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2 S. Greo, R. Sªowi«ski and I. Szz�hIt has been reognized early on in the knowledge disovery literature, thatthe number of rules, disovered in databases an be quite large and an easilyoverwhelm the human apabilities to understand them and to �nd the usefulresults. It is due to the fat that many rules are either irrelevant or obvious, anddo not provide new knowledge (Morzy et al., 2003). To address the problem ofevaluation of attrativeness of the mined rules, various quantitative measures ofinterestingness have been de�ned and studied (e.g. support, on�dene, anti-support, gain, rule interest funtion, lift) (Bramer, 2007). They allow to reduethe number of rules that need to be onsidered by ranking them and �lteringout the useless ones. Eah of the interestingness measures has been introduedto re�et di�erent harateristis of rules. Now, the literature is a rih resoureof interestingness measures and, naturally, there arises a need of studying andanalyzing relationships between various measures. Suh studies ould showsimilarities and di�erenes in the behavior of the measures (e.g. show whetherthe measures rank the rules in the same way) and are a useful tool helping tohoose a proper measure for the partiular use.While hoosing an interestingness measure(s) for a ertain appliation, theusers also often take into onsideration properties (features) of measures whihre�et the user's expetations toward the behavior of the measures in partiularsituations. For example, one may demand that the used measure will inrease itsvalue for a given rule (or at least will not derease) when the number of objetsin the dataset that support this rule inreases. Thus, veri�ation whether par-tiular interestingness measures satisfy some valuable features is another validproblem both from theoretial and pratial point of view. Suh property anal-ysis would widen our understanding of measures and of their appliability, andould also unveil some relationships between di�erent measures.In this paper, we fous on three well-known measures: rule interest funtionproposed by Piatetsky-Shapiro (1991), gain measure of Fukuda et al. (1996)and dependeny fator onsidered by Pawlak (2004) and Popper (1959). We in-vestigate whether they possess a useful feature alled the property M introduedby Greo et al. (2004), and hypothesis symmetry (HS) advoated by Eells etal. (2002) and Fitelson (2001). Moreover, on the basis of satisfying the prop-erty M, we draw some onlusions about very partiular relationship betweenrule interest funtion and gain measure, and two other simple but meaningfulmeasures being rule support and anti-support.In order to ahieve the above objetives, the rest of the paper is organizedas follows. In setion 2, there are preliminaries on rules and their quantitativedesription. In setion 3, we verify analytially whether rule interest funtion,gain measure and dependeny fator have the analyzed property M. In setion 4,we investigate the relationship between the �rst two measures and the Pareto-optimal border with respet to support and anti-support. Illustration of theresults on a real life dataset is presented to support the theoretial onsiderationswith experimental results. Next, in setion 5, we analyze if rule interest funtion,gain measure and dependeny fator satisfy the hypothesis symmetry. The



Analysis of monotoniity properties of some rule interestingness measures 3paper ends with onlusions.2. PreliminariesThe disovery of knowledge from data is done by indution. It is a proessof reating patterns whih are true in the world of the analyzed data. In thispaper we onsider disovering knowledge represented in form of rules. Thestarting point for suh rule indution (mining) is a sample of larger reality oftenrepresented in a form of a data table.Formally, a data table is a pair S = (U,A), where U is a nonempty �nite setof objets, alled universe, and A is a nonempty �nite set of attributes. For everyattribute a ∈ A, let us denote by Va the domain of a, and a(x) will stand for thevalue of attribute a for an objet x ∈ U . A rule indued from a data table S isdenoted by φ → ψ (read as "if φ, then ψ"), where φ and ψ are built up fromelementary onditions using logial operator ∧ (and). The elementary onditionsof a rule are de�ned as (a(x) rel v) where rel is a relational operator from theset {=, <, ≤, ≥, >} and v is a onstant belonging to Va. The anteedent
φ of a rule is also referred to as premise or ondition, whereas the onsequent
ψ of a rule is often alled onlusion, deision or hypothesis. Generally, a rulean be seen as a onsequene relation (see ritial disussion (Greo et al.,2004) about interpretation of rules as logial impliations) between premise andonlusion. The attributes that appear in elementary onditions of the premise(onlusion, resp.) are alled ondition attributes (deision attributes, resp.).Obviously, within one rule, the sets of ondition and deision attributes must bedisjoint. The rules indued from data may be either deision or assoiation rules,depending on whether the division of A into ondition and deision ategoriesof attributes has been �xed or not.2.1. Support and Anti-support Measures of RulesOne of the most popular measures used to identify frequently ourring as-soiation rules in sets of items from information table S is support (Agrawalet al., 1993). The support of ondition φ (analogously, ψ), denoted as sup(φ)(analogously, sup(ψ)), is equal to the number of objets in U having property
φ (analogously, property ψ). The support of rule φ→ ψ (also simply referredto as support), denoted as sup(φ → ψ), is the number of objets in U havingproperty φ and ψ. Thus, it orresponds to statistial signi�ane (Hilderman etal., 2001). The domain of the measure of support an over any natural number.The greater the value of support for a given rule, the more desirable the rule is,thus, support is a gain-type riterion.

