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Rule induction

PatternsInference Engine

Decision rules Association rules

If symptom s1 is present 
and symptoms s2
and s3 are absent

then disease d1

If symptom s1 is present
then symptoms s2
and s3 are absent

Data
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Rule induction

� Patterns in form of rules are induced from a data table

� S=〈U, A〉 – data table,  where U and A are finite, non-empty sets 

U – universe of objects;    A – set of attributes

� S=〈U, C, D〉 – decision table,  where C – set of condition attributes,

D – set of decision attributes, C∩D=∅

� Rule induced from S is a consequence relation:  

E →→→→ H read as  if E then H

where 

E is condition (evidence or premise) and

H is conclusion (hypothesis or decision) 

formula built from attribute-value pairs (q,v)
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Rule induction

� E.g. decision rules induced from „characterization of nationalities”:

1) If (Height=tall) then (Nationality=Swede)

2) If (Height=medium) & (Hair=dark) then (Nationality=German)

If Evidence then Hypothesis

C D
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Interestingness measures

The number of rules
induced from datasets is usually quite large

rule evaluation – interestingness (attractiveness) measures
(e.g. support, confidence, gain, rule interest, lift,
measures of Bayesian confirmation)

In this work we focus on a group of measures of confirmation

• overwhelming for human comprehension,
• many rules are irrelevant or obvious

(low practical value)

• each measure was proposed to capture      
different characteristics of rules
• the number of proposed measures is very large
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Notation

� Used notation corresponding to a 2x2 contingency table 

of rule’s premise and conclusion

a=sup(H,E)  is the number of objects in U satisfying both the 

premise E and the conclusion H of a rule E →→→→ H,

b=sup(H, ¬ E),

c=sup(¬ H, E),

d=sup(¬ H, ¬ E),

a+c=sup(E),   

a+b=sup(H),…

� a, b, c and d can also be regarded as frequencies that can be used to 

estimate probabilities: 

e.g., P(E)=(a+c)/n, P(H)=(a+b)/n, P(H|E) = a/(a+c).

H ¬ H ∑

E a c a+c

¬ E b d b+d

∑ a+b c+d a+b+c+d=n
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Property of confirmation

� An attractiveness measure c(H,E), has the 

property of confirmation (i.e. is a confirmation measure) 

if is satisfies the following condition:

� Measures of confirmation quantify the strength of confirmation that 

premise E gives to conclusion H

� „H is verified more often, when E is verified, 

rather than when E is not verified”
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Property of confirmation

� The condition does not put any constraint on the value

to be assigned to confirmatory arguments (as long as they are 

positive) or disconfirmatory arguments (as long as they are negative)

� There are many alternative, non-equivalent measures of confirmation
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Popular confirmation measures

There are many alternative, non-equivalent measures of confirmation

(Carnap 1950/1962)

(Christensen 1999)

(Mortimer 1988)

(Nozick 1981)

(Carnap 1950/1962)

(Finch 1960) 

(Rips 2001)

(Kemeny and Oppenheim 1952)
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(Crupi, Tentori, Gonzalez 2007)

(Greco, Słowiński, Szczęch 2012)
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Popular confirmation measures
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Derived confirmation measures
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Properties of confirmation measures

The choice of a confirmation measure for a certain application 
is a difficult problem

properties of confirmation measures, which reflect users’ expectations 
towards the behaviour of measures in particular situations

need to analyze measures with respect to their properties

Motivation for this work: Do confirmation measures reflect the 
statistically significant dependencies in data (between E and H)?

