
Control and Cybernetics

vol. XX (XXXX) No. XAnalysis of monotoni
ity propertiesof some rule interestingness measuresbySalvatore Gre
o1, Roman Sªowi«ski2,3 and Izabela Sz
z�
h2

1 Fa
ulty of E
onomi
s, University of Catania, Corso Italia, 55, 95129 Catania,Italye-mail: salgre
o�mbox.uni
it.it
2 Institute of Computing S
ien
e, Pozna« University ofTe
hnology, 60-965 Pozna«, Polande-mail: {Roman.Slowinski, Izabela.Sz
ze
h}�
s.put.poznan.pl

3 Institute for Systems Resear
h, Polish A
ademy of S
ien
es,01-447 Warsaw, PolandAbstra
t: One of the 
ru
ial problems in the �eld of knowl-edge dis
overy is development of good interestingness measures forevaluation of the dis
overed patterns. In this paper, we 
onsiderquantitative, obje
tive interestingness measures for "if. . . , then. . . "asso
iation rules. We fo
us on three popular interestingness mea-sures being rule interest fun
tion of Piatetsky-Shapiro, gain mea-sure of Fukuda et al., and dependen
y fa
tor used by Pawlak. Weverify whether they satisfy valuable property M of monotoni
 de-penden
y on the number of obje
ts satisfying or not the premise orthe 
on
lusion of a rule, and property of hypothesis symmetry (HS).Moreover, analyti
ally and through experiments we show an inter-esting relationship between those measures and two other 
ommonlyused measures of rule support and anti-support.Keywords: Asso
iation rules, Piatetsky-Shapiro's Rule Inter-est Fun
tion, Gain Measure, Dependen
y Fa
tor, Support, Anti-support, Pareto-optimal border.1. Introdu
tionIn data mining and knowledge dis
overy, the dis
overed knowledge patterns areoften expressed in a form of if. . . , then. . . rules. They are 
onsequen
e rela-tions representing 
orrelation, asso
iation, 
ausation et
. between independentand dependent attributes. If the division into independent and dependent at-tributes has been �xed, the rules mined from data are regarded as de
ision rules,otherwise as asso
iation rules.



2 S. Gre
o, R. Sªowi«ski and I. Sz
z�
hIt has been re
ognized early on in the knowledge dis
overy literature, thatthe number of rules, dis
overed in databases 
an be quite large and 
an easilyoverwhelm the human 
apabilities to understand them and to �nd the usefulresults. It is due to the fa
t that many rules are either irrelevant or obvious, anddo not provide new knowledge (Morzy et al., 2003). To address the problem ofevaluation of attra
tiveness of the mined rules, various quantitative measures ofinterestingness have been de�ned and studied (e.g. support, 
on�den
e, anti-support, gain, rule interest fun
tion, lift) (Bramer, 2007). They allow to redu
ethe number of rules that need to be 
onsidered by ranking them and �lteringout the useless ones. Ea
h of the interestingness measures has been introdu
edto re�e
t di�erent 
hara
teristi
s of rules. Now, the literature is a ri
h resour
eof interestingness measures and, naturally, there arises a need of studying andanalyzing relationships between various measures. Su
h studies 
ould showsimilarities and di�eren
es in the behavior of the measures (e.g. show whetherthe measures rank the rules in the same way) and are a useful tool helping to
hoose a proper measure for the parti
ular use.While 
hoosing an interestingness measure(s) for a 
ertain appli
ation, theusers also often take into 
onsideration properties (features) of measures whi
hre�e
t the user's expe
tations toward the behavior of the measures in parti
ularsituations. For example, one may demand that the used measure will in
rease itsvalue for a given rule (or at least will not de
rease) when the number of obje
tsin the dataset that support this rule in
reases. Thus, veri�
ation whether par-ti
ular interestingness measures satisfy some valuable features is another validproblem both from theoreti
al and pra
ti
al point of view. Su
h property anal-ysis would widen our understanding of measures and of their appli
ability, and
ould also unveil some relationships between di�erent measures.In this paper, we fo
us on three well-known measures: rule interest fun
tionproposed by Piatetsky-Shapiro (1991), gain measure of Fukuda et al. (1996)and dependen
y fa
tor 
onsidered by Pawlak (2004) and Popper (1959). We in-vestigate whether they possess a useful feature 
alled the property M introdu
edby Gre
o et al. (2004), and hypothesis symmetry (HS) advo
ated by Eells etal. (2002) and Fitelson (2001). Moreover, on the basis of satisfying the prop-erty M, we draw some 
on
lusions about very parti
ular relationship betweenrule interest fun
tion and gain measure, and two other simple but meaningfulmeasures being rule support and anti-support.In order to a
hieve the above obje
tives, the rest of the paper is organizedas follows. In se
tion 2, there are preliminaries on rules and their quantitativedes
ription. In se
tion 3, we verify analyti
ally whether rule interest fun
tion,gain measure and dependen
y fa
tor have the analyzed property M. In se
tion 4,we investigate the relationship between the �rst two measures and the Pareto-optimal border with respe
t to support and anti-support. Illustration of theresults on a real life dataset is presented to support the theoreti
al 
onsiderationswith experimental results. Next, in se
tion 5, we analyze if rule interest fun
tion,gain measure and dependen
y fa
tor satisfy the hypothesis symmetry. The