Anti−support of a rule φ → ψ (also simply referred to as anti-support),denoted as anti−sup(φ→ ψ), is equal to the number of objets in U having theproperty φ but not having the property ψ. Thus, anti-support is the number ofounterexamples, i.e. objets for whih the premise φ evaluates to true but whih



4 S. Greo, R. Sªowi«ski and I. Szz�hfall into a lass di�erent than ψ. Note, that anti-support an also be regardedas sup(φ→ ¬ψ). Similarly to support, the anti-support measure an obtain anynatural value. However, its optimal value is 0, beause it re�ets the situation inwhih a rule has no ounterexamples at all. Any value greater than zero meansthat the onsidered rule is not ertain, i.e. there are some ounterexamples forthat rule. The less ounterexamples we observe in the dataset, the better, andtherefore anti-support is onsidered a ost-type riterion.Some authors de�ne support and anti-support as relative values with respetto the number of all objets in the dataset U . Then, the rule support (anti-support, respetively) an be interpreted as the perentage of objets satisfyingboth the premise and onlusion (ounterexamples, resp) of the rule, in thedataset. In this paper we will onsider the former de�nition of support andanti-support, however, using the latter would not in�uene the generality of theonduted analysis and the obtained results.2.2. Piatetsky-Shapiro's Rule Interest Funtion, Gain and Depen-deny FatorThe rule interest function, RI, introdued by Piatetsky-Shapiro (1991) is usedto quantify the orrelation between the premise and onlusion. It is given bythe following formula:
RI(φ→ ψ) = sup(φ→ ψ) −

sup(ψ)sup(φ)

|U |
(1)For rule φ→ ψ, when RI = 0, then φ and ψ are statistially independent andthus, suh rule should be onsidered as uninteresting. When RI > 0 (RI < 0),then there is a positive (negative) orrelation between φ and ψ (Hilderman etal., 2001). Obviously, it is a gain-type riterion as greater values of RI re�etstronger trend toward desirable positive orrelation.The gain funtion of Fukuda et al. (1996) is de�ned in the following manner:

gain(φ→ ψ) = sup(φ→ ψ) − Θsup(φ) (2)where Θ is a fration onstant between 0 and 1. Note that, for a �xed valueof Θ = sup(ψ)/|U |, the gain measure beomes idential to the above rule in-terest funtion RI. Moreover, if Θ is zero then, gain boils down to alulationof the support of the rule, and when Θ is equal to 1, gain will take negativevalues unless all objets satisfying φ also satisfy ψ (in that ase gain will be 0).Thus, gain an take any integer value depending on what value Θ is set at. For a�xed Θ, greater values of gain are more desirable, thus it is a gain-type riterion.



Analysis of monotoniity properties of some rule interestingness measures 5The dependency factor used by Pawlak (2004) and also onsidered earlierby Popper (1959), is de�ned in the following manner:
η(φ→ ψ) =

sup(φ→ψ)
sup(φ) − sup(ψ)

|U|

sup(φ→ψ)
sup(φ) + sup(ψ)