• there is no evidence which measure(s) is the best
• the users’ expectations vary,
• the number of proposed measures is overwhelming

• property of monotonicity M (Greco, Pawlak & Słowiński 2004)
• Ex1 property and its generalization to weak Ex1

• property of logicality L and its generalization to weak L
(Fitelson 2006;  Crupi, Tentori & Gonzalez 2007
Greco, Słowiński & Szczęch 2012)

• …
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if   (Hair = red) & (Eyes = blue)   then  (Nationality = German)

if                Evidence                      then Hypothesis 

if                (VE = E)                      then  (VH = H)

� The contingency table constitutes a form of information about VE and VH that 

is to be used in inferring whether these variables are independent or not 

� The contingency table is also the form used to calculate the value of 

confirmation measures

Height Hair Eyes Nationality

tall blond blue Swede
medium dark hazel German
medium blond blue Swede

tall blond blue German
short red blue German

medium dark hazel Swede

VE VH

¬E ¬H
¬E H
¬E ¬H
¬E H
E H

¬E ¬H

Statistically significant dependency between E and H

H ¬ H

E a c

¬ E b d

a = sup(E,H)
b = sup(¬E,H)
c = sup(E,¬H)
d = sup(¬E,¬H)
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� In real-life situations the existence of possible measurement errors

(finally reflected in contingency tables) must be taken into account

� Thus, we should look for a statistically significant dependency 

between E and H

� This may be quantified and measured with 

e.g. two dimensional χ2 test, often used to test for 

the independence of two discrete-valued variables

Statistically significant dependency between E and H
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� For 2 x 2-sized contingency tables, 

as used in defining confirmation measures, 

a coefficient χ2
0 is defined:

� This coefficient is approximately χ2-distributed and ranges from 0 to n. 

To make it n-independent, it is scaled down (divided) by n, producing 

a value belonging to the interval [0, 1] and denoted as χχχχ201 

Testing for independency of E and H - χ2
01 coefficient
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� In practice, two potentially unfavourable situations can concern the 

confirmation measure applied to a contingency table created from 

error-prone data:

� the value of c(H,E) indicates either strong confirmation

or strong disconfirmation, while there is only 

a weak dependency between E and H

� the value of c(H,E) indicates either weak confirmation or weak 

disconfirmation, while there is a strong dependency E and H

Using confirmation measures in error-prone situations



18

� To counteract those situations, there arises a need to evaluate 

the concordance between confirmation measures and statistical 

significance of the evidence-hypothesis dependency

� For such an evaluation to be useful, it should provide continuous 

measurements, the higher the more the measure c(H,E) 'agrees' with 

the level of dependency between the evidence and the hypothesis

� This evaluation may be performed using different statistical tools.

In this study we use linear Pearson correlation r

between |c(H,E)| and χ2
01

Property of concordance
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� Given n > 0 (the total number of observations), a synthetic dataset 

is generated as the set of all possible contingency tables satisfying 

a + b + c + d = n

� The set is thus exhaustive and non-redundant (i.e. it contains exactly 

one copy of each contingency table satisfying the above condition)

The experimental dataset



Property of concordance – example for n=8

r(|c(H,E)|,χ2
01)

a b C d

0 0 0 8
0 0 1 7
0 0 2 6
0 0 3 5
0 0 4 4
0 0 5 3
0 0 6 2
0 0 7 1
0 0 8 0
0 1 0 7
0 1 1 6
0 1 2 5
0 1 3 4

… … … …

8 0 0 0

c(H,E)

0.00
-0.13
-0.25
0.00
-0.13
0.00
0.88
0.75
0.63
0.50
0.38
0.25
0.13

…

χχχχ201
0.01
0.13
0.15
0.00
0.43
0.00
0.80
0.91
0.63
0.17
0.72
0.25
0.19

…

H ¬ H

E a c

¬ E b d
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� The relation between χ2
01 coefficient and a given confirmation measure 

c(H,E) may be additionally visualized with a scatter-plot of 

c(H,E) (horizontal axis [-1;1]) against χ2
01 (vertical axis [0;1])

