  
when there are no counterexamples to a rule, i.e. c=0, and obtains its minimum when 
there are no positive examples to a rule, i.e. when a=0. 

Crupi et al. [7] note that L and Ex1 are independent in the sense that there are 
confirmation measures satisfying L but not Ex1, as well as there are confirmation 
measures satisfying Ex1 but not L. As an example of the first situation, consider a 
measure assigning a fixed value, e.g. 1, in any case of confirmation, another fixed 
value, e.g. −1, in any case of disconfirmation, and 0 in case of neutrality. The case of 
confirmation corresponds to Pr(H|E)>Pr(H), which means that ad>bc. The case of 
disconfirmation corresponds to Pr(H|E)<Pr(H), which means that ad<bc. The case of 
neutrality corresponds to Pr(H|E)=Pr(H), which means that ad=bc. 

As an example of the second  situation, where a confirmation measure satisfies Ex1 
but not L, let us propose measure c1(H, E) defined as follows:  
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where α+β=1, and α>0, β>0. First, observe that c1(H, E) is a confirmation measure 
because it is positive when Pr(H|E)>Pr(H) (i.e. when ad>bc), it is equal to 0 when 
Pr(H|E)=Pr(H) (i.e. when ad=bc), and it is negative when Pr(H|E)<Pr(H) (i.e. when 
ad>bc). Moreover, measure c1(H, E) satisfies Ex1 because all the cases for which 
E|=H (i.e., conclusively confirmatory cases) get a greater value of c1(H, E) than cases 
for which E|=H is not true (i.e., cases which are not conclusively confirmatory). In 
fact, if E|=H then c1(H, E)=α+β (ad−bc)/[(a+b)(b+d)], and if E|=H is not true then 
c1(H, E)=α (ad−bc)/[(a+c)(c+d)].  

One can observe that α+β (ad−bc)/[(a+b)(b+d)] > α  ≥  α (ad−bc)/[(a+c)(c+d)], and, 
therefore, the ordering of conclusively confirmatory cases and non-conclusively 
confirmatory cases is the same in terms of function v and measure c1(H, E).  
Similarly for the disconfirmation, all the cases for which E |= ¬H (i.e., conclusively 
disconfirmatory cases) receive smaller values of c1(H, E) than cases for which 
E |= ¬H is not true (i.e., cases which are not conclusively disconfirmatory). 
Therefore, the ordering of conclusively disconfirmatory cases and non-conclusively 
disconfirmatory cases is also the same in terms of function v and measure c1(H, E). 
Thus, we can conclude that measure c1(H, E) satisfies property Ex1. 

However, complete absence of counterexamples (c=0), i.e., the case when E |= H, 
is not enough to result in the maximal value of measure c1(H, E). The maximum (i.e., 
c1(H, E) = 1) is obtained when c=0 and b=0. Analogous observation holds in case of 
the minimal value of c1(H, E). The absence of positive examples (a=0), i.e., the case 
when E |= ¬H, is not a sufficient condition for the measure to reach the minimum. 
Measure c1(H, E) obtains its minimal value when both a=0 and d=0. Thus, c1(H, E) 
satisfies property Ex1 but not L. 

Nevertheless, even if properties Ex1 and L are independent, they are strongly 
related, because both of them deal with the behavior of the confirmation measure in 
case when E |= H and when E |= ¬H. 

To better explain the relationship between properties Ex1 and L let us use an 
example of drawing cards from a standard deck. We review three possible situations: 
conclusively confirmatory, non-conclusively confirmatory (or disconfirmatory), and 
conclusively disconfirmatory rules. 

A rule: r1≡“ if x is seven of spades then x is black”  
is conclusively confirmatory as the premise (drawing seven of spades) entails the 

conclusion that the drawn card is black. Since E |= H, it is clear that there are no 
counterexamples to the rule, i.e. c=0. Such conclusively confirmatory rule should also 
be assigned maximal value V of a function v(H, E). For such a rule an interestingness 
measure possessing property L should assign a maximal value (e.g., +1).   

As an example of a rule which is neither conclusively confirmatory nor 
conclusively discomfirmatory let us consider a rule: 

r2≡“ if x is black then x is seven of spades” . 
Drawing a black card, we can be lucky to get a seven of spades, but it is not a 

100% sure situation, therefore the premise does not entail the conclusion and the rule 
is not conclusively confirmatory. The rule is not conclusively disconfirmatory either 
as the premise does not refute the conclusion as there is a chance of drawing that 
seven. For such rules, neither conclusively confirmatory nor conclusively 
discomfirmatory, function v(H, E) obtains value 0, which implies that confirmation 
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measures with property Ex1 should assign to such rules values smaller than to rules 
conclusively confirmatory (for which v(H, E)=V, where V>0). 

Finally, an example of conclusively disconfirmatory rule could be the following: 
r3≡” if x is seven of spades then x is red” . 
One can never get a red card having drawn a seven of spades, thus the premise in 

the above rule completely disconfirms the conclusion. For such a rule E |= ¬H and 
there are no positive examples to the rule (i.e. a=0). Thus, such rule will be assigned a 
minimal value (e.g., −1) by a measure possessing property L. Moreover, function 
v(H, E) shall assign the value −V (where −V < 0) to a conclusively disconfirmatory 
rule. Therefore, a confirmation measure satisfying Ex1 assigns to such rule a smaller 
value than to rules which are neither conclusively confirmatory nor conclusively 
disconfirmatory. Consequently, confirmation measure satisfying Ex1 assigns to 
conclusively disconfirmatory rules a smaller value than to conclusively confirmatory. 