Analysis of monotoni
ity properties of some rule interestingness measures 3paper ends with 
on
lusions.2. PreliminariesThe dis
overy of knowledge from data is done by indu
tion. It is a pro
essof 
reating patterns whi
h are true in the world of the analyzed data. In thispaper we 
onsider dis
overing knowledge represented in form of rules. Thestarting point for su
h rule indu
tion (mining) is a sample of larger reality oftenrepresented in a form of a data table.Formally, a data table is a pair S = (U,A), where U is a nonempty �nite setof obje
ts, 
alled universe, and A is a nonempty �nite set of attributes. For everyattribute a ∈ A, let us denote by Va the domain of a, and a(x) will stand for thevalue of attribute a for an obje
t x ∈ U . A rule indu
ed from a data table S isdenoted by φ → ψ (read as "if φ, then ψ"), where φ and ψ are built up fromelementary 
onditions using logi
al operator ∧ (and). The elementary 
onditionsof a rule are de�ned as (a(x) rel v) where rel is a relational operator from theset {=, <, ≤, ≥, >} and v is a 
onstant belonging to Va. The ante
edent
φ of a rule is also referred to as premise or 
ondition, whereas the 
onsequent
ψ of a rule is often 
alled 
on
lusion, de
ision or hypothesis. Generally, a rule
an be seen as a 
onsequen
e relation (see 
riti
al dis
ussion (Gre
o et al.,2004) about interpretation of rules as logi
al impli
ations) between premise and
on
lusion. The attributes that appear in elementary 
onditions of the premise(
on
lusion, resp.) are 
alled 
ondition attributes (de
ision attributes, resp.).Obviously, within one rule, the sets of 
ondition and de
ision attributes must bedisjoint. The rules indu
ed from data may be either de
ision or asso
iation rules,depending on whether the division of A into 
ondition and de
ision 
ategoriesof attributes has been �xed or not.2.1. Support and Anti-support Measures of RulesOne of the most popular measures used to identify frequently o

urring as-so
iation rules in sets of items from information table S is support (Agrawalet al., 1993). The support of 
ondition φ (analogously, ψ), denoted as sup(φ)(analogously, sup(ψ)), is equal to the number of obje
ts in U having property
φ (analogously, property ψ). The support of rule φ→ ψ (also simply referredto as support), denoted as sup(φ → ψ), is the number of obje
ts in U havingproperty φ and ψ. Thus, it 
orresponds to statisti
al signi�
an
e (Hilderman etal., 2001). The domain of the measure of support 
an 
over any natural number.The greater the value of support for a given rule, the more desirable the rule is,thus, support is a gain-type 
riterion.

Anti−support of a rule φ → ψ (also simply referred to as anti-support),denoted as anti−sup(φ→ ψ), is equal to the number of obje
ts in U having theproperty φ but not having the property ψ. Thus, anti-support is the number of
ounterexamples, i.e. obje
ts for whi
h the premise φ evaluates to true but whi
h



4 S. Gre
o, R. Sªowi«ski and I. Sz
z�
hfall into a 
lass di�erent than ψ. Note, that anti-support 
an also be regardedas sup(φ→ ¬ψ). Similarly to support, the anti-support measure 
an obtain anynatural value. However, its optimal value is 0, be
ause it re�e
ts the situation inwhi
h a rule has no 
ounterexamples at all. Any value greater than zero meansthat the 
onsidered rule is not 
ertain, i.e. there are some 
ounterexamples forthat rule. The less 
ounterexamples we observe in the dataset, the better, andtherefore anti-support is 
onsidered a 
ost-type 
riterion.Some authors de�ne support and anti-support as relative values with respe
tto the number of all obje
ts in the dataset U . Then, the rule support (anti-support, respe
tively) 
an be interpreted as the per
entage of obje
ts satisfyingboth the premise and 
on
lusion (
ounterexamples, resp) of the rule, in thedataset. In this paper we will 
onsider the former de�nition of support andanti-support, however, using the latter would not in�uen
e the generality of the
ondu
ted analysis and the obtained results.2.2. Piatetsky-Shapiro's Rule Interest Fun
tion, Gain and Depen-den
y Fa
torThe rule interest function, RI, introdu
ed by Piatetsky-Shapiro (1991) is usedto quantify the 
orrelation between the premise and 
on
lusion. It is given bythe following formula:
RI(φ→ ψ) = sup(φ→ ψ) −