|U|

(3)The dependeny fator expresses the degree of dependeny, and an be seenas a ounterpart of orrelation oe�ient used in statistis. When φ and ψare independent on eah other, then η(φ → ψ) = 0. If −1 < η(φ → ψ), then
φ and ψ are negatively dependent, and if 0 < η(φ → ψ) < 1, then φ and ψare positively dependent on eah other. The dependeny fator is a gain-typeriterion.2.3. Property of monotoniity MGreo et al. (2004) have onsidered a group of interestingness measures alledBayesian on�rmation measures from the viewpoint of their usefulness for mea-suring interestingness of deision rules. In general, Bayesian on�rmation mea-sures say in what degree a piee of evidene in premise on�rms a hypothesis inthe onlusion of a rule. Greo et al. (2004) laim that on�rmation measuresshould enjoy a valuable property M desribing monotoni dependeny on thenumber of objets satisfying or not the premise or the onlusion of the rule.Though the property was introdued in the perspetive of on�rmation mea-sures, its de�nition is wide enough to over any interestingness measures andwe are strongly onvined that it is a desirable property for any measure.The property M was introdued in Greo et al. (2004) where it was formallyde�ned as follows:An interestingness measure

F = [sup(φ→ ψ), sup(¬φ→ ψ), sup(φ→ ¬ψ), sup(¬φ→ ¬ψ)] (4)being a gain-type riterion, has the property M if and only if it is a funtion
• non-dereasing with respet to sup(φ→ ψ),
• non-inreasing with respet to sup(¬φ→ ψ),
• non-inreasing with respet to sup(φ→ ¬ψ), and
• non-dereasing with respet to sup(¬φ→ ¬ψ).The property M with respet to sup(φ → ψ) (or, analogously, with respetto sup(¬φ→ ¬ψ)) means that any evidene in whih φ and ψ (or, analogously,neither φ nor ψ) hold together inreases (or at least does not derease) theredibility of the rule φ→ ψ. On the other hand, the property M with respetto sup(¬φ → ψ) (or, analogously, with respet to sup(φ → ¬ψ)) means thatany evidene in whih φ does not hold and ψ holds (or, analogously, φ holdsand ψ does not hold) dereases (or at least does not inrease) the redibility ofthe rule φ→ ψ.



6 S. Greo, R. Sªowi«ski and I. Szz�hLet us use the following example onsidered by Hempel (1945) to show theinterpretation of the property. Consider a rule φ→ ψ:if x is a raven then x is blak.In this ase φ stands for being a raven and ψ stands for being blak. If aninterestingness measure F (φ → ψ) (being a gain-type riterion) possesses theproperty M then:
• the more blak ravens there are in the dataset, the more redible is therule, and thus F (φ→ ψ) obtains greater (or at least not smaller) values,
• F (φ → ψ) also obtains greater (or at least not smaller) values when thenumber of non-blak non-ravens inreases,
• the more blak non-ravens appear in the dataset, the less redible beomesthe rule and thus, F (φ → ψ) obtains smaller (or at least not greater)values,
• F (φ → ψ) also obtains smaller (or at least not greater) values when thenumber of non-blak ravens in the dataset inreases.Property M makes use of elementary parameters of the onsidered dataset(numbers of objets satisfying some properties) and therefore is an easy andintuitive riterion helping to hoose an appropriate interestingness measure fora ertain appliation.2.4. Property of Hypothesis Symmetry (HS)Eells et al. (2002) have analyzed some on�rmation measures from the viewpointof four properties of symmetry introdued by Carnap (1962). Again, however,we believe that these properties should be onsidered for any interestingnessmeasure, and not be limited to the group of Bayesian on�rmation measures.Considering an interestingness measure c(φ→ ψ), the onsidered symmetrieswere de�ned as follows:
• evidene symmetry (ES): c(φ→ ψ) = −c(¬φ→ ψ)
• ommutativity symmetry (CS): c(φ→ ψ) = c(ψ → φ)
• hypothesis symmetry (HS): c(φ→ ψ) = −c(φ→ ¬ψ)
• total symmetry (TS): c(φ→ ψ) = c(¬φ→ ¬ψ)It has been onluded in Eells et al. (2002) that, in fat, only (HS) is adesirable property, while (ES), (CS) and (TS) are not. The meaning behind thehypothesis symmetry is that the signi�ane of the premise with respet to theonlusion of a rule should be of the same strength, but of the opposite sign, asthe signi�ane of the premise with respet to a negated onlusion.The arguments for (HS) an be presented by an exemplary situation ofrandomly drawing a ard from a standard dek (Earman (1992), Greo et al.(2004)). Let the premise φ of a rule stand for that the drawn ard is the sevenof spades, and let ψ be the hypothesis that the ard is blak. It is lear that