In terms of above rules r1, r2 and r3, for properties L and Ex1 we have: 
• c(black, seven spades) = c(r1) = 1 and c(red, seven spades) = c(r3) = −1  

if the measure possesses property L, 
• c(black, seven spades) = c(r1) > c(seven spades, black) = c(r2) >  

c(red, seven spades) = c(r3) if the measure satisfies property Ex1. 
Concluding, interestingness measures satisfying property L and/or Ex1 have the 

ability to rank the rules in such a way that those in which the premise entails the 
conclusion (e.g., the rule: if x is seven of spades then x is black) are on top of the 
ranking, those in which the premise refutes the conclusion (e.g., if x is seven of spades 
then x is red) are on the very bottom, and rules which are neither 100% sure nor 100% 
false are in between.  

Remark that in case of confirmation, both Ex1 and L concern situations of 
entailment, which is equivalent to Pr(H|E)=1. However, confirmation should express 
how much it is more probable to have H when E is present rather than when E is 
absent. Thus, the requirement Pr(H|E)=1 is not sufficient, and properties Ex1 and L 
should be modified to take into account also the value of Pr(H|¬E). In particular, 
Pr(H|¬E) should be equal to zero for maximal confirmation in case of entailment. 
Analogical requirements concern the case of disconfirmation. These considerations 
lead to new properties Ex1 and L, called weak Ex1 and weak L, which are described in 
the next point. 

3.2.1. Desirable modification of properties Ex1 and L  into properties 
weak Ex1 and weak L 

Properties Ex1 and L can be regarded as one-sided because they focus on situations 
when E |= H (i.e. there are no counterexamples to a rule and c=0), and situations when 
E |= ¬H (i.e. there are no positive examples to a rule and a=0). 

In our opinion, the concept of confirmation is too complex and rich to be boiled 
down simply to verification whether there are no counterexamples or no positive 
examples. We claim that it is also important how the measure behaves in intermediate 
cases –  between the absence of counterexamples and absence of positive examples for 
a rule. 

Let us explain our opinion by taking into account the formulation of (BC’) 
conditions which state that: when E confirms H, this means that E raises the 
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probability of H, and E raises the probability of H if the probability of H given E is 
higher than the probability of H given ¬E. We believe that it is reasonable to 
conclude that, in case of confirmation, a confirmation measure c(H, E) should express 
how much it is more probable to have H when E is present rather than when E is 
absent.   
Analogously, let us interpret (BC’) conditions as: E disconfirms H, which means that 
E decreases the probability of H, and E decreases the probability of H if the 
probability of H given E is smaller than the probability of H given ¬E. We believe 
that it is reasonable to conclude that in case of disconfirmation a confirmation 
measure c(H, E) should express how much it is less probable to have H when E is 
present rather than when E is absent. 

Taking into account such interpretations, we can formulate a property called weak 
Ex1, which generalizes the original Ex1 property: 

 
 EHcEHc   then  EHvEHv  and  EHvEHv if ),(),(),(),(),(),( 221122112211 >¬<¬>   

      (weak Ex1) 
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maximal value unless the two following conditions are satisfied: 
1) E |= H, or equivalently, Pr(H|E)=1, or equivalently,  c=sup(¬H, E)=0.  
2) ¬E |=¬H, or equivalently, Pr(H|¬E)=0, or equivalently, b=sup(H, ¬E)=0. 
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By the following example let us explain the advantage of considering weak Ex1 

property instead of property Ex1 in case of confirmation.  
Let us consider the following two cases: 

• Case 1: a=100, b=99, c=0, d=1; 
• Case 2: a=99, b=0, c=1, d=100. 

In case 1 the value of a confirmation measure should be greater than in case 2 if Ex1 
holds. However, if we use the idea that a confirmation measure c(H, E) should 
express how much it is more probable to have H when E is present rather than when E 
is absent, one can see that Pr(H|E) = 1 and Pr(H|¬E) = 0.99 in case 1, while in case 2 
Pr(H|E) = 0.99 and Pr(H|¬E) = 0. In other words, if Ex1 holds, passing from ¬E to E, 
we assign a greater value of a confirmation measure when we have a 1% increment of 
the probability of H (case 1) rather than when the same increment is of 99% (case 2). 
If we consider a confirmation measure that satisfies weak Ex1, we do not demand that 
c(H, E) should have a greater value in case 1 rather than in case 2, nor vice versa. 
Thus, the paradox disappears under conditions of weak Ex1 property. 
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Analogously, property weak Ex1 guarantees that the confirmation measure c(H, E) 
cannot attain its minimal value unless the two following conditions are satisfied: 

3) E |≠H, or equivalently, Pr(H|E)=0, or equivalently,  a=sup(H,  E)=0.  
4) ¬E |=H, or equivalently, Pr(H|¬E)=1, or equivalently, d=sup(¬H, ¬E)=0. 
 

Let us supplement that for a given dataset, E |≠ H 

00
),(),(

),()|Pr( =⇔=
+

=
¬+

=⇔ a
ca

a
EHsupEHsup

EHsupEH
. 

Moreover, ¬E |= H 

01
),(),(

),()|Pr( =⇔=
+

=
¬¬+¬

¬
=¬⇔ d

db
b

EHsupEHsup
EHsupEH

. 
The following example explains the advantage of considering weak Ex1 property 

instead of Ex1 property in case of disconfirmation.  
Let us consider the following two cases 

• Case 3: a=0, b=1, c=100, d=99; 
• Case 4: a=1, b=100, c=99, d=0. 