� Given a measure c(H,E),

the points of the c(H,E) 

versus- χ2
01 scatter-plot 

should possibly occupy 

the green regions 

of the figure, 

while possibly avoiding 

any of the red or blue ones

� Risk related interpretations: 

red region – risk-prone, blue region – risk-averse
21
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� After having set the total number of observations n to 128, the 

following operations were performed:

� the exhaustive and non-redundant set of contingency tables satisfying 

a + b + c + d = n was generated (there are 366 145 such tables)

� the values of the 12 selected confirmation measures for all the generated 

tables were calculated (with c1(H,E) and c2(H,E) for α =β=0.5)

� the values of the χ2
01 coefficient for all the generated tables were computed

� the correlations between the absolute values of each of 12 selected 

confirmation measures and the χ2
01 coefficient 

(i.e. concordances) were established

� scatter-plots of the 12 selected confirmation measures against χ2
01

and triple-region histograms were drawn

The experimental set-up
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� Some interesting results:

� measure c3(H,E) enjoys an ideal χ2
01 -concordance, 

which is due to the fact that | c3(H,E) | = χ2
01

� the concordances of the other measures range 

from 0.957 (c4(H,E)) down to 0.694 (Z(H,E) and 

A(H,E)), in result of which all of the 12 selected 

measures can be referred to as approximately 

concordant

� the less concordant measures should thus be used 

with some care, especially when applied to real-

life, error-prone data, as the may express either 

strong confirmation or strong disconfirmation in 

statistically insignificant situations

The experimental results

c(H,E) r

D(H,E) 0.713

M(H,E) 0.713

S(H,E) 0.912

N(H,E) 0.912

C(H,E) 0.908

F(H,E) 0.711

Z(H,E) 0.694

A(H,E) 0.694

c1(H,E) 0.697

c2(H,E) 0.697

c3(H,E) 1.000

c4(H,E) 0.957
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D(H,E)

M(H,E)

S(H,E)

N(H,E)

C(H,E)

F(H,E)

Scatter-plots of the 12 selected measures against χ2
01

Z(H,E)

A(H,E)

c1(H,E)

c2(H,E)

c3(H,E)

c4(H,E)
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D(H,E)

M(H,E)

S(H,E)

N(H,E)

C(H,E)

F(H,E)

Triple-region histograms of the 12 selected measures

Z(H,E)

A(H,E)

c1(H,E)

c2(H,E)

c3(H,E)

c4(H,E)



� Measures c1(H,E) and c2(H,E) depend on α parameter, 

i.e. the free parameter that is used to define them (β = 1 - α)

� They manifest varying shapes of their corresponding scatter-plots

� α influences their χ2
01-concordance

α - horizontal axis

r – vertical axis

Influence of α and β on the profile of c1(H,E) (same for c2(H,E))
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Influence of α and β on the profile of c1(H,E) (same for c2(H,E))

� α = 0.5 and β = 0.5 

� r = 0.697
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� α = 0.75 and β = 0.25 

� r = 0.700

Influence of α and β on the profile of c1(H,E) (same for c2(H,E))
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� α = 0.999 and β = 0.001  
(approaching Z(H,E) and A(H,E) respectively)

Influence of α and β on the profile of c1(H,E) (same for c2(H,E))
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� α = 0.5 and β = 0.5 

� r = 0.697

Influence of α and β on the profile of c1(H,E) (same for c2(H,E))
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� α = 0.25 and β = 0.75 

� r = 0.637

Influence of α and β on the profile of c1(H,E) (same for c2(H,E))
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� α = 0.001 and β = 0.999 (approaching c3(H,E))

Influence of α and β on the profile of c1(H,E) (same for c2(H,E))
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� Confirmation measures are popular tools for evaluation of rules 

induced from data

� Previous research concerning confirmation measures was confined to 

environments that had been explicitly or implicitly assumed to be 

free from observational errors

� In real-life situations, however, the existence of such errors must be 

taken into account and properly approached

� We incorporate the χ2 test to examine for the dependence between 

the evidence and the hypothesis of an induced rule

� Using the Pearson correlation coefficient between the measure 

and an introduced χ2
01 coefficient we quantify how concordant 

the measure is with the level of dependency between E and H

Conclusions
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� The general conclusion is that most measures possess rather high, 

although not ideal, concordance

� The scatter-plots and the triple-region histograms of these measures 

reveal particular situations in which they express either strong 

confirmation or strong disconfirmation in statistically insignificant 

situations

� This means that they should be used with special care in error-prone 

environments

Conclusions
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Thank you!



