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Introduction - motivations

The number of rules
induced from datasets is usually quite large

• overwhelming for human comprehension,
• many rules are irrelevant or obvious
(low practical value)
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rule evaluation –interestingness (attractiveness) measures
(e.g. support, confidence, gain, lift)

• each measure was proposed to capture      
different characteristics of rules

• the number of proposed measures is very large
• easiness of interpretation of NORMALIZED
measures 



Introduction - motivations

The choice of interestingness measure for a certain application is a 
difficult problem

• the users expectations vary,
• the number of proposed measures is overwhelming
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properties of interestingness measures, which reflect users’ 
expectations towards the behavior of measures in particular situations

need to analyze measures with respect to their properties



Introduction –rule induction

n Patterns in form of rules are induced from a data table

n S=〈U, A〉 –data table,  where U and A are finite, non-empty sets 
U –universe;    A –set of attributes

n S=〈U, C, D〉 –decision table,  where C –set of condition attributes,
D –set of decision attributes, C∩D=∅
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n Decision rule or association rule induced from S

is a consequence relation:  φ→ψ read as  if φ then ψ
where φ is condition (evidence or premise) 

and ψ is conclusion (hypothesis or decision) 
formula built from attribute-value pairs (q,v)

n If the division into independent and dependent attributes is fixed, then 
rules are regarded as decision rules, otherwise as association rules.



Introduction –rule induction

6

C D



Introduction –rule induction

n Decision rules induced from „characterization of nationalities”:

1) If (Height, tall), then (Nationality, Swede)

2) If (Height, medium) and (Hair, dark), then (Nationality, German)

3) If (Height, medium) and (Hair, blond), then (Nationality, Swede)

4) If (Height, tall), then (Nationality, German)

5) If (Height, short), then (Nationality, German)

6) If (Height, medium) and (Hair, dark), then (Nationality, Swede)6) If (Height, medium) and (Hair, dark), then (Nationality, Swede)

43% tall people are Swede

67% Swede are tall

certain rules



Introduction –rule interestingness measures

n The number of rules generated from massive datasets can be

very large and only a few of them are likely to be useful

n In all practical applications, like medical practice, market basket, 

it is crucial to know how good the rules are

n To measure the relevance and utility of rules, quantitative measures
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To measure the relevance and utility of rules, quantitative measures

called attractiveness or interestingness measures, have been proposed

(e.g. support, confidence, lift, gain, conviction, Piatetsky-Shapiro,… )

n There is no evidence which measure(s) is (are) the best



Basic quantitative characteristics of rules

n Notation:

n is the number of all objects from U, having property °

e.g.              ,

Support of rule φ→ψ in S:

)(osup

)(φsup )(ψsup
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n Support of rule φ→ψ in S:

n Anti-support of rule φ→ψ in S:

anti-sup

)ψ()ψ( ∧φ=→φ supsup

)ψ()ψ( ¬∧φ=→φ sup



Basic quantitative characteristics of rules

n Confidence of rule φ→ψ in S (Ł ukasiewicz, 1913):

n Coverage of rule φ→ψ in S:

( ) ( )
( )φ
ψφψφ

sup
supconf ∧

=→

( )ψφsup ∧
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( ) ( )
( )ψ
ψφψφ

sup
supcov ∧

=→



Basic quantitative characteristics of rules

n Why a new measure is required for decision rules in addition to 
strength, certainty, coverage, …  ?

n Example (inspired by Popper, 1959)

Consider the possible result of rolling a dice: 1,2,3,4,5,6.