In case 3 the disconfirmation should be greater than in case 4 if Ex1 holds i.e. the 
value of a confirmation measure should be smaller in case 3 than in case 4. Moreover, 
one can see that Pr(H|E) = 0 and Pr(H|¬E) = 0.01 in case 3, while in case 4 
Pr(H|E) = 0.01 and Pr(H|¬E) = 1. According to our interpretation of the (BC’) 
conditions, in case of disconfirmation, a confirmation measure c(H, E) should express 
how much it is less probable to have H when E is present rather than when E is 
absent. However, it is clear that if Ex1 holds, passing from ¬E to E, we should have a 
smaller value of confirmation measure (greater disconfirmation) when we have a 1% 
decrement of probability of H (case 3) rather than when the same decrement is of 99% 
(case 4). If we consider a confirmation measure that satisfies weak Ex1, we do not 
demand that c(H, E) should have a smaller value in case 3 rather than in case 4, nor 
vice versa. Thus the paradox disappears under conditions of weak Ex1. 

 
Analogously as with property Ex1, we can generalize property L into property 

weak L. In fact, in case of confirmation conditions 1) and 2) are the only to ensure the 
maximal degree of confirmation, because the increment of the probability of H when 
passing from ¬E to E is maximal when Pr(H|E)=1 and Pr(H|¬E)=0. 

In our opinion, only rules with such full confirmation should be assigned the 
maximal value of confirmation measures, while in some cases, as in the above case 1, 
it is reasonable not to assign that maximal value. Rules for which ¬E |= ¬H is not 
verified should not obtain maximal values of confirmation measures despite the fact 
that E |= H occurs, and vice versa. Thus, we claim that the requirement from property 
L of complete absence of counterexamples (c=0) is not a sufficient condition to assign 
the maximal value of a confirmation measure. It needs to be supplemented by the 
condition: b=0.  

Analogously, in case of disconfirmation, conditions 3) and 4) are the only to 
ensure the maximal degree of disconfirmation, because the decrement of the 
probability of H when passing from ¬E to E is maximal when Pr(H|E)=0 and 
Pr(H|¬E)=1. 
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In our opinion, only rules with such full disconfirmation should be assigned the 
minimal value of confirmation measures, while in some cases, as in the above case 3, 
it is reasonable not to assign that minimal value. Rules for which ¬E |= H  is not 
verified should not obtain minimal values of confirmation measures despite the fact 
that E |= ¬H occurs, and vice versa. Thus, we claim that the requirement from 
property L of complete absence of positive examples (a=0) is not a sufficient 
condition to assign the minimal value of a confirmation measure. It needs to be 
supplemented by the condition: d=0. 

 
On the basis of the above considerations we can generalize property L into 

property weak L as follows:  
• c(H, E) is maximal when E |= H and ¬E |=¬H, 
• and c(H, E) is minimal when E |=¬H and ¬E|=H.           (weak L) 

3.3. Properties of symmetry 

Bayesian confirmation measures are also often considered with respect to their 
symmetry properties. Eells and Fitelson analysed in [8] a set of best-known 
confirmation measures  from the viewpoint of four properties of symmetry introduced 
by Carnap in [5]. Later, Crupi et al. [7] presented an extended and systematic 
treatment of symmetry properties gathered up as principle Ex2. By a symmetry they 
mean a function σ(H, E) which is obtained from (H, E) by applying the negation 
operator (¬) to either H or E (or both), and/or by inverting them. On the whole they 
propose to analyze a confirmation measure c(H, E) with respect to seven such  
symmetry functions (Table 2). 

Table 2. Basic symmetry functions 

E(H, E):  c(H, E) = −c(H, ¬E) 
H(H, E):  c(H, E) = −c(¬H, E) 
EI(H, E):  c(H, E) = −c(¬E, H) 
HI(H, E):  c(H, E) = −c(E, ¬H) 
I(H, E):  c(H, E) = c(E, H) 
EH(H, E):  c(H, E) = c(¬H, ¬E) 
EHI(H, E): c(H, E) = c(¬E, ¬H) 
 
However, the analysis is said to be done separately for the case of confirmation 

and for the case of disconfirmation. Using examples of drawing cards from a standard 
deck, Crupi et al. point out which of the symmetries are desired and which are 
definitely unwanted. For instance, the symmetry I is undesired in case of confirmation 
as for a rule: if Jack was drawn, then the card is a face, Jack does not confirm face 
with the same strength as the face confirms Jack, i.e. c(H, E) ≠ c(E, H). On the other 
hand, symmetry I is desirable in case of disconfirmation, as for an exemplary rule: if 
the drawn card is an Ace, then it is a face, the strength with which an Ace disconfirms 
face is the same as the strength with which the face disconfirms an Ace, i.e. 
c(H, E) = c(E, H).  
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Summing up, Ex2 can be stated as follows:  
Given a confirmation measure c(H, E), in case of confirmation the following 

conditions have to be satisfied: 
(E+) c(H, E) ≠ − c(H, ¬E),  
(H+) c(H, E) = − c(¬H, E),  
(EI+) c(H, E) ≠ − c(¬E, H), 
(HI+) c(H, E) = − c(E, ¬H), 
(I+) c(H, E) ≠ c(H, E), 
(EH+) c(H, E) ≠ c(¬H, ¬E), 
(EHI+) c(H, E) = c(¬E, ¬H), 
while, in case of disconfirmation:  
(E-) c(H, E) ≠ − c(H, ¬E),  
(H-) c(H, E) = − c(¬H, E),  
(EI-) c(H, E) = − c(¬E, H), 
(HI-) c(H, E) ≠ − c(E, ¬H), 
(I-) c(H, E) = c(E, H), 
(EH-) c(H, E) ≠ c(¬H, ¬E), 
(EHI-) c(H, E) ≠ c(¬E, ¬H). 

Considering the formulation of a confirmation measure in terms of quantities 
a, b, c, d, and denoting by f + (a,b,c,d) the formulation of the confirmation measure in 
case of confirmation, and by f − (a,b,c,d) the formulation of the confirmation measure 
in case of disconfirmation, we can formulate the above conditions as in Table 3. 

