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Abstract: In knowledge discovery and data mining many measures of interestingness have been proposed in order to 
measure the relevance and utility of the discovered patterns. Among these measures, an important role is played by 
Bayesian confirmation measures, which express in what degree a premise confirms a conclusion. In this paper, we are 
considering knowledge patterns in a form of “if…, then…” rules with a fixed conclusion. We investigate a monotone 
link between Bayesian confirmation measures, and classic dimensions being rule support and confidence. In particular, 
we formulate and prove conditions for monotone dependence of two confirmation measures enjoying some desirable 
properties on rule support and confidence. As the confidence measure is unable to identify and eliminate non-
interesting rules, for which a premise does not confirm a conclusion, we propose to substitute the confidence for one 
of the considered confirmation measures in mining the Pareto-optimal rules. We also provide general conclusions for 
the monotone link between any confirmation measure enjoying the desirable properties and rule support and 
confidence. Finally, we propose to mine rules maximizing rule support and minimizing rule anti-support, which is the 
number of examples which satisfy the premise of the rule but not its conclusion (called counter-examples of the 
considered rule). We prove that in this way we are able to mine all the rules maximizing any confirmation measure 
enjoying the desirable properties. We also prove that this Pareto-optimal set includes all the rules from the previously 
considered Pareto-optimal borders. 
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1. Introduction 

Discovering knowledge from data is the domain of 
inductive reasoning. Knowledge patterns induced from 
data are usually expressed in a form of 
“if…, then…” rules. They are consequence relations 
representing correlation, association, causation between 
independent and dependent attributes. If the division into 
independent and dependent attributes has been fixed, the 
rules mined from data are regarded as decision rules, 
otherwise as association rules. Typically, the number of 
rules generated from massive datasets is quite large, but 
only a few of them are likely to be useful for the domain 
expert analysing the data. Therefore, in order to measure 
the relevance and utility of the discovered patterns, 
quantitative measures, also known as attractiveness or 
interestingness measures (metrics), have been proposed 
and studied. There is a number of widely known 
interestingness measures such as support and confidence 
 [1], gain  [11], and conviction  [3]. An important place is 
taken, moreover, by some Bayesian confirmation 
measures. In general, Bayesian confirmation measures 
quantify the degree to which a piece of evidence built of 
the independent attributes provides “evidence for or 

against” or “support for or against” the hypothesis built of 
the dependent attributes  [10]. Confirmation measures 
enjoy different properties related to specific 
understanding of symmetry [9] and monotonicity [13]. 
Taking these properties into account, we focus our 
attention in this study on two specific Bayesian 
confirmation measures: measure f (denotation used in 
 [10] and other studies), and measure s (proposed in  [7]) 
(see definitions of measures f and s in Section  2.3.1).  

Bayardo and Agrawal have proved in  [2]  that for a 
class of rules with fixed conclusion, the set of non-
dominated, Pareto-optimal rules with respect to both rule 
support and confidence (i.e. the upper support-confidence 
Pareto-optimal border) includes optimal rules according 
to several different interestingness measures, such as 
gain, Laplace  [8], lift  [18], conviction, and unnamed 
measure proposed by Piatetsky-Shapiro  [24]. This 
practically useful result allows to identify the most 
interesting rules according to several interestingness 
measures by solving an optimised rule mining problem 
with respect to rule support and confidence only. 

As shown in [13], the semantics of the scale of 
confidence is not as meaningful as that of confirmation 
measures. Moreover, it has been analytically shown in [4] 
that there exists a monotone link between some 



 

confirmation measures on one side, and confidence and 
support, on the other side. In consequence, we propose in 
this paper, three alternative approaches to mining 
interesting rules. The first one consists in searching for a 
Pareto-optimal border with respect to rule support and 
confirmation measure f, the second concentrates on 
searching for a Pareto-optimal border with respect to rule 
support and confirmation measure s, and the last one 
proposes to search for a Pareto-optimal border with 
respect to rule support and rule anti-support which is the 
number of examples which satisfy the premise of the rule 
but not its conclusion (called counter-examples of the 
considered rule). Of course, in the last approach the rule 
anti-support is minimized. We prove that it allows to 
mine all rules maximizing any confirmation measure 
enjoying some desirable properties. We also prove that 
the support-anti-support Pareto-optimal set includes all 
the rules from the previously considered Pareto-optimal 
borders. 

The paper is organized as follows. In the next section, 
there are preliminaries on rules and their quantitative 
description. In section 3, we investigate the idea and the 
advantages of mining rules constituting Pareto-optimal 
border with respect to support and confirmation measure 
f. Section 4 concentrates on the proposal of mining 
Pareto-optimal rules with respect to support and  
confirmation measure s. In section 5, we generalize the 
approach from sections 3 and 4 to a broader class of 
confirmation measures. In section 6 we consider Pareto-
optimal set of rules with respect to support and anti-
support. The paper ends with conclusions. 

 

2. Preliminaries 

Since discovering rules from data is the domain of 
inductive reasoning, its starting point is a sample of larger 
reality often given in a form of a data table. Formally, a 
data table is a pair S = (U, A), where U is a nonempty 
finite set of objects called universe, and A is a nonempty 
finite set of attributes such that a : U → Va for every 
a ∈ A. The set Va is a domain of a. Let us associate a 
formal language L of logical formulas with every subset 
of attributes. Formulas for a subset B⊆A are built up from 
attribute-value pairs (a,v), where a∈B and v∈Va, using 
logical connectives ¬ (not), ∧ (and), ∨ (or). A rule 
induced from S and expressed in L is denoted by φ→ψ 
(read as “if φ, then ψ”). It consists of antecedent φ and 
consequent ψ, being formulas expressed in L, called 
premise and conclusion, respectively, and therefore it can 
be seen as a consequence relation (see critical discussion 
about interpretation of rules as logical implications in 
 [13]) between premise and conclusion. The rules mined 
from data may be either decision rules or association 
rules, depending on whether the division of A into 
condition and decision attributes has been fixed or not. 

2.1. Monotonicity 

Let x be an element of a set of rules X and let g(x) be a 
real function associated with this set, such that g:X→R. 
Assuming an ordering relation f in X, function g is said 
to be monotone (resp. anti-monotone) in x, if for any 
x,y∈X, relation x f y implies that g(x) ≥ g(y) (resp. 
g(x) ≤ g(y)). 

 

2.2. Support and confidence measures of rules 

With every rule induced from data table S two 
coefficients called support and confidence can be 
associated. The support of condition φ, denoted as sup(φ), 
is equal to the number of objects in U having property φ. 
The support of rule φ→ψ, denoted as sup(φ→ψ), is equal 
to the number of objects in U having both property φ and 
ψ; for those objects, both conditions φ and ψ evaluate to 
true. 

The confidence of a rule (also called certainty), denoted 
as conf(φ→ψ), is defined as follows: 

( ) ( )
( )φ

ψ→φ
=ψ→φ

sup
supconf . 

Obviously, when considering rule φ→ψ, it is reasonable 
to assume that the set of objects having property φ is not 
empty, i.e. sup(φ)≠∅. 