sup(ψ)sup(φ)

|U |
(1)For rule φ→ ψ, when RI = 0, then φ and ψ are statisti
ally independent andthus, su
h rule should be 
onsidered as uninteresting. When RI > 0 (RI < 0),then there is a positive (negative) 
orrelation between φ and ψ (Hilderman etal., 2001). Obviously, it is a gain-type 
riterion as greater values of RI re�e
tstronger trend toward desirable positive 
orrelation.The gain fun
tion of Fukuda et al. (1996) is de�ned in the following manner:

gain(φ→ ψ) = sup(φ→ ψ) − Θsup(φ) (2)where Θ is a fra
tion 
onstant between 0 and 1. Note that, for a �xed valueof Θ = sup(ψ)/|U |, the gain measure be
omes identi
al to the above rule in-terest fun
tion RI. Moreover, if Θ is zero then, gain boils down to 
al
ulationof the support of the rule, and when Θ is equal to 1, gain will take negativevalues unless all obje
ts satisfying φ also satisfy ψ (in that 
ase gain will be 0).Thus, gain 
an take any integer value depending on what value Θ is set at. For a�xed Θ, greater values of gain are more desirable, thus it is a gain-type 
riterion.



Analysis of monotoni
ity properties of some rule interestingness measures 5The dependency factor used by Pawlak (2004) and also 
onsidered earlierby Popper (1959), is de�ned in the following manner:
η(φ→ ψ) =

sup(φ→ψ)
sup(φ) − sup(ψ)

|U|

sup(φ→ψ)
sup(φ) + sup(ψ)

|U|

(3)The dependen
y fa
tor expresses the degree of dependen
y, and 
an be seenas a 
ounterpart of 
orrelation 
oe�
ient used in statisti
s. When φ and ψare independent on ea
h other, then η(φ → ψ) = 0. If −1 < η(φ → ψ), then
φ and ψ are negatively dependent, and if 0 < η(φ → ψ) < 1, then φ and ψare positively dependent on ea
h other. The dependen
y fa
tor is a gain-type
riterion.2.3. Property of monotoni
ity MGre
o et al. (2004) have 
onsidered a group of interestingness measures 
alledBayesian 
on�rmation measures from the viewpoint of their usefulness for mea-suring interestingness of de
ision rules. In general, Bayesian 
on�rmation mea-sures say in what degree a pie
e of eviden
e in premise 
on�rms a hypothesis inthe 
on
lusion of a rule. Gre
o et al. (2004) 
laim that 
on�rmation measuresshould enjoy a valuable property M des
ribing monotoni
 dependen
y on thenumber of obje
ts satisfying or not the premise or the 
on
lusion of the rule.Though the property was introdu
ed in the perspe
tive of 
on�rmation mea-sures, its de�nition is wide enough to 
over any interestingness measures andwe are strongly 
onvin
ed that it is a desirable property for any measure.The property M was introdu
ed in Gre
o et al. (2004) where it was formallyde�ned as follows:An interestingness measure

F = [sup(φ→ ψ), sup(¬φ→ ψ), sup(φ→ ¬ψ), sup(¬φ→ ¬ψ)] (4)being a gain-type 
riterion, has the property M if and only if it is a fun
tion
• non-de
reasing with respe
t to sup(φ→ ψ),
• non-in
reasing with respe
t to sup(¬φ→ ψ),
• non-in
reasing with respe
t to sup(φ→ ¬ψ), and
• non-de
reasing with respe
t to sup(¬φ→ ¬ψ).The property M with respe
t to sup(φ → ψ) (or, analogously, with respe
tto sup(¬φ→ ¬ψ)) means that any eviden
e in whi
h φ and ψ (or, analogously,neither φ nor ψ) hold together in
reases (or at least does not de
rease) the
redibility of the rule φ→ ψ. On the other hand, the property M with respe
tto sup(¬φ → ψ) (or, analogously, with respe
t to sup(φ → ¬ψ)) means thatany eviden
e in whi
h φ does not hold and ψ holds (or, analogously, φ holdsand ψ does not hold) de
reases (or at least does not in
rease) the 
redibility ofthe rule φ→ ψ.