Table 3. Ex2 symmetry properties 

(E+) f + (a,b,c,d) ≠ − f − (b,a,d,c)  (E-) f − (a,b,c,d) ≠ − f + (b,a,d,c) 
(H+) f + (a,b,c,d) = − f − (c,d,a,b)  (H-) f − (a,b,c,d) = − f + (c,d,a,b) 
(EI+) f + (a,b,c,d) ≠ − f − (b,d,a,c) (EI-) f − (a,b,c,d) = − f + (b,d,a,c) 
(HI+) f + (a,b,c,d) = − f − (c,a,d,b) (HI-) f − (a,b,c,d) ≠ − f + (c,a,d,b) 
(I+) f + (a,b,c,d) ≠ f + (a,c,b,d) (I-) f − (a,b,c,d) = f − (a,c,b,d) 
(EH+)f + (a,b,c,d) ≠ f + (d,c,b,a) (EH-) f − (a,b,c,d) ≠ f − (d,c,b,a) 
(EHI+) f + (a,b,c,d) = f + (d,b,c,a) (EHI-) f − (a,b,c,d) ≠ f − (d,b,c,a) 

4. Different approaches to understanding the concept of extreme 
values of confirmation measures 

Having observed that confirmation measures D, S, M, N, C, R, G (defined earlier 
on) are contrary to Ex1, Crupi et al. [7] proposed to normalize them by dividing each 
of them by the maximum (minimum, respectively) that the measure obtains when 
E |= H, i.e. when the rule’s premise entails its conclusion (E |= ¬H, respectively). 

The meaning of what a maximum or minimum that a confirmation measure obtains 
in case of confirmation or disconfirmation is, constitutes however a very broad 
subject and the approach applied by Crupi et al. is only one of many ways to answer 
that question. Exploiting different understandings of the concept of extreme 
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confirmation or disconfirmation, we propose and analyze four, alternative to 
Crupi et al., schemas allowing to determine the maximum (or minimum) of any 
confirmation measure in situation when the premise entails (or refutes) the 
conclusion. Each of those schemas eventually leads to a different normalization. The 
normalization proposed by Crupi et al. is also explained by us in terms of a, b, c and d 
in this section. 

4.1. Approach inspired by Nicod 

The Nicod’s criterion presented in [29] says that an evidence confirms a rule E→H 
if and only if it satisfies both the premise and the conclusion of the rule, and 
disconfirms it if and only if it satisfies the premise but not the conclusion of the rule. 
Thus, objects for which the premise and the conclusion is supported are considered as 
positive examples for the rule and objects satisfying the premise but not the 
conclusion are counter-examples. Moreover, according to Nicod’s criterion an 
evidence that does not satisfy the premise is neutral with respect to the rule. It means 
that objects for which the premise is not satisfied are irrelevant to the rule, no matter 
whether they support the conclusion or not. 

Let us look at Hempel’s [23] rule: if x is a raven then x is black from the point of 
view of Nicod’s criterion. In this situation, a black raven supports the rule and is a 
positive example of that rule, non-black ravens are against it and are considered as 
counter-examples, and everything which is not a raven can be ignored. 

Now, let us propose a schema, based on Nicod’s criterion, for determination of 
maximum (or minimum) of a confirmation measure. Following Nicod’s directives, 
the only objects that are relevant to a rule are positive and counter-examples. It brings 
us to an observation that a measure will obtain its maximum when all counter-
examples change into positive examples. That would take place when all non-
black ravens change into black ravens. It means that the number of positive examples 
should take over all counter-examples (i.e. a’→a+c), and the number of counter-
examples should drop to 0 (i.e. c’→0). The number of black non-ravens and non-
black non-ravens should remain unchanged (i.e. b’→b and d’→d). 

Moving on to determination of the minimal value of a measure, let us observe that 
it will be obtained when all positive examples change into counter-examples (i.e. 
c’→a+c and a’→0). Again the number of black non-ravens and non-black non-ravens 
remains unchanged (i.e. b’→b and d’→d) as these are objects irrelevant to the rule. 

Putting the above considerations together we obtain the following schema inspired 
by Nicod’s approach (Table 4). 

Table 4. Normalization schema inspired by Nicod 

Maximum Minimum 
a’→a+c a’→0 
b’→b b’→b 
c’→0 c’→a+c 
d’→d d’→d 
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For measure D, its maximal value according to Nicod’s criterion is: 
1−[(a+b+c)/|U|]=d/|U| and the minimal: -b/|U|. 

4.2. Bayesian approach 

The ongoing argument between Bayesians and Likelihoodist about the proper 
probabilistic explication of confirmation [14] inspired us to distinguish the two 
following approaches to determination of extremes of a measures: Bayesian and 
likelihoodist. Bayesian approach is related to the idea that the evidence confirms the 
hypothesis, if the hypothesis is more frequent with the evidence rather than with 
¬evidence. Analogously, the evidence disconfirms the hypothesis, if ¬hypothesis is 
more frequent with the evidence rather than with ¬evidence. Thus, determination of 
measure’s extremes based on this approach should consider a rule from the 
perspective of its conclusion. 

Following Bayesian approach, let us observe that a measure will obtain its 
maximum if all black non-ravens change into black ravens (i.e. a’→a+b and b’→0), 
and all non-black ravens change into non-black non-ravens (i.e. d’→c+d and c’→0). 
It is due to the fact that when there are no black non-ravens (i.e. b’=0), the hypothesis 
of being black is more frequent with the premise of being a raven rather than with 
¬premise of being a non raven, which means that the premise confirms the rule’s 
conclusion. Moreover, when there are no non-black  ravens (i.e. c’=0), the 
¬hypothesis of being non-black is disconfirmed as it is more frequent with the 
¬premise of being a non-raven rather than with the premise of being a raven. 
Disconfirmation of ¬hypothesis is desirable as it results in confirmation of the 
hypothesis. 