Under the “closed world assumption” adopted in 
inductive reasoning, and because U is a finite set, it is 
legitimate to express probabilities Pr(φ) and Pr(ψ) in 
terms of frequencies sup(φ)/|U| and sup(ψ)/|U|, 
respectively. In consequence, the confidence measure 
conf(φ→ψ) can be regarded as conditional probability 
Pr(ψ|φ)=Pr(φ∧ψ)/Pr(φ) with which conclusion ψ 
evaluates to true, given that premise φ evaluates to true. 

2.3. Bayesian confirmation measures 

Bayesian confirmation measures constitute an important 
group of interestingness measures. In general, they say in 
what degree a piece of evidence in premise confirms a 
hypothesis in the conclusion. According to Fitelson  [10], 
measures of confirmation quantify the degree to which a 
premise φ provides “support for or against” a conclusion 
ψ. In this context, a confirmation measure denoted by 

),( ψφc  is required to satisfy the following definition: 
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Many authors have considered desirable properties of 
confirmation measures. Eells and Fitelson  have analysed 
in  [9] a set of best-known confirmation measures  from 
the viewpoint of the following four properties of 
symmetry introduced by Carnap in  [6]: 
• evidence symmetry (ES): ),(),( ψφ¬−=ψφ cc  
• commutativity symmetry (CS):  ),(),( φψ=ψφ cc
• hypothesis symmetry (HS):  ),(),( ψ¬φ−=ψφ cc



 

• total symmetry (TS): ),(),( ψ¬φ¬=ψφ cc . 
It has been concluded in  [9] that, in fact, only (HS) is a 

desirable property, while (ES), (CS) and (TS) are not. 
Greco, Pawlak and Slowinski have considered in  [13]  

Bayesian confirmation measures from the viewpoint of 
their usefulness for measuring interestingness of decision 
rules. In this context, given decision rule φ→ψ, 
confirmation measure ),( ψφc  should give the credibility 
of the proposition: ψ is satisfied more frequently when φ 
is satisfied rather than when φ is not satisfied. According 
to  [13], in order to satisfy fully this requirement, the 
confirmation measure should enjoy a property, called 
property of monotonicity (M), defined as follows: 

)](),(
),(),([

)()M(

ψ¬→φ¬ψ¬→φ
ψ→φ¬ψ→φ

=ψ→φ

 sup sup
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• is a function non-decreasing with respect to 
, and non-increasing 

with respect to 
)(and)( ψ¬→φ¬ψ→φ  sup sup

)(and)( ψ¬→φψ→φ¬  sup  sup . 
 
The property of monotonicity (M) of ),( ψφc with 

respect to (or, analogously, with respect to 
) means that any evidence in which φ and 

ψ (or, analogously, neither φ nor ψ) hold together 
increases (or at least does not decrease) the credibility of 
the rule φ→ψ. On the other hand, the property of 
monotonicity of with respect to 

)( ψ→φ sup
)( ψ¬→φ¬sup

),( ψφc )( ψ→φ¬ sup  
(or, analogously, with respect to )( ψ¬→φsup ) means 
that any evidence in which φ does not hold and ψ holds 
(or, analogously, φ holds and ψ does not hold) decreases 
(or at least does not increase) the credibility of the rule 
φ→ψ. 

 

2.3.1. Bayesian confirmation measures f and s 

Among the best-known and widely studied 
confirmation measures, there are confirmation measures 
denoted by f and s, defined as follows: 

)|Pr()|Pr(
)|Pr()|Pr()(

ψ¬φ+ψφ
ψ¬φ−ψφ

=ψ→φf , 

 
)|Pr()|Pr()( φ¬ψ−φψ=ψ→φs . 

Taking into account that conditional probability 
, confirmation measures f and s 

can be re-written as: 
)()|Pr( ∗→=∗ oo conf

)()(
)()()(
φ→ψ¬+φ→ψ
φ→ψ¬−φ→ψ

=ψ→φ
confconf
confconff , 

 
)()()( ψ→φ¬−ψ→φ=ψ→φ confconfs . 

Among authors advocating for confirmation measure f, 
there are Good  [12], Heckerman  [14], Pearl  [23] and 
Fitelson  [10]. Measure s has been proposed by 

Christensen  [7] and Joyce  [19]. It is worth noting that 
confirmation measure f is monotone (and therefore gives 
the same ranking) with respect to the Bayes factor 
originally proposed by Jeffrey  [16] and reconsidered as 
an interestingness measure by Kamber and Shingal  [17] 
having the following formulation: 

( )
( ) .ψ
ψ)(

φ→¬
φ→

=ψ→φ
conf
confk  

Confirmation measures f and s play an important role in 
the whole group of confirmation measures for having the 
desirable property of monotonicity (M), which was 
verified in  [13].  

Moreover, as shown in  [9], confirmation measure f 
enjoys the most useful version of the property of 
symmetry (it satisfies hypothesis symmetry (HS), and 
does not satisfy other symmetry properties (ES), (CS) and 
(TS)). The reason in favor of (HS) is that the significance 
of φ with respect to ψ should be of the same strength, but 
of opposite sign, as the significance of φ with respect to 
¬ψ. The arguments against (ES), (CS) and (TS) can be 
found in  [9]. 

As to confirmation measure s, it has three properties of 
symmetry (HS), (ES) and (TS), while not (CS). It is 
attractive, however, for another reason: it reflects the rule 
support better than confirmation measure f. This can be 
seen from the following hypothetical example: assume 
two different universes, composed of 110 objects each – 
they will correspond to case a) and b). In case a), 
sup(φ)=10, sup(¬φ)=100, sup(ψ)=10, sup(¬ψ)=100, 
sup(φ→ψ)=4, sup(¬φ→ψ)=6, and sup(φ→¬ψ)=6. In 
case b), sup(φ)=100, sup(¬φ)=10, sup(ψ)=100, 
sup(¬ψ)=10, sup(φ→ψ)=95, sup(¬φ→ψ)=5, and 
sup(φ→¬ψ)=5. According to the above formulae, in 
case:  

a) sa = 34/100 = 0.34  and  fa = 34/46 = 0.739, 
while in case  
b) sb = 45/100 =0.45  and  fb = 45/145 = 0.31. 
As the support of rule φ→ψ in case a) is smaller than 

that of case b), it is desirable that the confirmation 
measures reflect this fact, however, only sb > sa, while  
fb < fa. 

 

2.4. Partial preorder on rules in terms of two 
interestingness measures 

Let us denote by pAB a partial preorder on rules in terms 
of any two different interestingness measures A and B. 
Recall that a partial preorder on a set X is any binary 
relation R on X that is reflexive (i.e. for all x∈X, xRx) and 
transitive (i.e. for all x,y,z∈X, xRy and yRz imply xRz). In 
simple words, if the semantics of xRy is “x is at most as 
good as y”, then a complete preorder permits to order the 
elements of X from the best to the worst, with possible 
ex-aequo (i.e. cases of x,y∈X such that  xRy and yRx) and 
with possible incomparability (i.e. cases of x,y∈X such 
that not xRy and not yRx). The partial preorder pAB can be 



 

decomposed into its asymmetric part pAB and its 
symmetric part ∼AB in the following manner:  

given two rules r1 and r2,  r1 pAB r2  if and only if 

),r()r()r()r(
or,)r()r()r()r(

2121

2121

BBAA
 BBAA

≤∧<
<∧≤

 

moreover r1 ∼AB r2  if and only if 
).r()r()r()r( 2121 BBAA =∧=  

2.5. Implication of a complete preorder  pt  by 
partial preorder  pAB 

Application of some measures that quantify the 
interestingness of a rule induced from an information 
table S creates a complete preorder, denoted as  pt, on set 
of those rules. Recall that a complete preorder on a set X 
is any binary relation R on X that is strongly complete, 
(i.e. for all x,y∈X, xRy or yRx) and transitive. In simple 
words, if the semantics of xRy is “x is at most as good as 
y”, then a complete preorder permits to order the 
elements of X from the best to the worst, with possible 
ex-aequo but without any incomparability. In particular, 
measures such as gain, Laplace, lift, conviction, measure 
proposed by Piatetsky-Shapiro, or confirmation measures 
f and s result in such a complete preorder on the set of 
rules, ordering them according to their interestingness 
value. 