Analysis of monotoniity properties of some rule interestingness measures 7the premise on�rms the hypothesis in 100%. Moreover, obviously, the evidenethat the ard is the seven of spades (φ) is negatively onlusive (ompletelydison�rms) for the hypothesis that the ard is not blak (¬ψ).2.5. Support�Anti-support Pareto-optimal borderLet us denote by �s¬a a partial preorder given by the dominane relation ona set X of rules in terms of two interestingness measures: support and anti-support, i.e. given a set of rules X and two rules r1, r2 ∈ X, r1 ≺s¬a r2 if andonly if
sup(r1) ≤ sup(r2) ∧ anti− sup(r1) ≥ anti− sup(r2). (5)Reall that a partial preorder on a set X is any binary relation R on Xthat is re�exive (i.e. for all x ∈ X , xRx) and transitive. In simple words, ifthe semantis of xRy is "x is at most as good as y", then a omplete preorderpermits to order the elements of X from the best to the worst, with possibleex-aequo (i.e. ases of x, y ∈ X suh that xRy and yRx) and with possibleinomparability (i.e. ases of x, y ∈ X suh that not xRy and not yRx).The partial preorder �s¬a an be deomposed into its asymmetri part ≺s¬aand its symmetri part ∼s¬a in the following manner: given a set of rules Xand two rules r1, r2 ∈ X, r1 ≺s¬a r2 if and only if
sup(r1) ≤ sup(r2) ∧ anti− sup(r1) > anti− sup(r2), or
sup(r1) < sup(r2) ∧ anti− sup(r1) ≥ anti− sup(r2)

(6)moreover, r1 ∼s¬a r2 if and only if
sup(r1) = sup(r2) ∧ anti− sup(r1) = anti− sup(r2). (7)If for a rule r ∈ X there does not exist any rule r′ ∈ X , suh that r ≺s¬a r′then r is said to be non�dominated (i.e. Pareto�optimal) with respet to supportand anti-support. A set of all non-dominated rules forms a Pareto�optimalborder of the set of rules in the evaluation spae. A set of all non-dominatedrules with respet to support and anti-support will be alled a support-anti-support Pareto-optimal border. In other words, it is the set of rules suh thatthere is no other rule having greater support and smaller anti-support.The approah to evaluation of the set of rules in terms of two interestingnessmeasures being rule support and anti-support was proposed and presented indetail in Brzezi«ska et al. (2007), and later also onsidered in Sªowi«ski et al.(2007). The idea of ombining those two dimensions ame as a result of lookingfor a set of rules that would inlude all rules optimal with respet to any measurewith the desirable property M. It was proved by Brzezi«ska et al. (2007) thatthe best rules aording to any measure with M must reside in the set of rulesnon-dominated with respet to support and anti-support:
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Figure 1. Support�anti-support Pareto-optimal borderTheorem 1. When onsidering rules with the same onlusion, rules that areoptimal with respet to any interestingness measure that has the property M mustreside on the support�anti-support Pareto-optimal border.Thus, we an onsider satisfying of the property of monotoniity M by ameasure as a su�ient ondition for stating that rules optimal with respet tothis measure will be found on the support�anti-support Pareto-optimal border.It is a valuable result as it unveils relationships between di�erent interestingnessmeasures. Among pratial appliations of the above result, one an mentionpotential e�ieny gains as rules optimal with respet to measures with theproperty M an be found in the support�anti-support Pareto-optimal set insteadof searhing the set of all rules. Moreover, rule evaluation an be narroweddown to mining only the support�anti-support Pareto-optimal set instead ofonduting rule evaluation separately with respet many measures with propertyM, as we are sure that rules optimal aording to any of them, are in that Paretoset.Fig. 1 presents a general outlook of the the support�anti-support evaluationspae. Sine anti-support is a ost-type riterion (the smaller its value thebetter), the shape of the support�anti-support Pareto-optimal border resemblesa urve onave up.