ψ ="the result is 6" ¬ψ ="the result is not 6"

φ ="the result is an even number (i.e. 2 or 4 or 6)"

φ ψ φ ψn φ → ψ , conf(φ→ψ) = 1/3

n φ →¬ψ, conf(φ→¬ψ) = 2/3

n Probability that the result is 6 is: 1/6
Probability that the result is not 6 is: 5/6

n Information φ increases the probability of ψ from 1/6 to 1/3, 

and decreases the probability of ¬ψ from 5/6 to 2/3

n In conclusion: φ confirms ψ and disconfirms ¬ψ, 

independently of the fact that conf(φ→ψ) < conf(φ→¬ψ)



Bayesian confirmation measures

n Among widely studied interestingness measures, there is a group of 
Bayesian confirmation measures

n Measures of confirmation quantify the strength of confirmation that 

premise φ gives to conclusion ψ

n An attractiveness c measure has the property of confirmation (i.e. is a 

confirmation measure) if is satisfies the following condition:
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n Its meaning is different from a simple statistics of co-occurrence 

of properties φ and ψ in universe U

( )
( ) ( )
( ) ( )
( ) ( )

 
PrPr if  
PrPr if  
PrPr if  

 c








ψ<φψ<

ψ=φψ=

ψ>φψ>

ψ→φ

0

0

0



Bayesian confirmation measures

n c(φ, ψ)>0 means that property ψ is satisfied more frequently

when φ is satisfied (then, this frequency is conf(φ, ψ)),                  

rather than generically in S (where the frequency is Pr(ψ)),

n c(φ, ψ)=0 means that property ψ is satisfied with the same frequency
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n c(φ, ψ)=0 means that property ψ is satisfied with the same frequency

whether φ is satisfied or not

n c(φ, ψ)<0 means that property ψ is satisfied less frequently

when φ is satisfied, rather than generically



Bayesian confirmation measures

n Under „the closed world assumption” adopted in inductive reasoning, 

and because U is a finite set, it is legitimate to estimate probabilities in 

the following way: ( )
||

)(
U

supPr ψ
=ψ

( )
( ) ( )
( ) ( ) PrPr if  

PrPr if  
 c







ψ=φψ=
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Rival Bayesian confirmation measures

n The condition 
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does not put any constraint on the value to be assigned to 

confirmatory arguments (as long as they are positive) or 

disconfirmatory arguments (as long as they are negative)

n There are many alternative, non-equivalent measures of Bayesian 

confirmation with different scales



Rival Bayesian confirmation measures

n Notation: a=sup(φ→ψ) , b=sup(¬φ→ψ),  c=sup (φ→¬ψ),  d=sup(¬φ→¬ψ)

n Among popular confirmation measures there are:

(Carnap 1950/1962)

(Christensen 1999)
db

b
ca

aS
+

−
+

=ψ→φ )(

dcba
ba

ca
aD

+++
+

−
+

=ψ→φ
)()(
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(Mortimer 1988)

(Nozick 1981)

(Carnap 1950/1962)

(Finch 1960)
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Normative requirement for confirmation measures

n Crupi, Tentori and Gonzalez (2007) have considered the confirmation 

measures from the viewpoint of classical deductive logic 

introducing function v such that for any argument (φ,ψ):

n v assigns it the same positive value (e.g., 1)

iff φ entails ψ, i.e. φ a ψ, 

an equivalent value of opposite sign (e.g., -1) 
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n an equivalent value of opposite sign (e.g., -1) 

iff φ entails the negation of ψ, i.e. φ a ¬ψ, and 

n value 0, otherwise. 



Normative requirement for confirmation measures

n The relationship between the logical implication or refutation 
of ψ by φ, and the conditional probability of ψ subject to φ
requires that any Bayesian confirmation measure c(φ→ψ) 
agrees with v(φ,ψ) in the following sense:

(Ex1):

Ex1 guarantees that any conclusively confirmatory argument (φ a ψ) 
is assigned a higher value of c(φ→ψ) than any argument which is not 