A complete preorder  pt  is implied by a partial preorder  
pAB  if: 

.2t~12AB~1

2t12AB1

r  rr r
and  ,rrrr

  ⇒
⇒ pp

 

It has been proved by Bayardo and Agrawal in  [2] that 
if a complete preorder pt is implied by a particular 
support-confidence partial preorder psc, then the optimal 
rules with respect to pt can be found in the set of non-
dominated rules with respect to rule support and 
confidence. Thus, having proved that a complete preorder 
defined for a new interestingness measure is implied by 
psc, one can concentrate on discovering non-dominated 
rules with respect to rule support and confidence. 
Moreover, Bayardo and Agrawal have shown in  [2] that 
the following conditions are sufficient for proving that a 
complete preorder pt defined over a rule value function 
g(r) is implied by partial preorder pAB: 
• g(r) is monotone in A over rules with the same value  

of B, and 
• g(r) is monotone in B over rules with the same value  

of A. 

2.6. Advantages of confirmation measures over 
confidence in the context of APRIORI approach. 

Support and confidence are the two measures most 
frequently used in association rule extraction algorithms 
based on the selection of frequent itemsets. Having 
obtained from a user minimum rule support and 
confidence thresholds, the basic version of the well 

known APRIORI algorithm  [1] proceeds in a two step 
framework: 
• find frequent itemsets (i.e. sets of items which occur 

more frequently than the minimum support threshold), 
• generate rules from frequent itemsets and filter out 

those that do not exceed the minimum confidence 
threshold. 
The efficiency of this algorithm lies in the fact that for 

an itemset which is not frequent, none of its supersets can 
be frequent. Therefore, the APRIORI algorithm starts its 
analysis from itemsets of k=1 size and generates itemsets 
of size k+1 only from frequent itemsets of size k.  

The second step of the algorithm generates association 
rules from frequent itemsets and discards those that are 
beyond the minimum confidence threshold. However, 
rules within the confidence framework might not be 
necessarily interesting for the experts due to a weakness 
of the confidence scale. This disadvantage of confidence 
can be easily seen when its scale is compared with the 
scale of any confirmation measure, from the view point 
of semantics. 

Confidence can obtain values between 0 and 1 (where 1 
is regarded as the best) whereas confirmation measures 
take values between –1 and 1 (again 1 being the most 
desirable). The utility of scale of confirmation measures 
outranks the utility of confidence’s scale. The confidence 
measure has no means to show that the rule is useless 
when its premise disconfirms the conclusion. Such 
situation is expressed by a negative value of any 
confirmation measure, and thus useless rules can be 
filtered out simply by observing the confirmation 
measure’s sign.  

The difference of semantics and utility of conf(φ→ψ)  
on one hand, and f(φ→ψ) or s(φ→ψ)on the other hand, 
can be shown on the following example. Consider the 
possible result of rolling a die: 1,2,3,4,5,6, and let the 
conclusion ψ="the result is divisible by 2". Given two 
different premises: φ1="the result is a number from a set 
{1,2,3}", φ2="the result is a number from a set {2,3,4}", 
we get, respectively: conf(φ1→ψ)=1/3, f(φ1→ψ)=-1/3, 
s(φ1→ψ)=-1/3, conf(φ2→ψ)=2/3, f(φ2→ψ)=1/3, 
s(φ2→ψ)=1/3. This example, of course, acknowledges the 
monotone link between confirmation measure f or s and 
confidence. However, it also clearly shows that the values 
of confirmation measures have a more useful 
interpretation than confidence. In particular, in the case of 
rule φ1→ψ, the premise actually disconfirms the 
conclusion as it reduces the probability of conclusion ψ 
from 1/2=sup(ψ) to 1/3=conf(φ1→ψ). This fact is 
expressed by a negative value of confirmation measure f 
and s , but cannot be concluded by observing only the 
value of confidence. 

The difference of semantics and utility of confidence 
and the two confirmation measures can also be seen when 
we consider two different conclusions and only one 
premise Let φ="the result is divisible by 2", while 
ψ1="the result is 6" and ψ2="the result is not 6". Then, 
conf(φ→ψ1)=1/3, f(φ→ψ1)=3/7, s(φ→ψ1)=1/3 and 



 

conf(φ→ψ2)=2/3, f(φ→ψ2)=−3/7, s(φ→ψ1)=-1/3. In this 
example, rule φ→ψ2 has greater confidence than rule 
φ→ψ1, however, rule φ→ψ2 is less interesting than rule 
φ→ψ1 because premise φ reduces the probability of 
conclusion ψ2 from 5/6=sup(ψ2) to 2/3=conf(φ→ψ2), 
while it augments the probability of conclusion ψ1 from 
1/6=sup(ψ1) to 1/3=conf(φ→ψ1). In consequence, 
premise φ disconfirms conclusion ψ2, which is expressed 
by a negative value of f(φ→ψ2)=−3/7 and s(φ→ψ2)=−1/3, 
and it confirms conclusion ψ1, which is expressed by a 
positive value of f(φ→ψ1)=3/7 and s(φ→ψ2)=1/3. 

It is therefore clear, that even high values of confidence 
can be misleading. Thus, in order to reduce the number of 
induced rules, it is not enough to filter out rules that do 
not satisfy an assumed confidence threshold, like it is 
done in a basic version of the APRIORI algorithm. We 
find it valuable to substitute the confidence threshold by 
confirmation measure f or confirmation measure s 
threshold. Then, the second phase of the APRIORI 
algorithm, would be modified to generate, from the 
frequent itemsets, rules for which the value of 
confirmation measure f or s is larger than the threshold 
set by a user. It is obvious that only thresholds larger than 
0 are reasonable. 

 

3. Mining the Pareto-optimal border with respect to 
confirmation measure f and rule support 

As proved in  [2], mining the support-confidence border 
identifies optimal rules according to several different 
interestingness metrics. This is a practically useful result 
that assures that rules maximizing many popular 
measures shall be found by solving an optimised rule 
mining problem with respect to rule support and 
confidence only. It has been shown in  [4] that even 
confirmation measure f is among those interestingness 
metrics and, therefore, all rules maximizing confirmation 
measure f can be found on the Pareto-optimal support-
confidence border (concerning rules with a fixed 
conclusion). For the sake of completeness we give here 
the two fundamental results formally stating these 
properties. 

Theorem 1.  [4] Confirmation measure f is independent 
of rule support, and, therefore, monotone in rule support, 
when the value of confidence is held fixed.  

