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Abstract
The paper presents visualization techniques for interestingness measures, which provide useful insights into different domain areas of
the visualized measure and thus effectively assist measure comprehension and their selection for KDD methods. Assuming a common,
4-dimensional domain form of the measures, the system generates a synthetic set of contingency tables and visualizes them in three
dimensions using a tetrahedron-based barycentric coordinate system. At the same time, an additional, scalar function of the data
(referred to as the operational function, e.g. any interestingness measure) is rendered using colour. Throughout the paper a particular
group of interestingness measures, known as confirmation measures, is used to demonstrate various capabilities of the visualization
techniques, which range from the determination of specific values (extremes, zeros, etc.) of a single measure, to the localization of
pre-defined regions of interest, e.g. such domain areas for which two/or more measures do not differ at all or differ the most.
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1. Introduction
Rapid progress in data mining and knowledge discovery
techniques has increased over the recent years our ability
to extract answers from data. Apparently, it influences in-
tense work on data visualization to improve our abilities
to present the information in meaningful ways. Data visu-
alization can provide graphical displays for thorough data
comprehension, it is thus natural that the development of
KDD tools is accompanied by the development of various
visualization techniques.

The paper presents visual techniques that support the
analysis of interestingness measures commonly used to
evaluate if-then rule mined from data (Fayyad et al., 2002).
The rule induction process usually requires an evaluation
step to limit the number of rules presented to the user and
quantitative measures of interest are often used for such
filtration. It is not easy, though, to choose an appropriate
measure for a particular application. To help to do so, our
techniques visualize the values obtained by a measure for
a synthetic data set consisting of an exhaustive and non-
redundant set of contingency tables. This way we gain a
valuable insight into all areas of the domain that the visu-
alized measure can possibly occupy.

The analyses facilitated by our MATLAB-based imple-
mentation of the techniques range from the determination
of measure’s extremes or the areas for which its value is
undefined, to the visualization of the areas of the data set
for which two or more measures differ the most. One could
then e.g. decide to work with a couple of measures that re-
act to different (types of) objects in the data set, or could
choose to use measures that are not ordinally equivalent.

Besides enriching our theoretical knowledge on the
features and the behaviour of the visualized measures, con-
clusions drawn on the basis of our visualization tool are
also very practical, as they guide the user towards an inter-
estingness measure (or measures) that best reflects his/her
expectations. Moreover, our tool eases defining new mea-
sures and facilitates the analysis of newly developed ones
(e.g. automatically generated).

In this paper, the exemplary application of our visualiza-
tion techniques is presented for a particular group of in-
terestingness measures called confirmation measures, de-
signed for the evaluation of decision rules, in the form of
“if E, then H”, with E referring to an existing piece of
evidence, and H referring to a hypothesised piece of evi-
dence.

The confirmation measures are characterised by the
fact that they obtain:

• values > 0 when the premise E of a rule confirms its
conclusion H ,

• values = 0 when the rule’s premise E and conclusion
H are neutral to each other,

• values < 0 when the premise E of a rule disconfirms
its conclusion H .

In the context of a particular data set, the relation between
E and H may be quantified with a 2× 2 contingency table
of non-negative frequencies a, b, c and d (see Table 1),
where:

• a counts objects satisfying both the premise and the
conclusion,

• b counts objects satisfying the premise but not the
conclusion,

• c counts objects satisfying the conclusion but not the
premise,

• d counts objects satisfying neither the premise nor the
conclusion.

Let us observe that a, b, c and d can be used to esti-
mate probabilities: e.g. the probability of the premise is
expressed as P (E) = (a + c)/n, the conditional proba-
bility of the conclusion given the premise is P (H|E) =
P (H ∩ E)/P (E) = a/(a + c), etc. Definitions of 6 pop-
ular confirmation measures (in terms of a, b, c and d) are
presented in Table 2.