D(H,E)-versus-χ2
01 (same for M(H,E))

� r = 0.713
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F(H,E)-versus-χ2
01

� r = 0.711
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Z(H,E)-versus-χ2
01 (same for A(H,E))

� r = 0.694
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c3(H,E)-versus-χ2
01

� r = 1.000
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Using confirmation measures in error-prone situations

� Example

Z(H,E) = 1.000

χ2
0 = 1.005, we cannot reject that VE and VH are independent

H ¬¬¬¬H

E 100 0

¬¬¬¬E 99 1

40
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Statistics-based Four-Step Procedure

� The four-step procedure of hypothesis testing

1. Set up a null hypothesis H0 and an alternative hypothesis H1

2. Assume α as the probability of a highly improbable event

3. Carry out the experiment and get the resulting DATA.
Use the DATA to compute the value of some statistics s0. 
Use the value of the statistics s0 to compute the probability p.

4. Compare p to α:

• if p>α -- the inconclusive result

• if p≤α -- the conclusive result (have right to reject H0)
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A ‘Reversed Scheme’ in the Four-Step Procedure

� Let’s reproduce the computations ‘in reverse’

1. H0, H1, …

2. α …

3. Experiments/computing:

The DATA
 ⇓
the statistics s0 the statistics sα

⇓ ⇑
the probability p the probability α

4. What is the relation between s0 and sα?

� In this reversed scheme the computation s0 ⇒ p
is replaced with the computation α ⇒ sα



A statistical approach

� Are two variables independent or are they not?

� the problem is formulated as follows:

• the two variables are concluded to be dependent when the degree
of their dependency is unlikely to have occurred by chance

� in practice: 

• assume that the two variables are independent and compute the 
probability that the degree of dependency between them is just
like the observed one; 
if the probabilty is very low, then conclude that the two variables
are not independent 

• (may be carried out using the χ2-based statistical test)
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A statistical approach

� Idea of the procedure

� the discrete-valued variables V1 and V2

� the contingency tables Oij and Eij (observed and expected), 
with i=1..m and j=1..n, where m is the cardinality of the 
domain of V1 and n is the cardinality of the domain of V2

� the χ2
0 coefficient and its (approximate) distribution

(χ2 with df = (m–1)(n–1))

� the probabilities α and p
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A statistical approach

� Detailed procedure (χ2-based testing)

� assume α (probability of what will be considered an unlikely 
event)

� formulate H0 and H1

� compute p assuming that H0 holds

� conclude (reject H0 if p ≤ α)
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A statistical approach

� Postulated/desired property of c(H,E):

� variables VE and VH should not be independent
if the values of c(H,E) are to determine 
how E confirms/disconfirms H

46
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The Problem of ‘Raw Material Supplier’

� The ‘raw material supplier’ example:

� John Doe’s home company produces three brands of batteries. The 
management is interested in examining the origin of a particular raw 
material on the battery’s performance. The analyst, John Doe, 
described 300 tested batteries in terms of:

• the raw material supplier (A, B, and C) 

• the performance (below 5 hours, about 5 hours, over 5 hours)

After having analyzed the contingency table (rows: supplier, columns: 
performance) John Doe concluded that there is no significant 
dependency supplier<-->performance.

� Is J. Doe’s conclusion correct from the statistical point of view?