Proof. Let us consider the confirmation measure f 
transformed such that, for given U and ψ, it only depends 
on confidence of rule φ→ψ and support of ψ: 

)()())(2(
)()(

)(
ψ+ψ→φψ−

ψ−ψ→φ
=ψ→φ

supconfsupU
supconfU

f . 

As we consider rules with a fixed conclusion ψ, the 
values of |U| and sup(ψ) are constant. Thus, for a fixed 
confidence, we have a constant value of the confirmation 
measure f, no matter what the rule support is. Hence, 

confirmation measure f is monotone in rule support when 
the confidence is held constant. ⁪ 

Theorem 2.  [4] Confirmation measure f is increasing 
in confidence, and, therefore, monotone in confidence.   

Proof. Again, let us consider confirmation measure f 
given in the same form as above: 

)()())(2(
)()(

)(
ψ+ψ→φψ−

ψ−ψ→φ
=ψ→φ

supconfsupU
supconfU

f  

For the clarity of the presentation, let us express the 
above formula as a function of confidence, still regarding 
|U| and sup(ψ) as constant values greater than 0: 

mnx
mkxy

+
−

= , 

where y=f(φ→ψ),  x=conf(φ→ψ),  k=|U|,  m=sup(ψ),  
n=|U|−2sup(ψ). 

It is easy to observe that:  

• k=|U|>0, and  

• 0<m≤|U|. 

In order to verify the monotonicity of f in confidence, 
let us differentiate y with respect to x. We obtain: 

.
)x(
)(
2mn

nkm
x
y

+
+

=
∂
∂  

As m>0, and k+n=|U|+|U|−2sup(ψ)=2|U|−2sup(ψ)>0 
for |U|≥sup(ψ), the whole derivative is always not smaller 
than 0. Therefore, confirmation measure f is monotone in 
confidence. ⁪ 

 
However, as the utility of confirmation measure f 

outranks the utility of confidence, it has been found 
interesting to propose a new Pareto-optimal border – with 
respect to rule support and confirmation measure f. It is 
valuable to combine those two measures in the border, as 
for a fixed value of confidence, confirmation measure f is 
independent of rule support, and rules that have high 
values of confirmation measure f are often characterized 
by small values of the rule support. 

For the completeness of the research, an analysis of the 
monotonicity of confidence in rule support for a fixed 
value of confirmation f, as well as in confirmation f for a 
fixed value of support was also performed.  

Corollary 1. Confidence is independent of rule support, 
and, therefore, monotone in rule support, when the value 
of confirmation measure f is held fixed. 

Proof. Let us consider Bayesian confirmation  
measure f: 

)()(
)()()(
φ→ψ¬+φ→ψ
φ→ψ¬−φ→ψ

=ψ→φ
confconf
confconff  

Through simple mathematical transformations, the 
above definition can be converted to outline how 
confidence depends on confirmation measure f: 

.
))(2)((

)()()()(  
supUfU

supsupfconf
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=ψ→φ  



 

As we consider a set of rules with a fixed conclusion ψ, 
the values of |U| and sup(ψ) are constant. Thus, for a 
fixed confirmation f, we have a constant value of 
confidence, no matter what the rule support is. Hence, we 
can conclude that confidence is monotone in rule support 
when the confirmation measure f is held constant. ⁪ 

 
Corollary 2. Confidence is increasing in confirmation 

measure f, and therefore monotone in confirmation 
measure f. 

Proof. Since confirmation measure f is strictly 
monotone (i.e. increasing) in confidence (see proof of 
 Theorem 2), then it is obvious that confidence is also 
strictly monotone in confirmation measure f. ⁪ 

The above results are in fact a verification of the two 
sufficient conditions proving that the complete preorder 
introduced by confidence is implied by the partial 
preorder of rule support and confirmation measure f. 
Thus,  
 Theorem 1,  Theorem 2 and  Corollary 1,  Corollary 2 
show that the set of rules located on the support-
confidence Pareto-optimal border is exactly the same as 
the set of rules located on the support-confirmation-f 
Pareto-optimal border.  

Moreover, it is clear that having three functions A, B 
and C such that A is strictly monotone in B and B is 
strictly monotone in C, A is also strictly monotone in C. 
Thus, it is straightforward to observe that other 
interestingness measures that are monotone in 
confidence, must also be monotone in confirmation 
measure f, due to the monotone link between confidence 
and confirmation measure f. Hence, all the interestingness 
measures that were found on the support-confidence 
Pareto-optimal border shall also reside on the Pareto-
optimal border with respect to rule support and 
confirmation measure f. Then, for rules with a fixed 
conclusion, mining the newly proposed Pareto-optimal 
border will identify rules optimal according to 
confidence, conviction, lift, Laplace, Piatetsky-Shapiro, 
gain, etc.  

 
Fig.1 Pareto-optimal border with respect to rule 

support and confirmation measure f 

 
However, any non-dominated rule with a negative value 

of confirmation measure f must be discarded from further 
analysis as its premise only disconfirms the conclusion. 
In particular, if the highest value of confirmation measure 
f in the Pareto set is negative, then the whole set should 
be excluded as it does not contain any interesting rules. In 
this paper, similarly to  [2], a separate Pareto-optimal 
border is considered for each set of rules with the same 
conclusion. A final set of rules representing patterns 
discovered from the whole dataset shall be a union of all 
the non-negative-in-f rules from all the Pareto-optimal 
borders (all possible conclusions) with respect to rule 
support and confirmation measure f. 

Several computational experiments analysing rules in 
confirmation measure f and rule support have been 
conducted in order to illustrate the theoretical results 
concerning the support-confirmation f Pareto-optimal 
border. Below, on  Fig.2 is an exemplary diagram from 
that experiment. For a real life dataset containing 
information about technical state of buses a set of all 
possible rules was generated. A set of 78 rules with the 
same conclusion was then isolated and rules non-
dominated with respect to support and confirmation 
measure f were found. Determining which of those 78 
rules are optimal according to such measures as 
confidence, lift, Laplace, Piatetsky-Shapiro etc., has 
shown that, as was earlier theoretically proved, they all 
reside on the Pareto-optimal support-confirmation f 
border. 
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It can be easily observed that the Pareto-optimal set of 

rules (marked in  Fig.2 by squares) includes rules 
maximizing such interestingness measures as confidence, 
Laplace, lift (marked in  Fig.2 by asterisk), Piatetsky-
Shapiro (marked in  Fig.2 by a cross). 

Summarizing, due to the fact that the utility of scale of 
confirmation measure f outranks the scale of confidence, 
we are strongly in favour of mining the Pareto-optimal 
border with respect to rule support and confirmation f and 
not rule support and confidence as it was proposed in  [2]. 
Those two Pareto sets can, in fact, be regarded as 



 

monotone transformations of each other. Hence, 
substitution of confidence by confirmation measure f does 
not induce any losses to the set of other interestingness 
metrics for which optimal rules reside on the Pareto-
optimal border. As semantics of confirmation f are more 
useful, it is straightforward to see the reasons for such 
substitution.  

4. Mining the Pareto-optimal border with respect to 
confirmation measure s and rule support 

From the group of Bayesian confirmation measures, an 
important role is also played by confirmation measure s. 
Similarly to confirmation measure f, it also has the 
desirable property of monotonicity (M). Its monotone 
link (within a set of rules with the same conclusion) with 
confidence and rule support came into the scope of our 
analysis. 