           . cc  then  vv  if )()(),,(),( 22112211 ψ→φ>ψ→φψφ>ψφ
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is assigned a higher value of c(φ→ψ) than any argument which is not 
conclusively confirmatory, 
and any conclusively disconfirmatory argument (φ a ¬ψ) is assigned 
a lower value of c(φ→ψ) than any argument which is not conclusively 
disconfirmatory

n Crupi et al. have proved that neither of the above mentioned 
confirmation measures satisfies principle (Ex1)

n However, their further analysis has unveiled a normalization 
approach that makes those measures fulfill this principle



Proof that D measure is inconsistent with principle (Ex1)

n (Ex1):

n D measure:

n Proof by counterexample:

n Suppose that x, y, z are pairwise logically incompatible,

that p(x)+p(y)+p(z)=1 and that p(z)>0.5

           . DD  then  vv  if )()(),,(),( 22112211 ψ→φ>ψ→φψφ>ψφ
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For instance, a fair dice is rolled:

x=1; y=2; z=score greater than 2

n Let it be the case that:

e1=y; e2=(x∨y); h1=(y∨z); h2=x

n Notice that e1 a h1 (because having y entails having (y∨z))

and e2 ¬ a h2 (because having (x∨y) does not necessarily entail x)

and, therefore, v(e1, h1)=1 > v(e2, h2)=0



Proof that D measure is inconsistent with principle (Ex1)

n x=1; y=2; z=score greater than 2; e1=y; e2=(x∨y); h1=(y∨z); h2=x

Continuation of proof:

n From definition, D(e→h)=p(h|e)-p(h)

n Since p(h1|e1)=1 //as p((y∨z)|y)=1//

we obtain: D(e1→h1)=p(h1|e1) − p(h1)=1 − p(h1)=p(¬h1)=p(x)

Moreover, D(e →h )=p(h |e ) − p(h )=p(x)/[p(x)+p(y)]−p(x)
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n Moreover, D(e2→h2)=p(h2|e2) − p(h2)=p(x)/[p(x)+p(y)]−p(x)

n It follows that D(e1→h1)<D(e2→h2) 

because [p(x)+p(y)]=[p(1)+p(2)]=1/6+1/6=1/3 < 0.5

Conclusions:

n v(e1, h1)>v(e2, h2) while D(e1→h1)<D(e2→h2) 

n D measure is inconsistent with principle (Ex1)



Normalization of confirmation measuresNormalization of confirmation measures



Normalization of confirmation measures

n The normalization approach distinguishes between two completely 

different situations: 

n situation α in which confirmation occurs: 

which, under „the closed world assumption”, can be estimated 

as:

)()|( ψ≥φψ PrPr
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22

n situation β in which disconfirmation occurs: 

which, under „the closed world assumption”, can be estimated 

as:

||)( Uups φ

)()|( ψ<φψ PrPr
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U
ups
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Normalization of confirmation measures

n The normalization is made by dividing the confirmation measures by:

n the maximum possible value in case of confirmation, and

n the absolute minimum possible value in case of disconfirmation.

n „Bayesian” approach to determining the maximum and minimum values:
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n the evidence confirms the hypothesis, if the hypothesis is more 

frequent with the evidence rather than with ¬evidence, and 

n the evidence disconfirms the hypothesis, if ¬hypothesis is more 

frequent with the evidence rather than with ¬evidence. 



„Bayesian” approach to normalization

n E.g. consider rule φ→ψ : if x is a raven then x is black

a=sup(φ→ψ) –the number of objects in U which are black ravens

b=sup(¬φ→ψ) –the no. of objects in U which are black non-ravens

c=sup (φ→¬ψ) –the no. of objects in U which are non-black ravens

d=sup(¬φ→¬ψ) –the no. of objects in U which are non-black non-ravens
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d=sup(¬φ→¬ψ) –the no. of objects in U which are non-black non-ravens