Analysis of monotoniity properties of some rule interestingness measures 9Another valuable and pratial feature of the support�anti-support Pareto-optimal border is that it ontains the set of non-dominated rules with respet toanother evaluation spae based on support and on�dene. The on�dene of arule (Agrawal et al., 1993), denoted as conf(φ→ ψ) is a popular interestingnessmeasure de�ned as:
conf(φ→ ψ) =

sup(φ→ ψ)

sup(φ)
. (8)The support�on�dene evaluation spae was proposed by Bayardo et al.(1999), who has proved that for rules with the same onlusion, rules that areoptimal with respet to many interestingness measures suh as Laplae (Clark etal., 1991; Webb, 1995), lift(IBM, 1996) (also known as interest, Brin et al. (1997)or strength, Dhar et al. (1993)), onvition (Brin et al., 1997), and others willreside on the support�on�dene Pareto-optimal border. This evaluation spaewas also onsidered in Sªowi«ski et al. (2006). Thorough analysis ondutedin Brzezinska et al. (2007) showed that the support�on�dene Pareto-optimalborder has the advantage of presenting a smaller number of rules (more preiselya not greater number of rules) than the support�anti-support Pareto-optimalborder. However, its disadvantage is that it does not present the rules optimizingany attrativeness measure satisfying the property M. In fat, all the rules whihare present on the support�anti-support Pareto-optimal border and not presenton the support�on�dene Pareto-optimal border maximize an attrativenessmeasure whih is not monotone with respet to support.3. Analysis of Property MFor the larity of presentation, the following notation shall be used throughoutthe next setions: a = sup(φ → ψ), b = sup(¬φ → ψ), c = sup(φ → ¬ψ),

d = sup(¬φ → ¬ψ), a + c = sup(φ), a + b = sup(ψ), b + d = sup(¬φ),
c+ d = sup(¬ψ), a+ b+ c+ d = |U |. We also assume that set U is not empty,so that at least one of a, b, c or d is stritly positive. Moreover, for simpliity,we assume that any value in the denominator of any ratio is di�erent from zero.In order to prove that a measure has the property M we need to show thatit is non-dereasing with respet to a and d, and non-inreasing with respet to
b and c.Theorem 2. Measure RI has the property M.Proof. Let us observe that measure RI an be rewritten as:

RI(φ→ ψ) = a−
(a+ b)(a+ c)

a+ b+ c+ d
. (9)After some simple algebrai transformation, we obtain

RI(φ→ ψ) =
ad− bc

a+ b+ c+ d
. (10)



10 S. Greo, R. Sªowi«ski and I. Szz�hTaking into aount equation (10), to prove the monotoniity of RI with respetto a we have to show that if a inreases by ∆ > 0, then RI does not derease,i.e.
(a+ ∆)d − bc

a+ b+ c+ d+ ∆
−

ad− bc

a+ b+ c+ d
≥ 0. (11)After few simple algebrai passages, and remembering that a, b, c, d and ∆ arenon-negative, we get

(a+∆)d−bc
a+b+c+d+∆ − ad−bc

a+b+c+d =

= b(b+c+d)∆+bc∆
(a+b+c+d)(a+b+c+d+∆) > 0 ≥ 0

(12)suh that we an onlude that RI is non-dereasing (more preisely, stritlyinreasing) with respet to a. Analogous proof holds for the monotoniity of RIwith respet to d.Now, to prove the monotoniity of RI (10) with respet to b we have to showthat an inrease of b by ∆ > 0, will not result in an inrease of RI, i.e.
ad− (b + ∆)c

a+ b+ c+ d+ ∆
−

ad− bc

a+ b+ c+ d
≤ 0. (13)Through simple algebrai transformations we get that:

ad−(b+∆)c
a+b+c+d+∆ − ad−bc

a+b+c+d =

= − c(a+c+d)∆+ad∆
(a+b+c+d)(a+b+c+d+∆) < 0 ≤ 0

(14)Sine a, b, c, d and ∆ are non-negative, we an onlude that RI is non-inreasing (more preisely, stritly dereasing) with respet to b. Analogousproof holds for the monotoniity of RI with respet to c.Theorem 3. Measure gain has the property M.Proof. Let us onsider measure gain expressed as follows:
gain(φ→ ψ) = a− Θ(a+ c) (15)where Θ is a frational onstant between 0 and 1. As gain(φ → ψ) does notdepend on b nor d, it is lear that the hange of b or d does not result in anyhange of gain(φ→ ψ). Thus, we only need to verify if :