For the clarity of further presentation, let us use the 
following notation: 
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Throughout the following analysis, we shall assume 
that a, b, c and d are positive numbers. 

The confirmation measure s is then defined as: 
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The analysis considers only a set of rules with the same 
conclusion, thus the values of dcbaU +++=  and 

are constant. basup +=ψ)(
 
First, the monotonicity of confirmation measure s in 

confidence for a fixed value of support has been 
considered. 

Theorem 3. When the rule support value is held fixed, 
then confirmation measure s is increasing with respect to 
confidence (i.e. confirmation measure s is monotone in 
confidence).  

Proof. Let us consider the confirmation measure s: 
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For the hypothesis, asup =ψ→φ )(  is supposed to be 

constant. Therefore, it is clear that 
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can only increase with the decrease of c. Hence, let us 
consider 0where, >∆∆−=    cc' . Now, operating on  
the only way to guarantee that 

c'
U  and )(ψsup  still 

remain constant is to increase d such that ∆+= dd' . The 
values of a and b cannot change:  and aa' = bb' = . Now, 
the new value of confirmation measure s takes the 
following form: 
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Since 0>∆ , it is clear that )()( ψ→φ>ψ→φ ss' . 
This means that for a fixed value of rule support, 
increasing confidence results in an increase of the value 
of confirmation measure s and therefore confirmation 
measure s is monotone with respect to confidence.⁪ 

Moreover, the monotonicity of confirmation measure s 
in rule support for a fixed value of confidence has been 
analysed. 

Theorem 4. When the confidence value is held fixed, 
then: 
a) confirmation measure s is increasing in rule support 

(i.e. strictly monotone) if and only if s>0, 
b) confirmation measure s is constant in rule support 

(i.e. monotone) if and only if s=0, 
c) confirmation measure s is decreasing in rule support 

(i.e. strictly anti-monotone) if and only if s<0. 
Proof. We present the proof of part a) only, as the other 

points are analogous. Let us consider the confirmation 
measure s: 
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Let us consider an increase of asup =ψ→φ )(  
expressed in the form of . 0where, >∆∆+=    aa'

Since 
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Simple mathematical transformation lead to the 
conclusion that: 
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Let us observe that (1) implies that if 0=c  then 
0=ε and moreover if  then . Since 0>c 0>ε U  and 

)(ψsup must be kept constant, b and d need to decrease in 
such a way that ∆−= bb'  and ε−= dd' . In this 
situation, the new confirmation measure s will be: 
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Remembering that 
ca

aconf
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=ψ→φ )(  is constant, 

let us observe that: 
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Considering (1) and (2) it can be concluded that: 
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This proves that, for a fixed value of confidence, 

confirmation measure s is increasing with respect to rule 
support if and only if  and therefore in its 
positive range confirmation measure s is strictly 
monotone in rule support.⁪ 

0)( >ψ→φs

 
As rules with negative values of confirmation measure s 

should always be discarded from consideration, the result 
from  Theorem 4 states the monotone relationship just in 
the interesting subset of rules.  

Confirmation measure s was not found in  [9] as a 
satisfying measure with respect to the property of 
symmetry. It was due to the fact that though it does satisfy 
the desirable property of hypothesis symmetry (HS), it 
also has the undesirable properties of evidence symmetry 
(ES) and total symmetry (TS). However, it was proved in 
 [13] that, similarly to f, confirmation measure s has the 
desirable property of monotonicity (M).  

Since confirmation measure s has the property of 
monotonicity (M), we propose to generate interesting 
rules by searching for rules maximizing confirmation 
measure s and support, i.e. substituting the confidence in 
the support-confidence Pareto-optimal border with the 
confirmation measure s and obtaining in this way a 
support-confirmation-s Pareto-optimal border. This 
approach differs from the idea of finding the Pareto-
optimal border according to rule support and 
confirmation measure f, because support-confirmation-f 
Pareto-optimal border contains the same rules as the 
support-confidence Pareto-optimal border, while in 
general support-confirmation-s Pareto-optimal border 
contains a subset of the support-confidence Pareto-
optimal border as stated in the following theorem.  

Theorem 5. If a rule resides on the support- 
confirmation-s Pareto-optimal border (in case of positive 
value of confirmation measure s), then it resides also on 
the support-confidence Pareto-optimal border, while one 
can have rules being on the support-confidence Pareto-
optimal border which are not on the support-
confirmation-s Pareto-optimal border. 

Proof. Let us consider a rule r φ→ψ residing on the 
support-confirmation-s Pareto-optimal border and let us 
suppose that confirmation measure s has a positive value. 
This means that for any other rule r' φ'→ψ  we have that: 

sup(φ'→ψ)>sup(φ→ψ)⇒s(φ'→ψ)<s(φ→ψ),         (i) 
On the basis of monotonicity of confirmation measure s 

with respect to support and confidence in case of positive 
value of s, we have that sup(φ'→ψ)>sup(φ→ψ) and 
s(φ'→ψ)<s(φ→ψ) implies that conf(φ'→ψ)<conf(φ→ψ). 

This means that (i) implies that for any other rule r'  
sup(φ'→ψ)>sup(φ→ψ)⇒conf(φ'→ψ)<conf(φ →ψ). 
This means that rule r residing on the support-

confirmation-s Pareto-optimal border is also on the 
support-confidence Pareto-optimal border because one 
cannot have any other rule r' such that  

sup(φ'→ψ)>sup(φ→ψ) and conf(φ'→ψ)≥conf(φ →ψ). 
Now, we prove with a counter-example that there can 

be rules being on the support-confidence Pareto-optimal 
border which are not on the support-confirmation-s 
Pareto-optimal border. Let us consider rules r and r' 
residing on the support-confidence Pareto-optimal border 
such that for rule r we have support sup(φ→ψ)=200 and 
confidence conf(φ→ψ)=0.667, while for rule r' we have 
support sup(φ'→ψ)=150 and confidence 
conf(φ'→¬ψ)=0.68. We have that s(φ→ψ)=0.167 which 
is greater than s(φ'→ψ)=0.142. Thus, rule r' is not on the 
support-confirmation-s Pareto-optimal border because it 
is dominated with respect to support- confirmation-s by 
rule r having a greater support and a greater confirmation 
measure s. � 

 Theorem 5 states that some rules from the support-
confidence Pareto-optimal border may not be present on 
the support-confirmation-s Pareto-optimal border. 
 Theorem 5 can be easily generalized by substituting 
confirmation measure s for any interestingness measure 
monotone with respect to support and confidence. The 
following theorem states formally this point. 

Theorem 6. Given an interestingness measure i, which 
is monotone with respect to support and confidence, if a 
rule resides on the support-interestingness-i Pareto-
optimal border, then it also resides on the support-
confidence Pareto-optimal border, while the opposite 
assertion is not necessarily true. 

Proof. Analogous to  Theorem 5. 

5. Optimal rules with respect to any confirmation 
measure having the property of monotonicity (M) 

The investigation of monotone link with confidence and 
rule support has also been extended to a more general 
class of all the confirmation measures that have the 
property of monotonicity (M). For a set of rules with a 
fixed conclusion a general analysis has been conducted 
verifying under what conditions a confirmation measure 
with the property of monotonicity (M): 
• is monotone in confidence when the value of rule 

support is kept unchanged,  
• is monotone in rule support when the value of 

confidence is held fixed. 
 