To get the minimum of a measure we need to reverse the above situation: all 
black ravens should change into black non-ravens (i.e. b’→a+b and a’→0), and all 
non-black non-ravens change into non-black ravens (i.e. c’→c+d and d’→0). Here, in 
case of the minimal value of a measure we want the situation to be as disconfirmning 
as possible. It will occur when there are no black ravens (i.e. a’=0), because then the 
hypothesis of being black is more frequent with the ¬premise of being a non  raven 
rather than with premise of being a raven. Moreover, when there are no non-black  
non-ravens (i.e. d’=0), the ¬hypothesis of being non-black is confirmed as it is more 
frequent with the premise of being a raven rather than with the ¬premise of being a 
non-raven. From the fact that the ¬hypothesis is confirmed we can conclude that the 
hypothesis is disconfirmed. 

Table 5 sums up Bayesian approach to determination of a measure’s extremes. 

Table 5. Bayesian normalization schema 

Maximum Minimum 
a’→a+b a’→0 
b’→0 b’→a+b 
c’→0 c’→c+d 
d’→c+d d’→0 
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The maximal value of measure D obtained using Bayesian approach is: (c+d)/|U| 
and the minimal: -(a+b)/|U|. 

4.3. Likelihoodist approach 

The likelihoodist approach is based on the idea that the evidence confirms the 
hypothesis, if the evidence is more frequent with the hypothesis rather than with 
¬hypothesis, and in this context, analogously, the evidence disconfirms the 
hypothesis, if the evidence is more frequent with ¬hypothesis rather than with the 
hypothesis. Thus, one can informally say that likelihoodists look at the rule from the 
perspective of its premise. 

According to likelihoodist approach, a measure will obtain its maximum if all non-
black ravens change into black ravens (i.e. a’→a+c and c’→0), and all black non-
ravens change into non-black non-ravens (i.e. d’→b+d and b’→0). It results from the 
fact that when there are no non-black ravens (i.e. c’=0), the evidence of being a raven 
is more frequent with the hypothesis of being black rather than with ¬ hypothesis of 
being non black, which means that the premise confirms the rule’s conclusion. 
Moreover, when there are no black non-ravens (i.e. b’=0), the ¬evidence of being a 
non-raven is more frequent with the ¬hypothesis of being non-black rather than with 
the hypothesis of being black. Thus we can conclude that hypothesis is disconfirmed 
by the ¬premise and as a result of that the hypothesis is confirmed by the premise. 

To determine the minimum of a measure all black ravens should change into non-
black  ravens (i.e. c’→a+c and a’→0), and all non-black non-ravens change into 
black non-ravens (i.e. b’→b+d and d’→0). It means that a measure will obtain its 
most disconfirming values when there are no black ravens (i.e. a’=0), because then 
the evidence of being a raven is more frequent with the ¬hypothesis of being 
non black rather than with the hypothesis of being black. Moreover, when there are no 
non-black  non-ravens (i.e. d’=0), the ¬evidence of being a non-raven is more 
frequent with the hypothesis of being black rather than with the ¬hypothesis of being 
non-black. Since the ¬hypothesis is confirmed by the premise we can conclude that 
the hypothesis is disconfirmed. 

The likelihoodist approach to determination of a measure’s maximum or minimum 
is presented in Table 6. 

Table 6. Likelihoodist normalization schema 

Maximum Minimum 
a’→a+c a’→0 
b’→0 b’→b+d 
c’→0 c’→a+c 
d’→b+d d’→0 

The maximal value of D obtained using likelihoodist approach is: (b+d)/|U| and the 
minimal: -(b+d)/|U|. 
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4.4. Crupi et al. approach 

Having proved that none of the measures: D, S, M, N, C, R or G satisfies the 
desirable property Ex1, Crupi et al. [7] showed an easy way to transform them into 
measures that do fulfil Ex1. They have presented formulas to which the considered 
measures reduce when E |= H and when E |= ¬H and proposed to normalize the 
measures by dividing them by the obtained formulas. The result of the division by the 
formula obtained when E |= H is the normalized measure in case of confirmation (i.e. 
when Pr(H|E) ≥  Pr(H)), and the division by the absolute value of the formula obtained 
when E |= ¬H gives the normalized measure in case of disconfirmation (i.e. when 
Pr(H|E) < Pr(H)). 

Interestingly, it turned out that the considered measures all gave the same result 
after that transformation, i.e. 

Dnorm = Snorm = Mnorm = Nnorm = Cnorm = Rnorm = Gnorm. 
 
Crupi et al. labelled the newly obtained measure of confirmation Z:  
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Let us observe that in case of confirmation Z=G (measure G was discussed by Rips 

[34]) and in case of disconfirmation Z=R (measure R was considered by Finch [10]). 
Crupi et al. [7] have showed that measure Z satisfies the symmetries gathered up as 

property Ex2. It also possesses the valuable property M [20] making it a meaningful 
tool for assessing the interestingness of rules. 