• (i) the inrease of a results in non-derease of gain(φ→ ψ),
• (ii) the inrease of c results in non-inrease of gain(φ→ ψ).Ad.(i). Let us assume that ∆ > 0 is the number by whih a inreases.Condition (i) will be satis�ed if and only if
gain(φ→ ψ) = a−Θ(a+ c) ≤ gain′(φ→ ψ) = (a+∆)−Θ(a+∆+ c)(16)



Analysis of monotoniity properties of some rule interestingness measures 11Let us observe that
a− Θ(a+ c) ≤ (a+ ∆) − Θ(a+ ∆ + c) ⇔

⇔ a− aΘ − cΘ ≤ a+ ∆ − aΘ − cΘ − Θ∆ ⇔
⇔ ∆ − Θ∆ ≥ 0 ⇔ ∆(1 − Θ) ≥ 0

(17)The last inequality is always satis�ed as ∆ > 0 and (1 − Θ) ≥ 0 beause Θ is afrational onstant between 0 and 1. Thus, ondition (i) is satis�ed.Ad.(ii). Let us assume that ∆ > 0 is the number by whih c inreases.Condition (ii) will be satis�ed if and only if
gain(φ→ ψ) = a− Θ(a+ c) ≥ gain′(φ→ ψ) = a− Θ(a+ ∆ + c) (18)Let us observe that

a− Θ(a+ c) ≥ a− Θ(a+ ∆ + c) ⇔
⇔ a− aΘ − cΘ ≥ a− aΘ − cΘ − Θ∆ ⇔

⇔ 0 ≥ −Θ∆ ⇔ ∆Θ ≥ 0
(19)The last inequality is always satis�ed as ∆ > 0 and Θ ≥ 0. Thus, ondition(ii) is satis�ed. Sine all four onditions are satis�ed, the hypothesis that gainmeasure has the property M is true.Having determined that both of the analyzed measures do satisfy the desiredproperty M, we an draw onlusion that rules optimal aording to them willbe found on the support�anti-support Pareto-optimal border.Now, let us prove by ounterexample that the dependeny fator η(φ → ψ)does not have the property M.Theorem 4. Dependeny fator η(φ→ ψ) does not have the property M.Proof. Let us onsider the dependeny fator rewritten as follows:

η(φ→ ψ) =
a
a+c −

a+b
a+b+c+d

a
a+c + a+b

a+b+c+d

(20)It will be shown by the following ounterexample that η(φ → ψ) does notsatisfy the ondition that the inrease of a results in non-derease of η(φ→ ψ),thus this measure does not have the property M. Let us onsider ase α, inwhih a=7, b=2, c=3, d=3, and ase α′, in whih a inreases to 8 and b, c, dremain unhanged. The dependeny fator does not have the property M assuh inrease of a results in the derease of the measure:
η(φ→ ψ) = 0.0769 > 0.0756 = η′(φ→ ψ). (21)