6 S. Gre
o, R. Sªowi«ski and I. Sz
z�
hLet us use the following example 
onsidered by Hempel (1945) to show theinterpretation of the property. Consider a rule φ→ ψ:if x is a raven then x is bla
k.In this 
ase φ stands for being a raven and ψ stands for being bla
k. If aninterestingness measure F (φ → ψ) (being a gain-type 
riterion) possesses theproperty M then:
• the more bla
k ravens there are in the dataset, the more 
redible is therule, and thus F (φ→ ψ) obtains greater (or at least not smaller) values,
• F (φ → ψ) also obtains greater (or at least not smaller) values when thenumber of non-bla
k non-ravens in
reases,
• the more bla
k non-ravens appear in the dataset, the less 
redible be
omesthe rule and thus, F (φ → ψ) obtains smaller (or at least not greater)values,
• F (φ → ψ) also obtains smaller (or at least not greater) values when thenumber of non-bla
k ravens in the dataset in
reases.Property M makes use of elementary parameters of the 
onsidered dataset(numbers of obje
ts satisfying some properties) and therefore is an easy andintuitive 
riterion helping to 
hoose an appropriate interestingness measure fora 
ertain appli
ation.2.4. Property of Hypothesis Symmetry (HS)Eells et al. (2002) have analyzed some 
on�rmation measures from the viewpointof four properties of symmetry introdu
ed by Carnap (1962). Again, however,we believe that these properties should be 
onsidered for any interestingnessmeasure, and not be limited to the group of Bayesian 
on�rmation measures.Considering an interestingness measure c(φ→ ψ), the 
onsidered symmetrieswere de�ned as follows:
• eviden
e symmetry (ES): c(φ→ ψ) = −c(¬φ→ ψ)
• 
ommutativity symmetry (CS): c(φ→ ψ) = c(ψ → φ)
• hypothesis symmetry (HS): c(φ→ ψ) = −c(φ→ ¬ψ)
• total symmetry (TS): c(φ→ ψ) = c(¬φ→ ¬ψ)It has been 
on
luded in Eells et al. (2002) that, in fa
t, only (HS) is adesirable property, while (ES), (CS) and (TS) are not. The meaning behind thehypothesis symmetry is that the signi�
an
e of the premise with respe
t to the
on
lusion of a rule should be of the same strength, but of the opposite sign, asthe signi�
an
e of the premise with respe
t to a negated 
on
lusion.The arguments for (HS) 
an be presented by an exemplary situation ofrandomly drawing a 
ard from a standard de
k (Earman (1992), Gre
o et al.(2004)). Let the premise φ of a rule stand for that the drawn 
ard is the sevenof spades, and let ψ be the hypothesis that the 
ard is bla
k. It is 
lear that
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ity properties of some rule interestingness measures 7the premise 
on�rms the hypothesis in 100%. Moreover, obviously, the eviden
ethat the 
ard is the seven of spades (φ) is negatively 
on
lusive (
ompletelydis
on�rms) for the hypothesis that the 
ard is not bla
k (¬ψ).2.5. Support�Anti-support Pareto-optimal borderLet us denote by �s¬a a partial preorder given by the dominan
e relation ona set X of rules in terms of two interestingness measures: support and anti-support, i.e. given a set of rules X and two rules r1, r2 ∈ X, r1 ≺s¬a r2 if andonly if
sup(r1) ≤ sup(r2) ∧ anti− sup(r1) ≥ anti− sup(r2). (5)Re
all that a partial preorder on a set X is any binary relation R on Xthat is re�exive (i.e. for all x ∈ X , xRx) and transitive. In simple words, ifthe semanti
s of xRy is "x is at most as good as y", then a 
omplete preorderpermits to order the elements of X from the best to the worst, with possibleex-aequo (i.e. 
ases of x, y ∈ X su
h that xRy and yRx) and with possiblein
omparability (i.e. 
ases of x, y ∈ X su
h that not xRy and not yRx).The partial preorder �s¬a 
an be de
omposed into its asymmetri
 part ≺s¬aand its symmetri
 part ∼s¬a in the following manner: given a set of rules Xand two rules r1, r2 ∈ X, r1 ≺s¬a r2 if and only if
sup(r1) ≤ sup(r2) ∧ anti− sup(r1) > anti− sup(r2), or
sup(r1) < sup(r2) ∧ anti− sup(r1) ≥ anti− sup(r2)