Table 2: Popular confirmation measures

D(H,E) = P (H|E)− P (H) =
a

a + c
− a + b

n
(Eells, 1982)

M(H,E) = P (E|H)− P (E) =
a

a + b
− a + c

n
(Mortimer, 1988)

S(H,E) = P (H|E)− P (H|¬E) =
a

a + c
− b

b + d
(Christensen, 1999)

N(H,E) = P (E|H)− P (E|¬H) =
a

a + b
− c

c + d
(Nozick, 1981)

C(H,E) = P (E ∧H)− P (E)P (H) =
a

n
− (a + c)(a + b)

n2
(Carnap, 1962)

F (H,E) =
P (E|H)− P (E|¬H)

P (E|H) + P (E|¬H)
=

ad− bc

ad + bc + 2ac
(Kemeny and Oppenheim, 1952)

Table 1: A exemplary contingency table of the rule’s
premise E and conclusion H

H ¬H Σ
E a c a + c
¬E b d b + d
Σ a + b c + d n

The rest of the paper is organized as follows. Section 2.
demonstrates the proposed visualization techniques. Sec-
tion 3. presents the application of the visualization tech-
niques to popular confirmation measures defined in this
Introduction. Exemplary conclusions drawn from the
visualization-based analyses are also described. Final re-
marks and conclusions are contained in Section 4.

2. Visualization techniques
For the purpose of our visualization, a synthetic data set
consisting of an exhaustive and non-redundant set of con-
tingency tables has been prepared. Given a constant n > 0
(the total number of observations), it is generated as the set
of all possible [ a c

b d ] tables satisfying a + b + c + d = n.
The set thus contains exactly one copy of each such table.
The total number of contingency tables t in the set is given
by t = (n+ 1)(n+ 2)(n+ 3)/6. We use n = 64 (and thus
t = 47905) in all further computations and visualizations.
The resulting data set comprises t rows and 4 columns:
a, b, c and d. Because, in general, four independent
columns correspond to four degrees of freedom, visual-
ization of such data in the form of a scatter-plot would
formally require four dimensions. Owing to the condi-
tion a + b + c + d = n, however, the number of degrees
of freedom is reduced to three, so it is possible to visual-
ize such data in three dimensions (3D) using tetrahedron-
based barycentric coordinates (Warren, 2003).

The 3D view of the tetrahedron, as used throughout the
paper (and referred to as the standard view), has its four
vertices A, B, C and D coinciding with points of the fol-
lowing [x, y, z] coordinates: A: [1, 1, 1], B: [−1, 1,−1],
C: [−1,−1, 1] and D: [1,−1,−1]. The combination of
viewing angles (azimuth, elevation) in the standard view is

(−35 ◦, 22 ◦). It is accompanied by a rotated view, viewing
angles (145 ◦, 22 ◦), which depicts the DAB face of the
tetrahedron (not visible in the standard view). The com-
bination of these views will be collectively referred to as
the 3D 2-view visualization of the tetrahedron. The inter-
pretation of the tetrahedron points is as follows: the vertex
A corresponds to the (single) contingency table satisfying
a = n and b = c = d = 0, the edge AB corresponds to
the (multiple) contingency tables satisfying a + b = n and
c = d = 0, the face ABC corresponds to the (multiple)
contingency tables satisfying a+ b+ c = n and d = 0, etc.

Because the individual points of the tetrahedron may
be displayed in colour, it is possible to visualize a function
f(a, b, c, d) of the four arguments, further referred to as the
operational function (e.g. any interestingness measure). It
is additionally assumed that the value set of this function
is a real interval [r, s], with r < s, so that its values may
be rendered using a pre-defined colour map. The standard
colour map1 used in the following visualizations is: from
dark blue (corresponding to r), through pale green, up to
dark brown (corresponding to s). Non-numeric values, i.e.
+∞, NaN and −∞, if generated by a particular function,
may be rendered as colours not occurring in the map.

Notice that the 3D visualization of a ‘solid’ tetrahedron
shows only extreme values of the arguments of the visu-
alized function (external view). If areas located strictly
inside the tetrahedron have to be additionally visualized,
various variants of the visualization may be generated (in-
ternal views).

Summarizing, the capabilities of the visualization tech-
niques include:

• regular views of any operational function,

• specialized views of a region of interest, i.e.
only points satisfying pre-defined conditions, e.g.
f(a, b, c, d) = 0, of any operational function,

1Owing to the printing restrictions, the standard colour map
had to be substituted with a grey colour map, with black and
white corresponding to −1 to +1, respectively. Additionally, to
increase the clarity of the presentation, some values have been
depicted with special characters (‘+’, ‘∗’, etc.).



• specialized views of any number of operational func-
tions

– differences between two operational functions,
– variances/means of a number of operational

functions.