 
Let us now come back to the way Crupi et al. obtained formulas to which the 

considered measures D, S, M, N, C, R, G reduce when E |= H and when E |= ¬H, as it 
is the essence of their normalization. Their article [7] provides the calculated formulas 
expressing the maximal (minimal) confirmation (disconfirmation) for each of the 
analyzed measures. Since, the approach of Crupi et al. brings such interesting results, 
we propose to explain it in terms of a, b, c and d. The requirements that must be used 
to obtain the meaning of the concept of maximal confirmation, exploited by Crupi et 
al., are the following:  

• there must be no counterexample and therefore c'=0,  
• the number of objects in the universe must be maintained and therefore 

a'+b'+c'+d'=a+b+c+d,  
• the number of objects for which the premise is satisfied should remain 

unchanged and therefore a'+c'=a+c, 
• the number of objects for which the conclusion is true should remain the 

same and therefore a'+b'=a+b. 
The considerations about the minimal confirmation are analogous. In Table 7, we 

summarize the schema to determine the extremes of measures based on the concept of 
Crupi et al. 
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Table 7. Normalization schema of Crupi et al. 

Maximum Minimum 
a’→a+c a’→0 
b’→ b-c b’→a+b 
c’→0 c’→a+c 
d’→d+c d’→d-a 

The maximal value of D obtained using the approach of Crupi et al. 
is:1−[(a+b)/|U|] = (c+d)/|U|  and the minimal:  −(a+b)/|U|. 

4.5. The likelihoodist counterpart of the approach of Crupi et al. 

From our analysis with respect to symmetry properties in Ex2, there also emerged 
an observation that there exists a confirmation measure other than Z that satisfies Ex2 
in exactly the same manner that measure Z. In terms of a, b, c and d, it is defined as: 
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Observe that A(H, E) is a confirmation measure because it is positive when 

Pr(H|E)>Pr(H) (i.e. when ad>bc), it is equal to 0 when Pr(H|E)=Pr(H) (i.e. when 
ad=bc), and it is negative when Pr(H|E)<Pr(H) (i.e. when ad>bc). Notice also that 
A(H, E)=1 if H|=E (i.e. b=0) and A(H, E)=−1 if  ¬ H|=E (i.e. d=0). This means that A 
satisfies the property weak L, but it does not satisfy the original property Ex1 and L. 

Furthermore, these observations suggest other adequacy requirements that we can 
consider as  

• likelihoodist counterpart of Ex1, denoted as  
L-Ex1: if v(E1, H 1) > v(E2, H2),  then c(H1, E1) > c(H2, E2), 

• and as likelihoodist counterparts of L, denoted as L-L:  
c(H, E) is maximal when H |= E and c(H, E) is minimal when H |= ¬E.   

Moreover, let us observe that measure A can be obtained from measures D, S, M, 
N, C, R, G if we consider a likelihoodist counterpart of the normalization proposed by 
Crupi et al. (Table 8). 

Table 8. Likelihoodist counterpart of normalization schema of Crupi et al. 

Maximum Minimum 
a’→a+b a’→a-d 
b’→0 b’→b+d 
c’→c-b c’→c+d 
d’→d+b d’→0 

Let us remind that the Bayesians look at a rule from the viewpoint of its 
conclusion, where as Likelihoodists consider a rule from the view point of its premise. 
Thus, a rule E→H in the Bayesian perspective, corresponds to rule H→E in the 
likelihoodist perspective [14].  
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5. Results of different normalizations of measures 

Each of the schemas presented by us to determine the extremes of measures 
eventually leads to a different normalization. Table 9 presents the results of 
normalizations using Nicod’s, Bayesian, likelihoodist and Crupi’s et al. approaches as 
well as the likelihoodist counterpart of the approach of Crupi et al.  

For the sake of the presentation, the definitions of the analyzed measures were 
simplified by basic mathematical transformations (column 1). The next five columns 
contain results for different normalization schemas, for each measure there are two 
rows containing the normalized measure in case of confirmation (the first row) and 
disconfirmation (the second row). The notation we used assumes that lower indexes 
signify the applied normalization (N stands for Nicod and L for likelihoodist), and that 
the case of confirmation is marked by a “+”  and the case of disconfirmation by a “− “  
(e.g  +ND  stands for measure D normalized in case of confirmation, using the 
approach inspired by Nicod).  

Table 9. Results of alternative normalizations 

Definition of a measure Nicod’s  Baye- 
sian 

Likelihoodist Crupi  
et al.  
 

Likelihoodist 
counterpart  
of Crupi et al.  
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Table 9 shows that in many situations the normalization transforms one measure 

from our list into another, e.g. measure D normalized using the likelihoodist approach 
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reduces to measure S. Some measures are also invariant to certain normalizations, like 
in case of measure N normalized using Bayesian or likelihoodist approach.  
As it was mentioned before, the normalization proposed by Crupi et al. transforms all 
of the analyzed measures into the same formula called Z measure, which is equal to 
measure G in case of confirmation and to measure R in case of disconfirmation. On 
the other hand, the likelihoodist counterpart of the normalization proposed by Crupi et 
al. transforms all of the analyzed measures into measure that we called A, which is 
equal to ML+ in case of confirmation and to GL- in case of disconfirmation.  

Since the normalization of Crupi et al. was introduced as a tool for transforming 
the measures so they would satisfy the property Ex1, we have analysed the results of 
different normalizations of measures D, S, M, N, C, R, G from the view point of this 
property. Our analysis was also extended by the weak Ex1 property, L-Ex1, logicality 
property L, weak L, and L-L. 

 

Theorem 1. Property analysis shows that: 

• All of the analyzed confirmation measures after undergoing the 
normalization inspired by Nicod or normalization of Crupi et al. satisfy the 
logicality L property.  

• All of the analyzed confirmation measures after undergoing the 
normalization of Crupi et al. satisfy the Ex1 condition. All of the analyzed 
confirmation measures after undergoing the normalization inspired by the 
likelihoodist counterpart of Crupi et al. satisfy the L-L and L-Ex1 properties. 

