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Group decision making by voting 

 In democracy most decisions are made in groups or by the community 

 Voting is a possible way to make the decisions 

 Allows large number of decision makers 

 All DMs are not necessarily satisfied with the result 

 The size of the group doesn’t guarantee the quality of the decision 

 Competence and expertise are not always taken into account 
(one person = one vote) 
 



Voting - a social choice 

 n alternatives  x1, x2, …, xn 

 k voters – decision makers DM1, DM2, …, DMk 

 each DM has preferences for the alternatives 

 which alternative the group should choose? 



Social choice rule - SCR 

 Preference of a single voter is expressed as a ranking of alternatives 
(the ranking may not be complete), e.g., the preference profile: 

 DM1:  A > B > C 

 DM2:  B > C > A 

 DM3:  C > B > A 

 Social choice rule (SCR) aggregates the preference profiles into  
a social outcome, i.e., ranking indicating the winner (ties allowed) 

 Examples: political and corporate elections, selection of employees, 
selection of projects, competition for grants, family vote for vacation, 
etc. 

 SCR is imposing a voting rule 

4 



 Plurality rule : each voter has one vote; the alternative that was 
ranked first by the greatest number of voters is the winner: 

3: A > B > C 
1: A > C > B 
3: B > C > A 
2: C > B > A 

  Decision: 4 for A, 3 for B, 2 for C – A is the winner 

 This is the only rule that is: 

 anonimous – each vote has the same value, 
 neutral – labels of alternatives do not influence the ranking, 
 monotonic – if a voter improves the rank of alternative x, which 

is a winner, then x remains the winner 

 Examples: Great Britain, USA, Kanada, Kenia, Iran, Kuweit, Nepal, 
Singapore, South Korea, … – 40 countries in total 

Plurality rule  



Antiplurality rule and approval voting 

 Antiplurality rule : each but the last alternative in individual rankings 
is awarded: 

3: A > B > C  (the ranking may not be complete) 
1: A > C 
3: B > C > A 
2: C > B > A 

  Decision: 4 for A, 8 for B, 5 for C – B is the winner 

 Approval voting: each voter votes for a subset of alternatives; each 
alternative from a given subset gets one point; the alternative with 
the greatest number of points is the winner: 

4: A 
3: B, C 
2: C 
Decision: 4 for A, 3 for B, 5 for C – C is the winner 

 Examples: conclave (1294-1621), general secretary of UN 
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 Examples: conclave (1294-1621), general secretary of UN 

DM1  DM2  DM3  DM4  DM5  DM6  DM7  DM8  DM9   total 

A 

B 

C 

X       -       -        X      -        X       -       X         -       4    

X      X      X       X     X        X      -        X        -        7 

-        -       -         -      -          -       X        -        X       2 

the winner 



Run-off election 

 Plurality run-off :  the winner must get over 50% of the votes;  
if the condition is not met, keep only two best alternatives and repeat 
the voting: 

4: A > B > C 
3: B > C > A 
2: C > B > A 
Decision: 4 for A, 3 for B, 2 for C – none got 50%, keep A, B 
4: A > B 
3: B > A 
2: B > A 
Decision: 4 for A, 5 for B – B is the winner 

 Examples: presidential elections in Poland, France, Brazil, Portugal, 
Ukraine, … 



Run-off election 

 Single transferable vote:  the winner must get over 50% of the votes;  
if the condition is not met, eliminate one alternative with the lowest 
number of votes and repeat the voting; continue until conclusion: 

5: A > B > C > D 
7: B > D > C > A 
7: C > B > A > D 
4: D > C > B > A 

Stage 1: 5 for A, 7 for B, 7 for C, 4 for D – none got 50%, remove D 
5: A > B > C 
7: B > C > A 
7: C > B > A 
4: C > B > A 

Stage 2: 5 for A, 7 for B, 11 for C – none got 50%, remove A 
5: B > C 
7: B > C 
7: C > B 
4: C > B 

Stage 3: 12 for B, 11 for C – B is the winner 
 Examples: presidential election in Australia and New Zealand 



Some paradoxes  (1/2) 

 Winner-turns-loser paradox:  the winner may become loser if some 
voters increase its rank: 