30 60 10

15 60 25

30 30 40
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The Counts and the Contingency Tables

� The idea of occurrence counts can be applied to two qualitative variables 
at once

� assume we have N observations described in terms of two qualitative 
variables, one K-elementary and one L-elementary 

� because each observation is then described by a combination
of two qualitative values, the counts can be of form oij, where

• i-denotes the i-th value of the first scale and j denotes the j-th 
value of the second scale

• oij=x indicates that there were exactly x observations described by 
the combination of the corresponding qualitative elements

� of course: 

� the counts are usually stored in form of a K×L table, which is called the 
contingency table

� the contingency table is also called the table of observed values

∑∑
= =
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i

L

j

ij No
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The Table of Expected Values

� Expectations about K×L contingency table is also expressed in form of a 
K×L table

� it turns out that the expected eij are strongly influenced by the 
marginal distributions of the oij values

• a contingency table can be viewed as a two-dimensional discrete 
distribution and as such it has two main characteristics (so-called 
marginal distributions)

• the sums of rows ri for i=1..K

• the sums of columns cj for j=1..L

� under the condition that the two qualitative variables that delivered 
the observed contingency table are independent the expected values 
eij are given by:

where and 

N

cr
e

ji

ij = ∑
=

=
L

j

iji or
1

∑
=

=
K

i

ijj oc
1
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Introducing the Two-Dimensional χ2-test

� The differences between the observed and the expected tables can be 
used to characterize the dependency of the qualitative variables that 
delivered the tables

� The measure used is the following u statistics:

� The statistics follows approximately the χ2-distribution with df=(K–1)*(L–
1) degrees of freedom

∑∑
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Testing the Qualitative Dependency

� The test for verifying the dependency between two qualitative variables is 
constructed as follows:

1. H0: oij=eij for all pairs i,j -- ‘the variables are independent’
H1: oij≠eij for at least one pair i,j -- ‘the variables are dependent’

2. Assume α

3. Compute u0, establish df and compute p

4. Reject H0 if p≤α

� The ‘reversed scheme’ can be used similarly to the one-dimensional χ2-
test
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Solution to ‘Raw Material Supplier’ #1

� The tables appearing in the solution of the problem

� the table of the observed values:

� the sum of rows:

� the sum of columns:

� the table of the expected values:

30 60 10

15 60 25

30 30 40

25 50 25

25 50 25

25 50 25

75 150 75

100

100

100
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Solution to ‘Raw Material Supplier’ #2

� Solution to the problem of raw material supplier

1. H0: ‘the performance of the battery 

and the supplier of the raw material 

are independent’

H1: ‘the variables are dependent’

2. α=0.01

3. df=(K–1)*(L–1)=4

u0=36.000

χ2
0.01,4=13.277

4. Because u0>χ2
0.01,4 H0 is rejected



Is |c3(H,E)| equal to χ2
01 by a coincidence?

� By definition, for an mxn contingency table [oij]

with every eij = f(o11, o12, ..., o21, o22, ..., omn)

� For 2x2 contingency tables, with a = o11, b = o21, c = o12, 
and d = o22, this resolves itself to

� In result
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Is |c3(H,E)| equal to χ2
01 by a coincidence?

� Now:





−
=

ationdisconfirm of case in  EHZEHA

onconfirmati of case in  EHZEHA
EHc

),(),(

),(),(
),(3










++
−

=−

++
−

=
¬

¬
−

=
ationdisconfirm of case in  

baca

bcad

H

EH

onconfirmati of case in  
dcca

bcad

H

EH

EHZ

))((
1

)P(

)|P(

))(()P(

)|P(
1

),(










++
−

=
−

¬−

++
−

=
−

−

=
ationdisconfirm of case in  

dcdb

bcad

H

EHH

onconfirmati of case in  
dbba

bcad

E

EHE

EHA

))(()P(1

)|P()P(

))(()P(1

)P()|P(

),(

55