• The measure N undergoing Nicod normalization is the only one satisfying 
both the logicality L and the L-L properties.  

• All five normalization approaches guarantee transformations that satisfy the 
weak L property. 

• The weak Ex1 property is satisfied by measures S and N (before applying any 
transformations) and by all the measures that transformed results in S and N 
(for example the measure D undergoing the likelihoodist normalization).  

 
Proof. The possession of property L can be verified by putting c=0 and a=0 and 

checking whether c(H, E)=1 in case when c=0, and whether c(H, E)= −1 in case when 
a=0. Analogously, possession of Ex1 can be verified observing that the analyzed 
confirmation measures after undergoing the normalization of Crupi et al. reach their 
maximum only if c=0 and reach their minimum only if a=0. The possession of 
properties L-L and L-Ex1 can be checked analogously to verification of L and Ex1 
condition taking into account b=0 and d=0 instead of c=0 and a=0. Weak L can be 
verified by putting b=c=0 and a=d=0 and checking whether c(H, E)=1 in case b=c=0 
and c(H, E)= −1 in case a=d=0. Weak Ex1 can be verified by checking that S and N 
reach their maximum only if b=c=0 and reach their minimum only if a=d=0. � 

 
Let us remark that properties Ex1 and L are directional in the sense that: 
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• L implies that if c=0 then c(H, E) reaches its maximum, however, c(H, E) 
can also reach its maximum when c>0; 

• Ex1 implies that if c(H, E) reaches its maximum then c=0, however, it is 
possible that c=0 and c(H, E) does not reach its maximum; 

• if both L and Ex1 are satisfied then c(H, E) reaches its maximum if and 
only if c=0. 

Theorem 2. Measures DN, SN, MN, NN, CN, RN, and GN (resulting from application of 
normalization inspired by Nicod) are ordinally non-equivalent to measure Z. 

 
Proof. [22] Measure f is ordinally equivalent to measure g iff for any two rules r1, 

r2,: 
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The above condition needs to be fulfilled both in case of confirmation and discon-

firmation. For Table 9 it is enough to consider measures DN
+, MN

+, NN
+ and GN

-. 
The situation in which the number of objects in U is distributed over a, b, c and d 

is called scenario α. In scenario α, rule r: E→H is supported by a objects from U. 
Let us prove, by counterexample, that in two exemplary scenarios α1 and α2 

measures DN
+, and MN

+ produce rankings different than measure G:  

α 1 a=90 b=8 c=1 d=1 U=100 DN+(r1)=0.90 MN+(r1)=0.91 G(r1)=0.45 

α2 a=70 b=16 c=4 d=10 U=100 DN+(r2)=0.86 MN+(r2)=0.90 G(r2)=0.61 
Measure G assigns r2 greater value than to r1, whereas measures DN

+, and MN
+ rank 

those rules the other way round. 
Again, by counterexample, let us show that in two exemplary scenarios α3 and α4 

measure NN
+ produces different ranking than measure G:  

α3 a=70 b=1 c=19 d=10 U=100 NN+(r1)=0.33 G(r1)=0.26 

α4 a=55 b=2 c=26 d=17 U=100 NN+( r2)=0.37 G(r2)=0.25 
Here, measure G assigns r1 greater value, whereas measures NN

+ favors r2. 
Finally, let us use scenarios α1 and α2 to prove that measure GN

- produces different 
ranking than measure R:  

α1 a=90 b=8 c=1 d=1 U=100 GN-(r1)=5.18 R(r1)=0.009 

α2 a=70 b=16 c=4 d=10 U=100 GN-( r2)=3.22 R(r2)=0.099 
Here, measure GN- assigns r1 greater value, whereas measures R favors r2.      
 
The measures in Table 9, obtained by different normalization schemas, have also 

been considered with respect to the properties of symmetries (for detailed results see 
table A-D in the Appendix published as electronic supplementary material).  

Theorem 3. The only normalizations that transform all of the analyzed measures into 
measures Z and A satisfying the symmetries of Ex2 are the normalization of Crupi et 
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al. and its likelihoodist counterpart. Moreover, measures D, R and G normalized using 
the Bayesian approach satisfy all symmetries gathered up in Ex2.  

Proof. The proof is in the Appendix published as electronic supplementary material. 
 
Summing up, five different normalization schemas have been considered for a set 

of seven popular confirmation measures. Two normalizations turned out to be 
invariant for the analyzed set of measures, i.e. transformed all of them into one 
measure, being measure Z for the normalization of Crupi et al., and measure A for the 
likelihoodist counterpart of that normalization. Analysis of the results of 
normalizations with respect to symmetry properties (Ex2) showed that only in case of 
normalization of Crupi et al., and its likelihoodist counterpart, the transformation for 
all of the considered seven measures lead to measures that fulfill Ex2. We believe that 
there is no specific advantage of Z over A (and vice versa), and that measures A and Z 
should be considered as complementary confirmation measures. The complementarity 
of A and Z is based on at least three arguments: 

1. Complementarity with respect to measuring how much Pr(H|E) is greater or 
smaller than Pr(H|¬E).  

In fact we can write measure Z(H, E) in terms of Pr(H|E) and of Pr(H) as: 
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while we can write measure A(H, E) in terms of Pr(H|¬E) and of Pr(H) as:  
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2. Bayesian and likelihoodist inspirations.   
As shown above, measure Z(H, E) has been obtained using a normalization of 

Crupi et al. inspired by the Bayesian view corresponding to property Ex1 for which 
the maximum of confirmation is reached when Pr(H|E)=1 and the minimum when 
Pr(H|E)=0, while measure A(H, E) has been obtained using a normalization being a 
likelihoodist counterpart of the approach of Crupi et al. corresponding to property L-
Ex1 for which the maximum of confirmation is reached when Pr(E|H)=1 and the 
minimum when Pr(E|H)=0.   