Again, for the simplicity of presentation, let us use the 

following notation: 
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Let us consider a Bayesian confirmation measure 
F(a,b,c,d) having the property of monotonicity (M). The 
analysis concerns only a set of rules with the same 
conclusion, thus the values of dcbaU +++=  and 

basup +=ψ)( are constant.  



 

One can observe that a, b, c, and d can be transformed 
in the following way: 
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Then, a Bayesian confirmation measure F can be 
expressed as: 

)).()(
)(

1)(

),()(
)(

1
),()(

),((),,,(

ψ→φ+ψ→φ
ψ→φ

−ψ

ψ→φ−ψ→φ
ψ→φ

ψ→φ−ψ
ψ→φ=

supsup
conf

sup-U

supsup
conf

supsup
supFdcbaF

 
Theorem 7. When the value of rule support is held 

fixed, then the confirmation measure F(a, b, c, d) is 
monotone in confidence.  

Proof. Confidence determines the value of Bayesian 
confirmation measure F(a, b, c, d) through variables c 
and d. We have that variable c is non-increasing in 
confidence. In fact,  

c= )()(
)(

1
ψ→φ−ψ→φ

ψ→φ
supsup

conf
 

and sup(φ→ψ) is non-negative. Since for the property 
of monotonicity (M), F is non-increasing with respect to 
variable c, we get that F is non-decreasing with respect to 
the value of confidence in variable c.  

We have also that variable d is non-decreasing in 
confidence. In fact,  
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and sup(φ→ψ) is non-negative. Since for the property 
of monotonicity (M), F is non-decreasing with respect to 
variable d, we get that F is non-decreasing with respect to 
the value of confidence in variable d. ⁪ 

 
Let us remark that we can say nothing in general about 

monotonicity with respect to support of a confirmation 
measure F(a, b, c, d) satisfying the property of 
monotonicity (M). In fact confirmation measure 
F(a, b, c, d) is clearly non-decreasing with respect to the 
value of support in  variable a and b, however 
confirmation measure F(a, b, c, d) is non-increasing with 
respect to the value of support in variable c and d. The 
latter point merits some explanations. We have that  
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property of monotonicity (M), F is non-increasing with 
respect to variable c, we get that F is non-increasing with 
respect to the value of support in variable c.  

Analogously, we have that  
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conf
 is non-negative. Since for the 

property of monotonicity (M), F is non-decreasing with 
respect to variable d, we get that F is non-increasing with 
respect to the value of support in  variable d. 

In order to find a condition for monotonicity of 
confirmation measure F(a, b, c, d) with respect to support 

)( ψ→φsup , in the following theorem we suppose that 
confirmation measure F(a, b, c, d) is differentiable with 
respect to all its variables a, b, c and  d. 

Theorem 8. When the value of confidence is held 
fixed, then the confirmation measure F(a, b, c, d) 
admitting derivative with respect to all its variables a, b, c 
and  d, is monotone in rule support if: 
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Proof. Let us assume that . Let us 
differentiate F(a, b, c, d) with respect to 
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Then, we obtain: 
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Since F is supposed to satisfy the property of 
monotonicity (M), it must be non-increasing with respect 
to b, c and non-decreasing with respect to a, d, such that 
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It is clear, that due to the property of monotonicity (M) 
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 Theorem 7 states that for a set of rules with the same 

conclusion, any Bayesian confirmation measure 
satisfying the property of monotonicity (M) is always 
non-decreasing with respect to confidence when the value 
of rule support is kept fixed. Moreover, due to  
 Theorem 8, all those confirmation measures that are 
independent of  and )( ψ¬→φsup )( ψ¬→φ¬sup  are 
always found monotone in rule support when the value of 
confidence remains unchanged. However, for a constant 
value of confidence, Bayesian confirmation measures 
which do depend on the value of )( ψ¬→φsup  and 

 are also non-decreasing with respect to 
rule support if and only if they satisfy the following 
condition: 

)( ψ¬→φ¬sup
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The general analysis in  Theorem 7 and  Theorem 8 
outlines an easy method of verification whether there 
exists a monotone link between any Bayesian 
confirmation measure with the property of monotonicity 
(M), and confidence and rule support, respectively. 
Confirmation measures that positively undergo such 
ascertainment are, in our opinion, good candidates for 
substituting the confidence dimension in the Pareto-
optimal border with respect to rule support and 
confidence proposed by Bayardo and Agrawal  [2]. Due to 
the monotonicity of a confirmation measure in rule 
support and confidence, the Pareto-optimal border with 
respect to rule support and a confirmation measure 
includes rules optimal according to all the metrics that 
were found on the support-confidence Pareto-optimal 
border.  

The scale of confirmation measures is more useful than 
that of confidence, therefore, we propose searching for 
the non-dominated set of rules with respect to rule 
support and a confirmation measure. In particular, we 
find confirmation measures f and s valuable and useful 
for such application. 

6. Beyond support-confidence and support-
confirmation Pareto-optimal borders 

We believe that the considered Pareto-optimal borders 
include interesting rules, however, some critical remarks 
may help to better understand its limitations. 

When inducing rules from data we are interested in a 
set of rules that characterise a given concept (conclusion 

ψ), rather than in one rule being the best with respect to 
one or two interestingness measures. In this sense, a 
Pareto-optimal border is merely a starting point for 
identification of the interesting set of rules. Precisely, all 
rules lying in the area delimited by minimum acceptable 
support, minimum acceptable confidence or confirmation 
measure, and the Pareto-optimal border with respect to 
those two dimensions, can be considered interesting. 
Remark that this area may include dominated rules, 
however, from the view point from a good representation 
of a concept ψ, these dominated rules may be found 
better than some non-dominated rules from outside this 
area.  

The following example clarifies this point. Let us 
consider induction of rules with a given conclusion ψ 
from a universe U such that sup(ψ)=100 and |U|=300. 
Consider three rules r1, r2 and r3, such that 

sup(r1)=80 and conf(r1)=0.8, 
sup(r2)=75 and conf(r2)=0.75 and 
sup(r3)=100 and conf(r3)=0.4. 
We have, therefore, that r2 psc r1 and thus r2 is not on 

the support-confidence Pareto-optimal border that 
contains rules r1 and r3. Suppose, however, that the user 
sets the minimum acceptable support to 50, and the 
minimum acceptable confidence to 0.5. Then, the set of 
interesting rules with respect to these two dimensions will 
be composed of rules r1 and r2. Remark that even though 
rule r3 is non-dominated, it has been found less 
interesting than the dominated rule r2.  