12 S. Greo, R. Sªowi«ski and I. Szz�h4. Experimental illustration of the resultIt was proved by Brzezi«ska et al. (2007) that rules optimal with respet to anyinterestingness measure that has the property M will reside on the support�anti-support Pareto-optimal border. Sine, the above analysis shows that both
RI and gain satisfy the property M, we an onlude that rules optimal withrespet to them will be found in the set of rules non-dominated aording tosupport and anti-support. Several omputational experiments analyzing rulesoptimal with respet to RI and gain in the perspetive of rule support andanti-support have been onduted in order to illustrate the theoretial resultsonerning their possession of the property M and thus, their ourrene on thesupport�anti-support Pareto-optimal border.Below, in Fig. 2, there is an exemplary diagram from those experiments. Fora real life dataset ontaining information about tehnial state of buses, a set ofall possible rules was generated. A set of 85 rules with the same onlusion wasthen isolated, and dominated and non-dominated rules with respet to supportand anti-support were found. The support�anti-support Pareto-optimal borderis indiated in Fig. 2 by irles onneted by a line. Four points marked as
r1, r2, r3, r4 form the Pareto-optimal border. Eah of those points representsrules haraterized by partiular values of support and anti-support (i.e., r1represents rules with sup(φ → ψ) = 50 and anti − sup(φ → ψ) = 4, r2 ruleswith sup(φ → ψ) = 49 and anti − sup(φ → ψ) = 2, r3 rules with sup(φ →
ψ) = 48 and anti− sup(φ → ψ) = 1, and r4 rules with sup(φ → ψ) = 45 and
anti− sup(φ→ ψ) = 0). In the generated set of 85 rules, we have distinguishedrules optimal aording to RI (marked by r3), and gain for di�erent values of
Θ. For Θ = 0.33 the rules with maximal gain are marked as r1; when Θ = 0.5these are the rules marked as r2 or r3; �nally when Θ = 0.66 these are the rulesmarked as r3. The diagram shows that, indeed, rules optimal with respet tothose measures lie on the support�anti-support Pareto-optimal border. It meansthat rules optimal with respet to RI or gain an be found more e�ientlyby looking for them in the support�anti-support Pareto-optimal set instead ofsearhing the set of all rules. Moreover, if the user is not interested in knowingwhih partiular rules are optimal aording to RI or gain, we an narrowdown the data mining proess to searhing only for the support�anti-supportPareto-optimal set beause we are sure that it ontains RI and gain-optimalrules (though we do not know whih ones they are).During this experiment we have also alulated the optimal value of thedependeny fator. This measure does not have the property M so we ould notonlude right away that rules optimal aording to it will be on the support�anti-support Pareto-optimal border. However, sine possession of the propertyM is only a su�ient ondition for lying on that border, we annot exlude asituation in whih rules optimal with respet to the dependeny fator will befound on the support�anti-support Pareto-optimal border. For this dataset wehave suh a ase. Rules marked as r4 are optimal aording to dependeny
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Figure 2. Pareto-optimal border with respet to rule support and anti-supportinludes rules being optimal in RI, and gainfator and they also belong the set of non-dominated rules with respet tosupport and anti-support. Thus, r4 an also be regarded as a ounterexampleproving that possession of property M is not a neessary ondition for lying onthe support�anti-support Pareto-optimal border.5. Analysis of Hypothesis Symmetry (HS)The veri�ation of the property of hypothesis symmetry was done for all threeonsidered measures separately, by heking if their values for rules φ→ ψ and
φ→ ¬ψ are the same but of opposite sign.Theorem 5. Measure RI has the property of hypothesis symmetry.Proof. Let us onsider RI expressed as follows:

RI(φ→ ψ) = a−
(a+ c)(a+ b)

a+ b+ c+ d
. (22)For a negated onlusion RI is de�ned as:

RI(φ→ ¬ψ) = c−
(a+ c)(c+ d)

a+ b+ c+ d
. (23)The hypothesis symmetry will be satis�ed by RI if and only if:

a−
(a+ c)(a+ b)

a+ b + c+ d
= −[c−

(a+ c)(c+ d)

a+ b+ c+ d
]. (24)
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a−

(a+ c)(a+ b)

a+ b + c+ d
=

ad− bc

a+ b+ c+ d
(25)and

−c+
(a+ c)(c+ d)

a+ b+ c+ d
=

ad− bc

a+ b+ c+ d
(26)and thus, we an onlude that RI has the property of hypothesis symmetry.Theorem 6. Measure gain has the property of hypothesis symmetry if and onlyif Θ = 1/2.Proof. Let us onsider gain expressed as follows:

gain(φ→ ψ) = a− Θ(a+ c). (27)For a negated onlusion gain is de�ned as:
gain(φ→ ¬ψ) = c− Θ(a+ c). (28)The hypothesis symmetry will be satis�ed by gain if and only if:
a− Θ(a+ c) = −[c− Θ(a+ c)]. (29)Through simple mathematial transformation we obtain that the above equalityis satis�ed only when
a+ c = 2Θ(a+ c) (30)that is when Θ = 1/2.Theorem 7. The dependeny fator η does not have the property of hypothesissymmetry.Proof. Let us onsider dependeny fator expressed as follows:
η(φ→ ψ) =

a
a+c −

a+b
a+b+c+d

a
a+c + a+b

a+b+c+d

. (31)For a negated onlusion it is de�ned as:
η(φ→ ¬ψ) =

c
a+c −

c+d
a+b+c+d

c
a+c + c+d

a+b+c+d

. (32)To prove that the dependeny fator does not satisfy the hypothesis symmetrylet us use the following ounterexample. Let us onsider a situation in whih
a = b = c = 10 and d = 20. We an easily verify that

η(φ→ ψ) = 0.11 6= 0.09 = η(φ→ ¬ψ). (33)
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