3. Applications to some exemplary cases.   
If we apply confirmation measures Z(H, E) and A(H, E) to the cases 1 and 3 

presented in 3.2.1, we obtain: 
Case 1: a=100, b=99, c=0, d=1; Pr(H|E)=1, Pr(H|¬E)=99/100; Z(H, E)=1, 
A(H, E)=1/199; 
Case 3: a=0, b=1, c=100, d=99; Pr(H|E)=0, Pr(H|¬E)=1/100; Z(H, E)= −1, 
A(H, E)= −1/199. 
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In all above cases Z(H, E) gives a bad representation while A(H, E) gives a good 
representation of the confirmation and disconfirmation. However, one can build 
similar cases in which Z(H, E) gives a good representation while A(H, E) gives a bad 
representation of the confirmation and disconfirmation: 
Case 1’: a=100, b=0, c=99, d=1; Pr(H|E)=1/199, Pr(H|¬E)=0; Z(H, E)=1/199, 
A(H, E)=1; 
Case 3’: a=99, b=1, c=100, d=0; Pr(H|E)=99/199, Pr(H|¬E)=1; Z(H, E)=−1/199, 
A(H, E)=−1. 
 
From these arguments there clearly arises a guideline to consider some average 
between the value of Z(H, E) and A(H, E). Effectively this is an interesting way to 
deal with the problem of measuring confirmation that we are developing in a 
companion paper. 

6. Conclusions 

Evaluation of knowledge represented by patterns induced from a dataset is an 
important and active research area. The literature is a rich source of considerations on 
this subject. In this paper, we focused on evaluation of patterns in form of 
“ if... then...”  rules by means of interestingness measures. In order to assess the 
usefulness and meaningfulness of such measures, we have investigated their 
properties. We have described and analysed property of Bayesian confirmation, 
property Ex1 and L property, our proposal of modifications of Ex1 and L called L-Ex1, 
L-L, weak Ex1 and weak L, and a group of symmetry properties Ex2.  
Next, normalization of confirmation measures as a way to transform the measures so 
that they would obtain property Ex1, L, L-L, L-Ex1,weak L or weak Ex1 has been 
considered. A crucial step of such normalization is determination of the extremes of 
the measures in case of confirmation and disconfirmation. In this article, we have 
introduced four alternative approaches to this problem. Each of those approaches 
leads to different results and normalizations, as they consider the concept of maximal 
and minimal confirmation from different perspectives.  
A set of seven confirmation measures, earlier analyzed by Crupi et al. [6], has been 
normalized using four new schemas and the schema resulting from the approach of 
Crupi et al. We have analyzed the results of the normalizations with respect to 
properties Ex1, L, L-L, L- Ex1,weak L and weak Ex1. The conclusions that we have 
obtained show that Nicod and Crupi et al. approaches give ordinally non-equivalent 
normalized measure satisfying property L, while all of the considered approaches give 
normalized measure satisfying weak L. Moreover, no non-normalized confirmation 
measure satisfies property Ex1, while only measures S and N (and all the measures 
that after normalization result in S or in N) fulfil the weak Ex1 property.  
Considering the results of normalizations with respect to properties of symmetries 
(Ex2) we can conclude that only measures D, R and G normalized using Bayesian 
approach satisfied Ex2 just like measure Z proposed by Crupi et al. and measure A 
proposed in this paper as a result of normalization based on a likelihoodist counterpart 
of the approach of Crupi et al. 



 24

7. Further investigations 

Let us observe that another confirmation measure satisfying property weak Ex1 is 
measure c1(H, E) presented in section 3. In fact, c1(H, E) is a specific combination of 
measures Z(H, E) and A(H, E), because it can be written as follows: 
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Another confirmation measure that satisfies property weak Ex1 is the following 
measure c2(H, E) that can be built using measures Z(H, E) and A(H, E) in an inverse 
way: 
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It is interesting to note that c1(H, E) satisfies also property Ex1, and c2(H, E) satisfies 
also property L-Ex1. 
One can imagine other confirmation measures that can be obtained from A(H, E) and 
Z(H, E), which satisfy the property weak Ex1, for example: 

c3(H,E)=
 

( ) ( )
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Observe that also measures c1(H,E) and c2(H,E) satisfy the symmetries (Ex2) while 
this is not the case of measures c3(H,E) and c4(H,E) (that do not satisfy E+,EI+,I+, EH+, 
E-, HI-, EH- EHI-).  
With respect to the special cases of section 5, we observe that all measures obtained 
by combining A(H,E) and Z(H,E) work well: in fact  

a) using c1(H,E), in case 1 we would have c1(H,E)=α+βA(H,E), in case 3 we 
would have c1(H,E)=−α+βA(H,E), in case 1’ and 3’ we would have 
c1(H,E)=αZ(H,E); in all above cases, for average values of α and β (let us 
say both of them around 0.5), the result can be considered reasonable; 

b) using c2(H,E), in case 1 and 3 we would have c2(H,E)=αA(H,E), in case 1’ 
we would have c2(H,E)=α+βZ(H,E), in case 3’ we would have 
c2(H,E)=−α+βZ(H,E); in all above cases, for average values of α and β (let 
us say both of them around 0.5), the result can be considered reasonable; 

c) using c3(H,E) and c4(H,E), in case 1 and 3 we would have A(H,E), and in 
case 1’ and 3’ we would have Z(H,E), which is exactly what one would 
expect in such situations. 
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The above conducted property analysis brings us to the conclusion that measures A 
and Z should be regarded as complementary and that the future work ought to 
concentrate on measures combining A and Z in a proper way. 
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