„Bayesian” approach to normalization

n The maximal support of the rule will be obtained when:

n a takes over all observations from b

(i.e. only ravens are black, a:=a+b)

n b:=0 (i.e. there are no black non-ravens)

n c:=0 (i.e. there are no non-black ravens) 
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n c:=0 (i.e. there are no non-black ravens) 

n d takes over all observations from c

(i.e. each non-raven is not black, d:=c+d)

a=sup(φ→ψ)
b=sup(¬φ→ψ)
c=sup (φ→¬ψ)
d=sup(¬φ→¬ψ)



„Bayesian” approach to normalization

n The minimal support of the rule will be obtained when:

n a:=0 (i.e. there are no black ravens),

n b takes over all observations from a

(i.e. each non-raven is black, b:=a+b)

n c takes over all observations from d
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n c takes over all observations from d

(i.e. each raven is not black, c:=c+d)

n d:=0 (i.e. there are no non-black non-ravens)

a=sup(φ→ψ)
b=sup(¬φ→ψ)
c=sup (φ→¬ψ)
d=sup(¬φ→¬ψ)



Normalized confirmation measures

n Notation: a=sup(φ→ψ) , b=sup(¬φ→ψ),  c=sup (φ→¬ψ),  d=sup(¬φ→¬ψ)

n Among confirmation measures that were normalized and analysed 

by Crupi et al. there are:

(Carnap 1950/1962)

(Christensen 1999)
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(Christensen 1999)

(Mortimer 1988)

(Nozick 1981)

(Carnap 1950/1962)

(Finch 1960)
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Normalized confirmation measures

n The confirmation measures are normalized according to „Bayesian” 

approach:
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Z-measure

n It can be observed that:

n Crupi et al. have therefore proposed to call them all by one name: 

Z-measure

           .G R C N  M SD normnormnormnormnormnormnorm ======

 − bcad
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Z-measure

n It has been proved that Z, and all confirmation measures equivalent 

to it, satisfy principle (Ex1). 

n Thus, Z is surely a valuable tool for measuring the confirmation of 

decision or association rules induced from datasets. 
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decision or association rules induced from datasets. 



Symmetry properties

of confirmation measures



Properties of symmetry

n Properties of symmetry (Carnap 1962, Eells & Fitelson 2000):

n Evidence symmetry (ES): 

n Inversion symmetry (IS):

n Hypothesis symmetry (HS):

( ) ( )ψφψφ →¬=→ -cc

( ) ( )φψψφ →=→ cc

( ) ( )ψφψφ ¬→=→ cc -
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n Total symmetry (TS):

n Given IS, ES ≡ HS, and ES∧HS ⇒ TS

n Only hypothesis symmetry (HS) is desirable

HS: the impact of ϕ on ψ should be of the same strength, 

but of the opposite sign, as the impact of ϕ on ¬ψ

( ) ( )ψφψφ ¬→¬=→ cc -



Bayesian confirmation measures –Hypothesis Symmetry (HS)

evidence hypothesis („the card is black”)

ϕ ψ

ϕ is conclusive for ψ

7

ϕ ¬ψ („the card is not black”)

ϕ is negatively        
conclusive for ¬ψ

7

( ) ( )ψφψφ ¬→=→ cc -



Bayesian confirmation measures –Evidence Symmetry (ES)

evidence hypothesis („the card is black”)

ϕ ψ

ϕ is conclusive for ψ

7

¬ϕ ψ

¬ϕ is useless for ψ

?

7

( ) ( )ψφψφ →¬=→ cc -



Bayesian confirmation measures –Inversion Symmetry (IS)

evidence hypothesis („the card is black”)

ϕ ψ

ϕ is conclusive for ψ

7

ψ ϕ („the card is 7 of spades”)

ψ is less useful for ϕ
than vice versa

7

( ) ( )φψψφ →=→ cc



Bayesian confirmation measures –Total Symmetry (TS)

evidence hypothesis („the card is black”)

ϕ ψ

ϕ is conclusive for ψ

7

¬ϕ ¬ψ

¬ϕ is not conclusive                                    

for ¬ψ

7

?