Another critical issue is related to  Theorem 8. In fact, it 
says that a rule maximizing a confirmation measure 
satisfying the property (M) is on the support-confidence 
Pareto-optimal border only if a specific condition is 
satisfied. In other words this means that, in general, not 
all rules maximizing a confirmation measure satisfying 
the property (M) are on the support-confidence Pareto-
optimal border. Thus, on the basis of the observation that 
a confirmation measure is more meaningful than 
confidence, one can think about mining all rules that 
maximize confirmation measures satisfying the property 
(M) without taking into account the rule confidence. Let 
us consider induction of rules with a given conclusion ψ 
from a universe U such that sup(ψ) and |U| can be 
considered fixed. Again, for the simplicity of 
presentation, let us use the following notation: 
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One can observe that a, b, c, and d can be transformed 
in the following way: 
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Then, a Bayesian confirmation measure F can be 
expressed as: 
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Let us call sup(φ→¬ψ) the anti-support of rule φ→ψ. It 
represents the number of counter-examples to the rule 
φ→ψ. For example, if φ=“x is a raven” and ψ=“x is 
black”, then φ→ψ  is the rule “if x is a raven, then x is 
black” and the anti-support sup(φ→¬ψ) is the number of 
non-black ravens. 

Theorem 9. When the value of rule support is held 
fixed, then the confirmation measure F(a, b, c, d) is anti-
monotone (non-increasing) in rule anti-support. 

Proof. Function F depends on the anti-support 
sup(φ→¬ψ) through variables c and d. Observe that c is 
increasing while d is decreasing with respect to 
sup(φ→¬ψ). Remembering that for the property of 
monotonicity (M) F is non-increasing in c and non-
decreasing in d, we get the thesis. � 

Theorem 10. When the value of rule anti-support is held 
fixed, then the confirmation measure F(a, b, c, d) is 
monotone (non-decreasing) in rule support. 

Proof. Function F depends on the support sup(φ→ψ) 
through variables a and b. Observe that a is increasing 
with respect to sup(φ→ψ) while b is decreasing. 
Remembering that for the property of monotonicity (M) 
F is non-decreasing in a and non-increasing in b, we get 
the thesis.�  

 
 Theorem 9 and  Theorem 10 say that F is monotone 

(non-decreasing) with respect to rule support sup(φ→ψ) 
and anti-monotone (non-increasing) with respect to rule 
anti-support sup(φ→¬ψ). Therefore, the best rule 
according to any of these monotone confirmation 
measures must reside on the support-anti-support Pareto-
optimal border being the set of rules such that there is no 
other rule having greater support and smaller anti-
support.. This result is interesting from the viewpoint of 
searching for some efficient algorithms to mine decision 
rules optimal in the sense of maximizing the support and 
minimizing the anti-support. Of course, the first critical 
remark to Pareto-optimal borders also concern the 
support-anti-support Pareto-optimal border.  

Moreover, this result has an interesting relation with the 
so called Nicod’s Principle. Nicod’s Principle  [22] says 
that an evidence confirms an implication “A implies B” if 
and only if it satisfies both the antecedent and the 
consequent of the implication; it disconfirms the 
implication if and only if it satisfies the antecedent, but 
not the consequent of the implication. Thus, according to 
the Nicod's principle, an evidence is neutral, or irrelevant, 
with respect to the implication if it does not satisfy the 
antecedent.  

To illustrate this point Hempel introduced an example 
which became very well known in the specialized 
literature. The implication, denoted by (I1), is "if x is a 
raven, then x is black" or, in everyday language, “All 
ravens are black”. Consider that with respect to the 
considered implication there are four possible evidences:  
(a) a black raven,  
(b) a non-black raven (for example, a white raven), 
(c) a black non-raven (for example, a black shoe),  
(d) a non-black non-raven (for example, a white shoe).  
From Nicod’s Principle, (a) is a positive instance of the 
implication, and so (a) confirms the implication “All 
ravens are black”. (b) is a negative instance, and so (b) 
disconfirms the implication “All ravens are black”. (c) 
and (d) do not satisfy the antecedent of the implication 
“All ravens are black”, (i.e., neither (c) nor (d) is a 
raven), and so they are non-instances and irrelevant to I1. 
With the aim of discussing the Nicod's Principle, Hempel 
introduced the Equivalence Condition which says 
“Whatever confirms (disconfirms) one of two equivalent 
sentences, also confirms (disconfirms) the other”  [15]. 
It seems that the truth of this condition is quite 
uncontestable. As Hempel claimed, the Equivalence 
Condition is “a necessary condition” and “fulfillment of 
this condition makes the confirmation of a hypothesis 
independent of the way in which it is formulated”  [15]. 
Even if the Nicod's Principle seems so natural and the 
Equivalence Condition so necessary in the theory of 
confirmation, when we put the two together, some 
problems arise. 

To illustrate, let us come back to the implication "All 
ravens are black". Now, we can imagine another 
implication, denoted in the following by (I2), “All non-
black things are not ravens” which is logically equivalent. 
Using the same logic from Nicod’s Principle, evidence 
(d) will confirm (I2), (b) will disconfirm (I2) while (a) 
and (c) becomes irrelevant to (I2). Now, we know that 
(I1) is logically equivalent to (I2). From the Equivalence 
Condition, whatever confirms (I1) should confirm (I2) as 
well.  However, we have that (a) confirms (I1) but not 
(I2) and (d) confirms (I2) but not (I1). In this case, we 
have that the application of Nicod's creates a violation of 
the Equivalence condition. In this case, as Hempel says, 
“This means that Nicod’s Principle makes confirmation 
depend not only on the content of the hypothesis, but also 
on its formulation”  [15]. 

Instead of the Nicod’s Principle, Hempel proposes the 
Positive Instances Principle. Hempel thinks that since (a) 
confirms (I1) and (d) confirms (I2), and (I1) is logically 
equivalent to (I2), then both (a) and (d) confirm (I1) and 
(I2). Moreover, (a) and (d) are not the only evidence that 
can confirm (I1) and (I2). Now, let us consider the 
following hypothesis (I3): “Anything which is or is not a 
raven is either no raven or black”.  Anything that is not a 
raven or black can confirm (I3). (I3) is logically 
equivalent to (I1) and (I2). Therefore, according to the 
Positive Instances Principle, anything that is not a raven 
or a black raven confirms (I1) (and (I2)) as well. In other 



 

words, (a), (c), and (d) would confirm (I1), while only (b) 
disconfirms (I1). Greco, Pawlak and Slowinski in  [13] 
further generalized the Hempel criterion by means of the 
already mentioned monotonicity principle M which can 
be rephrased as (a) and (d) support the implication, while 
(b) and (c) are against it. Their arguments were the 
following. Given a probability Pr, an evidence φ confirms 
a hypothesis ψ, if Pr(ψ|φ)>Pr(ψ|¬φ). Translating 
probability in terms of confidence, one can say that an 
evidence φ confirms hypothesis ψ, if 
conf(ψ|φ)>conf(ψ|¬φ). Greco, Pawlak and Slowinski  [13] 
proved that it is possible to pass from one situation in 
which evidence φ does not confirm hypothesis ψ, i.e. 
conf(ψ|φ)<conf(ψ|¬φ), to a situation in which evidence φ 
confirms hypothesis ψ, i.e. conf(ψ|φ)>conf(ψ|¬φ), when 
sup(φ→ψ) or sup(¬φ→¬ψ) increases, or sup(¬φ→ψ) or 
sup(φ→¬ψ) decreases. Thus, it is reasonable to expect 
that a confirmation measure F is monotone with respect 
to sup(φ→ψ) and sup(¬φ→¬ψ), corresponding to (a) and 
(d), and anti-monotone with respect to sup(φ→¬ψ) and 
sup(¬φ→ψ), corresponding to (b) and (c). 