(6)moreover, r1 ∼s¬a r2 if and only if
sup(r1) = sup(r2) ∧ anti− sup(r1) = anti− sup(r2). (7)If for a rule r ∈ X there does not exist any rule r′ ∈ X , su
h that r ≺s¬a r′then r is said to be non�dominated (i.e. Pareto�optimal) with respe
t to supportand anti-support. A set of all non-dominated rules forms a Pareto�optimalborder of the set of rules in the evaluation spa
e. A set of all non-dominatedrules with respe
t to support and anti-support will be 
alled a support-anti-support Pareto-optimal border. In other words, it is the set of rules su
h thatthere is no other rule having greater support and smaller anti-support.The approa
h to evaluation of the set of rules in terms of two interestingnessmeasures being rule support and anti-support was proposed and presented indetail in Brzezi«ska et al. (2007), and later also 
onsidered in Sªowi«ski et al.(2007). The idea of 
ombining those two dimensions 
ame as a result of lookingfor a set of rules that would in
lude all rules optimal with respe
t to any measurewith the desirable property M. It was proved by Brzezi«ska et al. (2007) thatthe best rules a

ording to any measure with M must reside in the set of rulesnon-dominated with respe
t to support and anti-support:
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Figure 1. Support�anti-support Pareto-optimal borderTheorem 1. When 
onsidering rules with the same 
on
lusion, rules that areoptimal with respe
t to any interestingness measure that has the property M mustreside on the support�anti-support Pareto-optimal border.Thus, we 
an 
onsider satisfying of the property of monotoni
ity M by ameasure as a su�
ient 
ondition for stating that rules optimal with respe
t tothis measure will be found on the support�anti-support Pareto-optimal border.It is a valuable result as it unveils relationships between di�erent interestingnessmeasures. Among pra
ti
al appli
ations of the above result, one 
an mentionpotential e�
ien
y gains as rules optimal with respe
t to measures with theproperty M 
an be found in the support�anti-support Pareto-optimal set insteadof sear
hing the set of all rules. Moreover, rule evaluation 
an be narroweddown to mining only the support�anti-support Pareto-optimal set instead of
ondu
ting rule evaluation separately with respe
t many measures with propertyM, as we are sure that rules optimal a

ording to any of them, are in that Paretoset.Fig. 1 presents a general outlook of the the support�anti-support evaluationspa
e. Sin
e anti-support is a 
ost-type 
riterion (the smaller its value thebetter), the shape of the support�anti-support Pareto-optimal border resemblesa 
urve 
on
ave up.
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ity properties of some rule interestingness measures 9Another valuable and pra
ti
al feature of the support�anti-support Pareto-optimal border is that it 
ontains the set of non-dominated rules with respe
t toanother evaluation spa
e based on support and 
on�den
e. The 
on�den
e of arule (Agrawal et al., 1993), denoted as conf(φ→ ψ) is a popular interestingnessmeasure de�ned as:
conf(φ→ ψ) =

sup(φ→ ψ)

sup(φ)
. (8)The support�
on�den
e evaluation spa
e was proposed by Bayardo et al.(1999), who has proved that for rules with the same 
on
lusion, rules that areoptimal with respe
t to many interestingness measures su
h as Lapla
e (Clark etal., 1991; Webb, 1995), lift(IBM, 1996) (also known as interest, Brin et al. (1997)or strength, Dhar et al. (1993)), 
onvi
tion (Brin et al., 1997), and others willreside on the support�
on�den
e Pareto-optimal border. This evaluation spa
ewas also 
onsidered in Sªowi«ski et al. (2006). Thorough analysis 
ondu
tedin Brzezinska et al. (2007) showed that the support�
on�den
e Pareto-optimalborder has the advantage of presenting a smaller number of rules (more pre
iselya not greater number of rules) than the support�anti-support Pareto-optimalborder. However, its disadvantage is that it does not present the rules optimizingany attra
tiveness measure satisfying the property M. In fa
t, all the rules whi
hare present on the support�anti-support Pareto-optimal border and not presenton the support�
on�den
e Pareto-optimal border maximize an attra
tivenessmeasure whi
h is not monotone with respe
t to support.3. Analysis of Property MFor the 
larity of presentation, the following notation shall be used throughoutthe next se
tions: a = sup(φ → ψ), b = sup(¬φ → ψ), c = sup(φ → ¬ψ),

d = sup(¬φ → ¬ψ), a + c = sup(φ), a + b = sup(ψ), b + d = sup(¬φ),
c+ d = sup(¬ψ), a+ b+ c+ d = |U |. We also assume that set U is not empty,so that at least one of a, b, c or d is stri
tly positive. Moreover, for simpli
ity,we assume that any value in the denominator of any ratio is di�erent from zero.In order to prove that a measure has the property M we need to show thatit is non-de
reasing with respe
t to a and d, and non-in
reasing with respe
t to
b and c.Theorem 2. Measure RI has the property M.Proof. Let us observe that measure RI 
an be rewritten as:

RI(φ→ ψ) = a−
(a+ b)(a+ c)

a+ b+ c+ d
. (9)After some simple algebrai
 transformation, we obtain

RI(φ→ ψ) =
ad− bc

a+ b+ c+ d
. (10)



10 S. Gre
o, R. Sªowi«ski and I. Sz
z�
hTaking into a

ount equation (10), to prove the monotoni
ity of RI with respe
tto a we have to show that if a in
reases by ∆ > 0, then RI does not de
rease,i.e.
(a+ ∆)d − bc

a+ b+ c+ d+ ∆
−

ad− bc

a+ b+ c+ d
≥ 0. (11)After few simple algebrai
 passages, and remembering that a, b, c, d and ∆ arenon-negative, we get

(a+∆)d−bc
a+b+c+d+∆ − ad−bc

a+b+c+d =

= b(b+c+d)∆+bc∆
(a+b+c+d)(a+b+c+d+∆) > 0 ≥ 0

(12)su
h that we 
an 
on
lude that RI is non-de
reasing (more pre
isely, stri
tlyin
reasing) with respe
t to a. Analogous proof holds for the monotoni
ity of RIwith respe
t to d.Now, to prove the monotoni
ity of RI (10) with respe
t to b we have to showthat an in
rease of b by ∆ > 0, will not result in an in
rease of RI, i.e.
ad− (b + ∆)c

a+ b+ c+ d+ ∆
−

ad− bc

a+ b+ c+ d
≤ 0. (13)Through simple algebrai
 transformations we get that:

ad−(b+∆)c
a+b+c+d+∆ − ad−bc

a+b+c+d =

= − c(a+c+d)∆+ad∆
(a+b+c+d)(a+b+c+d+∆) < 0 ≤ 0

(14)Sin
e a, b, c, d and ∆ are non-negative, we 
an 
on
lude that RI is non-in
reasing (more pre
isely, stri
tly de
reasing) with respe
t to b. Analogousproof holds for the monotoni
ity of RI with respe
t to c.Theorem 3. Measure gain has the property M.Proof. Let us 
onsider measure gain expressed as follows:
gain(φ→ ψ) = a− Θ(a+ c) (15)where Θ is a fra
tional 
onstant between 0 and 1. As gain(φ → ψ) does notdepend on b nor d, it is 
lear that the 
hange of b or d does not result in any
hange of gain(φ→ ψ). Thus, we only need to verify if :

• (i) the in
rease of a results in non-de
rease of gain(φ→ ψ),
• (ii) the in
rease of c results in non-in
rease of gain(φ→ ψ).Ad.(i). Let us assume that ∆ > 0 is the number by whi
h a in
reases.Condition (i) will be satis�ed if and only if
gain(φ→ ψ) = a−Θ(a+ c) ≤ gain′(φ→ ψ) = (a+∆)−Θ(a+∆+ c)(16)
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ity properties of some rule interestingness measures 11Let us observe that
a− Θ(a+ c) ≤ (a+ ∆) − Θ(a+ ∆ + c) ⇔

⇔ a− aΘ − cΘ ≤ a+ ∆ − aΘ − cΘ − Θ∆ ⇔
⇔ ∆ − Θ∆ ≥ 0 ⇔ ∆(1 − Θ) ≥ 0

(17)The last inequality is always satis�ed as ∆ > 0 and (1 − Θ) ≥ 0 be
ause Θ is afra
tional 
onstant between 0 and 1. Thus, 
ondition (i) is satis�ed.Ad.(ii). Let us assume that ∆ > 0 is the number by whi
h c in
reases.Condition (ii) will be satis�ed if and only if
gain(φ→ ψ) = a− Θ(a+ c) ≥ gain′(φ→ ψ) = a− Θ(a+ ∆ + c) (18)Let us observe that

a− Θ(a+ c) ≥ a− Θ(a+ ∆ + c) ⇔
⇔ a− aΘ − cΘ ≥ a− aΘ − cΘ − Θ∆ ⇔

⇔ 0 ≥ −Θ∆ ⇔ ∆Θ ≥ 0
(19)The last inequality is always satis�ed as ∆ > 0 and Θ ≥ 0. Thus, 
ondition(ii) is satis�ed. Sin
e all four 
onditions are satis�ed, the hypothesis that gainmeasure has the property M is true.Having determined that both of the analyzed measures do satisfy the desiredproperty M, we 
an draw 
on
lusion that rules optimal a

ording to them willbe found on the support�anti-support Pareto-optimal border.Now, let us prove by 
ounterexample that the dependen
y fa
tor η(φ → ψ)does not have the property M.Theorem 4. Dependen
y fa
tor η(φ→ ψ) does not have the property M.Proof. Let us 
onsider the dependen
y fa
tor rewritten as follows:

η(φ→ ψ) =
a
a+c −

a+b
a+b+c+d

a
a+c + a+b

a+b+c+d

(20)It will be shown by the following 
ounterexample that η(φ → ψ) does notsatisfy the 
ondition that the in
rease of a results in non-de
rease of η(φ→ ψ),thus this measure does not have the property M. Let us 
onsider 
ase α, inwhi
h a=7, b=2, c=3, d=3, and 
ase α′, in whi
h a in
reases to 8 and b, c, dremain un
hanged. The dependen
y fa
tor does not have the property M assu
h in
rease of a results in the de
rease of the measure:
η(φ→ ψ) = 0.0769 > 0.0756 = η′(φ→ ψ). (21)
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z�
h4. Experimental illustration of the resultIt was proved by Brzezi«ska et al. (2007) that rules optimal with respe
t to anyinterestingness measure that has the property M will reside on the support�anti-support Pareto-optimal border. Sin
e, the above analysis shows that both
RI and gain satisfy the property M, we 
an 
on
lude that rules optimal withrespe
t to them will be found in the set of rules non-dominated a

ording tosupport and anti-support. Several 
omputational experiments analyzing rulesoptimal with respe
t to RI and gain in the perspe
tive of rule support andanti-support have been 
ondu
ted in order to illustrate the theoreti
al results
on
erning their possession of the property M and thus, their o

urren
e on thesupport�anti-support Pareto-optimal border.Below, in Fig. 2, there is an exemplary diagram from those experiments. Fora real life dataset 
ontaining information about te
hni
al state of buses, a set ofall possible rules was generated. A set of 85 rules with the same 
on
lusion wasthen isolated, and dominated and non-dominated rules with respe
t to supportand anti-support were found. The support�anti-support Pareto-optimal borderis indi
ated in Fig. 2 by 
ir
les 
onne
ted by a line. Four points marked as
r1, r2, r3, r4 form the Pareto-optimal border. Ea
h of those points representsrules 
hara
terized by parti
ular values of support and anti-support (i.e., r1represents rules with sup(φ → ψ) = 50 and anti − sup(φ → ψ) = 4, r2 ruleswith sup(φ → ψ) = 49 and anti − sup(φ → ψ) = 2, r3 rules with sup(φ →
ψ) = 48 and anti− sup(φ → ψ) = 1, and r4 rules with sup(φ → ψ) = 45 and
anti− sup(φ→ ψ) = 0). In the generated set of 85 rules, we have distinguishedrules optimal a

ording to RI (marked by r3), and gain for di�erent values of
Θ. For Θ = 0.33 the rules with maximal gain are marked as r1; when Θ = 0.5these are the rules marked as r2 or r3; �nally when Θ = 0.66 these are the rulesmarked as r3. The diagram shows that, indeed, rules optimal with respe
t tothose measures lie on the support�anti-support Pareto-optimal border. It meansthat rules optimal with respe
t to RI or gain 
an be found more e�
ientlyby looking for them in the support�anti-support Pareto-optimal set instead ofsear
hing the set of all rules. Moreover, if the user is not interested in knowingwhi
h parti
ular rules are optimal a

ording to RI or gain, we 
an narrowdown the data mining pro
ess to sear
hing only for the support�anti-supportPareto-optimal set be
ause we are sure that it 
ontains RI and gain-optimalrules (though we do not know whi
h ones they are).During this experiment we have also 
al
ulated the optimal value of thedependen
y fa
tor. This measure does not have the property M so we 
ould not
on
lude right away that rules optimal a

ording to it will be on the support�anti-support Pareto-optimal border. However, sin
e possession of the propertyM is only a su�
ient 
ondition for lying on that border, we 
annot ex
lude asituation in whi
h rules optimal with respe
t to the dependen
y fa
tor will befound on the support�anti-support Pareto-optimal border. For this dataset wehave su
h a 
ase. Rules marked as r4 are optimal a

ording to dependen
y
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Figure 2. Pareto-optimal border with respe
t to rule support and anti-supportin
ludes rules being optimal in RI, and gainfa
tor and they also belong the set of non-dominated rules with respe
t tosupport and anti-support. Thus, r4 
an also be regarded as a 
ounterexampleproving that possession of property M is not a ne
essary 
ondition for lying onthe support�anti-support Pareto-optimal border.5. Analysis of Hypothesis Symmetry (HS)The veri�
ation of the property of hypothesis symmetry was done for all three
onsidered measures separately, by 
he
king if their values for rules φ→ ψ and
φ→ ¬ψ are the same but of opposite sign.Theorem 5. Measure RI has the property of hypothesis symmetry.Proof. Let us 
onsider RI expressed as follows:

RI(φ→ ψ) = a−
(a+ c)(a+ b)

a+ b+ c+ d
. (22)For a negated 
on
lusion RI is de�ned as:

RI(φ→ ¬ψ) = c−
(a+ c)(c+ d)

a+ b+ c+ d
. (23)The hypothesis symmetry will be satis�ed by RI if and only if:

a−
(a+ c)(a+ b)

a+ b + c+ d
= −[c−

(a+ c)(c+ d)

a+ b+ c+ d
]. (24)
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o, R. Sªowi«ski and I. Sz
z�
hThrough simple mathemati
al transformation we obtain that:
a−

(a+ c)(a+ b)

a+ b + c+ d
=

ad− bc

a+ b+ c+ d
(25)and

−c+
(a+ c)(c+ d)

a+ b+ c+ d
=

ad− bc

a+ b+ c+ d
(26)and thus, we 
an 
on
lude that RI has the property of hypothesis symmetry.Theorem 6. Measure gain has the property of hypothesis symmetry if and onlyif Θ = 1/2.Proof. Let us 
onsider gain expressed as follows:

gain(φ→ ψ) = a− Θ(a+ c). (27)For a negated 
on
lusion gain is de�ned as:
gain(φ→ ¬ψ) = c− Θ(a+ c). (28)The hypothesis symmetry will be satis�ed by gain if and only if:
a− Θ(a+ c) = −[c− Θ(a+ c)]. (29)Through simple mathemati
al transformation we obtain that the above equalityis satis�ed only when
a+ c = 2Θ(a+ c) (30)that is when Θ = 1/2.Theorem 7. The dependen
y fa
tor η does not have the property of hypothesissymmetry.Proof. Let us 
onsider dependen
y fa
tor expressed as follows:
η(φ→ ψ) =

a
a+c −

a+b
a+b+c+d

a
a+c + a+b

a+b+c+d

. (31)For a negated 
on
lusion it is de�ned as:
η(φ→ ¬ψ) =

c
a+c −

c+d
a+b+c+d

c
a+c + c+d

a+b+c+d

. (32)To prove that the dependen
y fa
tor does not satisfy the hypothesis symmetrylet us use the following 
ounterexample. Let us 
onsider a situation in whi
h
a = b = c = 10 and d = 20. We 
an easily verify that

η(φ→ ψ) = 0.11 6= 0.09 = η(φ→ ¬ψ). (33)
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lusionsAs an a
tive resear
h area in data mining, rule evaluation has been 
onsid-ered by many authors from di�erent perspe
tives. This paper 
on
entrated onmeasuring the relevan
e and utility of indu
ed rules a

ording to three popu-lar interestingness measures: rule interest fun
tion of Piatetsky-Shapiro, gainmeasure of Fukuda et al., and dependen
y fa
tor of Pawlak.A theoreti
al analysis has been 
ondu
ted verifying whi
h of those measuressatisfy valuable properties M and hypothesis symmetry (HS). It has been provedthat the rule interest fun
tion and gain measure are 
hara
terized by both ofthose properties, while the dependen
y fa
tor does not satisfy any of them.Su
h analysis of properties of interestingness measures was 
arried out in orderto widen our knowledge and understanding of those measures, and of theirappli
ability.Sin
e measures RI and gain satisfy property M, they 
an be regarded asfun
tions non-de
reasing with respe
t to sup(φ → ψ) and sup(¬φ → ¬ψ), andnon-in
reasing with respe
t to sup(¬φ → ψ) and sup(φ → ¬ψ). Moreover, thepossession of the property M unveils an interesting relationship between ruleinterest fun
tion and gain on one hand, and two other interestingness mea-sures: rule support and anti-support, on the other hand. It has been shownthat rules maximizing rule interest fun
tion or gain will surely be found onthe rule support�anti-support Pareto-optimal border (when 
onsidering ruleswith the same 
on
lusion). Thus, one 
an 
on
entrate on mining the set ofnon-dominated rules with respe
t to support and anti-support and be sure toobtain in that set all rules that are optimal with respe
t to any measure with theproperty M, whi
h in
ludes rule interest fun
tion and gain measure. These re-sults have also been illustrated on an exemplary dataset, 
ontaining informationabout te
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