3. Application of the visualization
techniques

3.1. Regular views of confirmation measures
Taking particular confirmation measures as operational
functions, the regular views of the measures may be used to
practically compare their general configurations of values
and gradient profiles. Consider exemplary external visual-
izations of measures S(H,E), C(H,E) and F (H,E), as
presented2 in Figures 1, 2 and 3. Such visualizations po-
tentially allow to instantly notice fundamental differences,
e.g. between their gradient profiles. Observe that in all
their faces measures S(H,E) and C(H,E) manifest ‘ra-
dial’ and ‘concentric’ gradients, respectively, while mea-
sure F (H,E) is characterized by constant values (and thus
no gradient) in two faces (ABD and BCD) and a ‘ra-
dial’ gradient in the other two. Such visual analyses al-
low to tentatively conclude about the ordinal equivalence
of the visualized measures, an especially important issue
in evaluating rules with multiple measures. In the case
of S(H,E), C(H,E) and F (H,E) the different gradient
profiles in the external areas of the corresponding tetrahe-
drons constitute conclusive counterexamples to the ordinal
equivalence of those measures. In general, however, this
kind of equivalence analysis may require an insight into
the interior of the tetrahedron.

3.2. Specialized views of regions of interest
In their analyses of the confirmation measures, users may
be interested in discovering regions for which the con-
sidered measures satisfy some pre-defined conditions, e.g.
c(H,E) = 0 (the neutral value) or c(H,E) = +1 (the
maximal value). Supporting the user with such specialized
views is important for at least two reasons: it allows to test
for the existence of such regions and to identify the local-
izations of these regions within the tetrahedron, translating
them uniquely to particular values of a, b, c and d.

Figure 4 depicts3 regions for which |C(H,E)| = 0.5.
Notice the full symmetry of these regions (coinciding with
edges BC and AD, while avoiding the other edges).

Other exemplary regions of interest are presented in
Figure 5. It depicts both extreme (−1 and +1) and non-
numeric values (NaN ) of measure N(H,E). Notice that
the non-numeric values exist in two disjoint localizations,
i.e. in edges AB and CD in the tetrahedron (depicted with
‘+’ character). The same concerns the extreme values: −1
in edge BC (depicted with ‘o’ character) and +1 in edge
AD (depicted with ‘∗’ character).

2Edges AC and BD for S(H,E) and edges AB, BD and
CD for F (H,E) contain undefined values (NaN ); the colours
used for printing cannot reflect this fact.

3The grey colour map is used only to provide the necessary
perspective; the colours do not translate to values of the measure
(which are constant in this case).

3.3. Specialized views of differences between
confirmation measures

As the set of available measures is considerable, the prac-
titioners must match measures to particular applications.
To guide them in the process, our visualization techniques
provide specialized views allowing to identify arguments
(i.e. values of a, b, c and d) for which two given measures
differ only insignificantly (similarity of the measures) or
differ considerably (dissimilarity of the measures). Analo-
gous visualizations may be constructed for groups of mea-
sures, with the variance used instead of simple difference.

Consider measures D(H,E) and M(H,E). Figure 6
shows4 a view of the interior of the difference D(H,E)−
M(H,E). Observe that D(H,E) exceeds M(H,E) most
in the vicinity of the C vertex, while M(H,E) exceeds
D(H,E) most in the vicinity of the B vertex.

4. Conclusions
The paper presents visualization techniques for interesting-
ness measures, which provide practical insights into dif-
ferent details of the analysed measures. The originally
4-dimensional arguments of the measures are effectively
represented in 3D using a tetrahedron-based barycentric
coordinate system, with values of any operational function,
e.g. an interestingness measure, rendered as colour.

The visual analyses are especially useful since they al-
low to instantly detect and localize interesting character-
istics of the measures (extreme values, zeros, etc.), which
would otherwise have to be laboriously derived from the
analytic definitions of the measures. The implementation
of the presented techniques is particularly capable of visu-
alizing: single interestingness measures, regions of inter-
est, i.e. only arguments satisfying pre-defined conditions,
differences between pairs of measures or variances of sets
of measures. Exemplary applications of the techniques are
presented and discussed in detail for a particular group of
popular confirmation measures.
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Figure 1: A 3D 2-view regular visualization of S(H,E)
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Figure 2: A 3D 2-view regular visualization of C(H,E)
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Figure 3: A 3D 2-view regular visualization of F (H,E)
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Figure 4: A 3D 2-view specialized visualization of |C(H,E)| = 0.5 regions
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Figure 5: A 3D 2-view specialized visualization of extreme/non-numeric values of N(H,E)
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Figure 6: A 3D 2-view specialized visualization of the interior of D(H,E)−M(H,E)