Within the context of this discussion,  Theorem 9 and 
 Theorem 10 permit to reconcile the monotonicity (M) of 
Greco, Pawlak and Slowinski with the Nicod’s Principle. 
In fact, when the conclusion of the implication is fixed 
any monotone confirmation measure is non-decreasing 
with respect to positive instance (support) and non-
increasing with respect to negative instance (anti-
support). 

Another interesting observation with respect to the 
Pareto-optimal border of support-anti-support is that it 
contains the support-confidence Pareto-optimal border. 
The following Theorem states formally this point. 

Theorem 11. If a rule resides on the support-confidence 
Pareto-optimal border, then it resides also on the support-
anti-support Pareto-optimal border, while one can have 
rules being on the support-anti-support Pareto-optimal 
border which are not on the support-confidence Pareto-
optimal border. 

Proof. Let us consider a rule r φ→ψ residing on the 
support-confidence Pareto-optimal border. This means 
that for any other rule r' φ'→ψ  we have that: 

sup(φ'→ψ)>sup(φ→ψ)⇒conf(φ'→ψ)<conf(φ→ψ),    (i) 
Observe that 
conf(φ'→ψ)<conf(φ→ψ) ⇔ 

( )
( ) ( )

( )
( ) ( )ψ¬→φ+ψ→φ

ψ→φ

<
ψ¬→φ+ψ→φ

ψ→φ
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sup

supsup
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and since we are supposing  
sup(φ'→ψ)>sup(φ →ψ), we get that  
sup(φ'→¬ψ)>sup(φ →¬ψ). 
This means that (i) implies that for any other rule r' 
sup(φ'→ψ)>sup(φ→ψ)⇒sup(φ'→¬ψ)>sup(φ →¬ψ). 
This means that rule r residing on the support-

confidence Pareto-optimal border is also on the support-

anti-support Pareto-optimal border because one cannot 
have any other rule r' such that  

sup(φ'→ψ)>sup(φ→ψ) and sup(φ'→¬ψ)>sup(φ →¬ψ). 
Now, we prove with a counter-example that there can 

be one decision rule being on the support-anti-support 
Pareto-optimal border which is not on the support-
confidence Pareto-optimal border. Let us consider two 
rules r and  r' residing on the support-anti-support Pareto-
optimal border such that for rule r we have support 
sup(φ→ψ)=200 and anti-support sup(φ→¬ψ)=100, while 
for rule r' we have support sup(φ'→ψ)=150 and anti-
support sup(φ'→¬ψ)=99. We have that 
conf(φ→ψ)=0.667 which is greater than 
conf(φ'→ψ)=0.602. Thus, rule r' is not on the support-
confidence Pareto-optimal border because it is dominated 
in the sense of support-confidence by rule r having a 
larger support and a larger confidence. � 

Thus, the support-confidence Pareto-optimal border has 
the advantage of presenting a smaller number of rules 
(more precisely a not greater number of rules) than the 
support-anti-support Pareto-optimal border. However, 
support-confidence Pareto-optimal border has the 
disadvantage that it does not present all the rules 
maximizing a confirmation measure satisfying the 
property (M). In fact, all the rules present on the support-
anti-support Pareto-optimal border and not present on the 
support-confidence Pareto-optimal border maximize 
some confirmation measure which is not monotone with 
respect to support because it does not satisfy the 
condition of above  Theorem 8. The support-anti-support 
Pareto-optimal border has also another advantage. It only 
depends on the search of frequent and “infrequent” 
itemsets, independently of the confidence. Indeed, a rule 
φ→ψ lying on the support-anti-support Pareto-optimal 
border is “frequent enough” with respect to the pattern 
φ∧ψ (this frequency corresponds to sup(φ→ψ)) and 
“infrequent enough” with respect to the pattern φ∧¬ψ 
(this frequency corresponds to sup(φ→¬ψ)). From an 
algorithmic viewpoint this should be particularly useful 
because of the closure property of support and anti-
support. In fact,  
a)  if an itemset is frequent, then all its subsets are also 
frequent, 
b)  if an itemset is infrequent, then all its supersets are 
also infrequent.   

Property a) means that support is downward closed, i.e. 
if an itemset has a required support, then all its subsets 
also have it. Whereas, property b) means that anti-support 
is upward closed, i.e. if an itemset has not a required 
support, then neither of its subsets has it. The conjoint use 
of properties a) and b) permits to develop an efficient 
algorithm for finding rules on the support-anti-support 
Pareto-optimal border. We plan to deal with this issue in 
the future. 



 

7. Conclusions 

Bayardo and Agrawal have proved in  [2] that complete 
preorders of many interestingness measures such as gain, 
Laplace, lift, conviction, the one proposed by Piatetsky-
Shapiro, etc. are implied by the rule support-confidence 
partial order. This result is practically very useful because 
it ensures that the rules maximizing any of the above 
measures are included in the set of Pareto-optimal rules 
with respect to both rule support and confidence.  

In this paper, for a class of rules with the same 
conclusion, we have analysed the monotonicity of two 
Bayesian confirmation measures: f and s in rule support 
when the value of confidence is held fixed, and in 
confidence when the value of rule support remained 
unchanged. Those particular measures came into the 
scope of our interest for their valuable properties and the 
meaningful semantics of the scale of Bayesian 
confirmation measures in general. 

The analysis has also been extended to a more general 
class of all the confirmation measures that have the 
property of monotonicity (M). As the result, precise 
conditions in which such confirmation measures are 
monotone in rule support and confidence were presented. 

The overall results show that it is reasonable to propose 
a new approach in which we search for a Pareto-optimal 
border with respect to rule support and confirmation 
measure f, and not rule support and confidence as it was 
suggested in  [2]. Due to the monotone link between 
confirmation measure f and confidence, the new set of 
non-dominated rules includes the same rules that reside 
on the support-confidence Pareto-optimal border. Thus, 
without any loss, we only present the same Pareto-
optimal border in a more meaningful way because the 
semantic utility of confirmation f is higher than that of 
confidence. 

Moreover, we believe that discovering rules optimal 
with respect to support and confirmation measure s would 
bring valuable results. This is because, unlike 
confirmation measure f, measure s is dependent on rule 
support when the value of confidence is held fixed. The 
Pareto-optimal border thus obtained is contained in the 
support-confidence Pareto-optimal border. 

We also proposed to search for a Pareto-optimal border 
with respect to rule support and rule anti-support. Of 
course, the rule anti-support is minimized. We proved 
that through the support-anti-support Pareto-optimal 
border we are able to mine all the rules maximizing any 
confirmation measure that has the property of 
monotonicity (M). We also proved that the support-anti-
support Pareto-optimal border contains the support-
confirmation Pareto-optimal border, but we argue that the 
disadvantage of having a greater number of rules on the 
Pareto-optimal border is counter-balanced by the fact that 
in this way we have also rules maximizing confirmation 
measures which are not monotone with respect to support 
and confidence, even if they satisfy the property of 
monotonicity (M).  

Consequently, our future research will concentrate on 
adapting the APRIORI algorithm  [1], based on the 
frequent itemsets, for mining most interesting rules with 
respect to rule support and confirmation measure s or 
with respect to rule support and anti-support. In the latter 
case, we are especially confident that a very efficient 
algorithm can be developed using closure properties of 
support and anti-support. 
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