( ) ( )ψφψφ ¬→¬=→ cc -



Property of hypothesis symmetry

n Property of hypothesis symmetry (HS) (Carnap ‘62, Eells, Fitelson ’02)

n An interestingness measure c(φ→ψ) has the property HS if

( ) ( )ψ¬→φ=ψ→φ -cc
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n Interpretation: the impact of φ on ψ should be of the same 

strength, but of the opposite sign as the impact of φ on ¬ψ

n Example: Let us consider a rule φ→ψ : 

if x is  then x is

φ is conclusive for ψ and negatively conclusive for ¬ψ



Additional properties of symmetry

n Properties of symmetry (Crupi et al. 2007):

n It is reasonable to combine Inversion with Evidence, 

Hypothesis or Total Symmetry

n EIS:

HIS:

( ) ( )φ¬→ψ=ψ→φ -cc

( ) ( )φ→ψ¬=ψ→φ -cc
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n HIS:

n TIS:

n Claim of Crupi et al.: The symmetries should be considered 

separately for the situation of confirmation and disconfirmation

( ) ( )φ→ψ¬=ψ→φ -cc

( ) ( )φ¬→ψ¬=ψ→φ cc



Properties of symmetry

symmetrysymmetry in case of in case of 
confirmationconfirmation

in case of in case of 
disconfirmationdisconfirmation

Eels & 
Fitelson

ES: c(φ→ψ)=-c(¬φ→ψ) no no

Eels & 
Fitelson

HS: (φ→ψ)=-c(φ→¬ψ) yes yes

EIS: c(φ→ψ)=-c(ψ→¬φ) no yes
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HIS: c(φ→ψ)=-c(¬ψ→φ) yes no

Eels & 
Fitelson

IS: c(φ→ψ)=c(ψ→φ) no yes

Eels & 
Fitelson

TS: c(φ→ψ)=c(¬φ→¬ψ) no no

TIS: c(φ→ψ)=c(¬ψ→¬φ) yes no

c(7→face) = c(face→7)c(Jack→face) ≠ c(face→Jack)



Properties of symmetry

n A measure has symmetry properties as in the table if it 

possesses: 

n Hypothesis symmetry (HS) both in case of confirmation and 

disconfirmation, and 

n Inverse symmetry (IS) in case of disconfirmation but 

NOT in case of confirmation
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NOT in case of confirmation

n Z-measure satisfies the above properties as required

and, therefore, is a good measure from the point of view of 

symmetry properties



Other desired properties Other desired properties 

of confirmation measures



Property M

n Property M of monotonicity*

n An interestingness measure F(a, b, c, d)  has the property M

if it is a function non-decreasing with respect to a and d

and non-increasing with respect to b and c

where:
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where:

a=sup(φ→ψ) - the no. of objects in U for which φ and ψ hold together 

b=sup(¬φ→ψ)
c=sup (φ→¬ψ)

d=sup(¬φ→¬ψ)

* Greco, S., Pawlak, Z., Słowiń ski, R.: „Can Bayesian confirmation measures be useful for 
rough set decision rules?”, Engineering Applications of Artificial Intelligence, 17 (2004):345–361



Interpretation of the property M

n E.g. consider rule φ→ψ : 

if x is a raven then x is black

n non-decreasing with respect to a –

the more black ravens we observe, 

the more credible becomes the rule
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n non-increasing with respect to b –

the more black non-ravens we observe, 

the less credible becomes the rule

n non-increasing with respect to c

n non-decreasing with respect to d



Results of the conducted analysis with respect to property M

n Theorem:

The new Z-measure has the property M

n Proof outline:
we have proved that the Z-measure 
both in case of confirmation and disconfirmation is:

non-decreasing with respect to a
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n non-decreasing with respect to a

n non-increasing with respect to b

n non-increasing with respect to c

n non-decreasing with respect to d



Practical application of the results



n Theorem*:

For a set of rules with the same conclusion,

due to (anti) monotonic dependencies between 

measures of support and anti-support on one hand 

and any interestingness measure with property M on the other hand 

the best rules according to any measure with the property M

Support − Anti-support Pareto border

* Brzeziń ska I., Greco S., Słowiń ski R.: "Mining Pareto-Optimal Rules with Respect to
Support and Confirmation or Support and Anti-Support", Engineering Applications of 
Artificial Intelligence, 20 (2007): 587-600 
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the best rules according to any measure with the property M

must reside on the support − anti-support Pareto optimal border

n The support –anti-support Pareto border is a set of non-dominated

rules with respect to support and anti-support 



dominated rules fall 
into this area

Support − Anti-support Pareto border

anti-support=
sup (φ→ ¬  ψ)

non-dominated rules
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no rules fall 
outside this border

0

The best rules according to any measure with the property M

must reside on the support − anti-support Pareto border

sup (φ→ψ)support=



n Since the Z-measure satisfies the property M 

we can conclude that 

rules optimal with respect to Z will be found in the set of 

Pareto-optimal rules wrt support and anti-support

(considering rules with the same conclusion)

Practical application of the results

48



Practical application of the results

n Possession of property M implies potential efficiency improvement:

• one can concentrate on mining only the support–anti-support 

Pareto set instead of conducting rule evaluation separately wrt 

Z-measure or any other measure with property M 

• rules optimal wrt Z-measure or any other measure with property M 
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• rules optimal wrt Z-measure or any other measure with property M 

can be mined from the support–anti-support Pareto set instead of 

searching the set of all rules 

• due to relationship between anti-support and any measure with 

property M, the rule order wrt anti-support (for fixed value of 

support) is the same for any other measure with M 



Practical application of the results
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Confirmation perspective on support − anti-support border

n Is there a curve separating rules with negative value of 

any confirmation measure in the support−anti-support space?

n Theorem*:

Rules lying above the linear function:

sup(φ→ ψ)[|U|/sup(ψ)−1]

have a negative value of any confirmation measure

For those rules, the premise only disconfirms the conclusion!

sup(φ→ ψ)[|U|/sup(ψ)−1]



Dominated rules fall 

into this area

anti-support=
confirmation=0, for sup(ψ)/|U|=50%

confirmation=0, for sup(ψ)/|U|=66%

confirmation=0, for sup(ψ)/|U|=33%
sup (φ→ ¬  ψ)

Confirmation perspective on support - anti-support border

non-dominated rules

0

For rules lying above the curve for which confirmation=0 

the premise only disconfirms the conclusion

sup (φ→ψ)



Computational experiment: general info about the dataset

n Dataset adult, created in ’96 by B. Becker & R. Kohavi from census database

n 32 561 instances

n 9 nominal attributes

n workclass: Private, Local-gov, etc.;

n education: Bachelors, Some-college, etc.;

n marital-status: Married, Divorced, Never-married, et.; 

n occupation: Tech-support, Craft-repair, etc.;

n relationship: Wife, Own-child, Husband, etc.; 

n race: White, Asian-Pac-Islander, etc.; 

n sex: Female, Male;

n native-country: United-States, Cambodia, England, etc.;

n salary: >50K, <=50K 

n throughout the experiment, sup(φ→ψ) is denotes relative rule support [0,1]



Support - anti-support (workclass=Private)

• indicates rules with negative confirmation

• even some rules from the Pareto border need to be discarded 



100%

50%

Dominated 
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anti-support confirmation=0
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su
p
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ψ
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Confirmation perspective on support − anti-support border
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ConclusionsConclusions



n Normalization of rival Bayesian confirmation measures unifies them 

into one Z-measure

n Z-measure has all the desired symmetry properties

n Z-measure has property M of monotonicity

Conclusions
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n Possession of property M shows relationship between Z-measure 

and measures of support and anti-support 

and allows potential efficiency gains while searching for rules optimal

with respect to Z-measure



Thank you!
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