27: A > B > C 
42: C > A > B 
24: B > C > A 
Plurality run-off: in stage 1, keep A and C, then C beats A 66:27 

Assume that 4 voters improved the rank of C from 3rd to 1st: 
23: A > B > C 
46: C > A > B 
24: B > C > A 
Plurality run-off: in stage 1, keep B and C, then B beats C 47:46 
even if C got an additional support 



Some paradoxes  (2/2) 

 No-show paradox:  alternative that did not win until now, becomes 
the winner after adding additional votes where it is ranked the last: 

23: A > B > C 
46: C > A > B 
24: B > C > A 
Plurality run-off: in stage 1, keep B and C, then B beats C 47:46  

Assume that 42 additional voters vote: A > B > C 
65: A > B > C 
46: C > A > B 
24: B > C > A 
Plurality run-off: in stage 1, keep A and C, then C beats A 70:65 
even if C was ranked the last in 42 additional votes 



Jean Condorcet (1743-1794) – Condorcet rule 

 Each pair of alternatives is compared 

 The alternative which is the best in all comparisons is the winner 

 There may be no solution 

Consider alternatives  A, B, C, 33 voters and the following voting result 

A 

B 

C 

   A     B     C 

  - 18,15 18,15 

15,18      - 32,1 

15,18 1,32     - 

  A  is  better than  B  by 18:15, 

   and better than C by 18:15 

   ⇒ A  is the Condorcet winner 

  Similarly,  C  is the Condorcet loser 



Jean Condorcet (1743-1794) – Condorcet rule 

 Example 1:   

1: B > C > A > D    
1: D > A > C > B 
1: A > C > B > D 
 

  A  is the winner 
  D  is the loser 

 Example 2:   

1: B > C > D > A    
1: D > A > C > B 
1: A > C > B > D 

There is no Condorcet 
winner 

vs. A B C D 
A - 2,1 2,1 2,1 
B 1,2 - 1,2 2,1 
C 1,2 2,1 - 2,1 
D 1,2 1,2 1,2 - 

vs. A B C D 
A - 2,1 2,1 1,2 
B 1,2 - 1,2 2,1 
C 1,2 2,1 - 2,1 
D 2,1 1,2 1,2 - 



The Condorcet  paradox 

 Consider the following comparison of the three alternatives 

1: A > B > C    
1: B > C > A 
1: C > A > B 
 
 
 
 
 
 
 
 

 The paired comparisons are cycling: A > B > C > A 

 

Paired comparisons: 

 A is preferred to B (2-1) 

 B is preferred to C (2-1) 

 C is preferred to A (2-1) 

Every alternative  
has a supporter! 

vs. A B C 
A - 2,1 1,2 
B 1,2 - 2,1 
C 2,1 1,2 - 



Escaping the Condorcet paradox 

 Pairwise voting in a given order: 

1) (A-B) ⇒ A wins,  (A-C) ⇒ C is the winner 

2) (B-C) ⇒ B wins,  (B-A) ⇒ A is the winner 

3) (A-C) ⇒ C wins,  (C-B) ⇒ B is the winner 

The voting result depends on the pairing order 

DM1   DM2   DM3 
A 
B 
C 

  1        3       2 
  2        1       3 
  3        2       1 

vs. A B C 
A - 2,1 1,2 
B 1,2 - 2,1 
C 2,1 1,2 - 



Strategic voting in case of known voting order 

 DM1 knows the preferences of the other voters and the voting order 
(A-B, B-C, A-C)  

 The favourite A of DM1 cannot win*  

 If DM1 votes for B instead of A in the first round 

 B is the winner 

 DM1 avoids the least preferred alternative C 

* If DM2 and DM3 vote according to their preferences 

DM1   DM2   DM3 
A 
B 
C 

  1        3       2 
  2        1       3 
  3        2       1 

vs. A B C 
A - 2,1 1,2 
B 1,2 - 2,1 
C 2,1 1,2 - 

vs. A B C 
A - 1,2 1,2 
B 2,1 - 2,1 
C 2,1 1,2 - 

DM1   DM2   DM3 
A 
B 
C 

  2        3       2 
  1        1       3 
  3        2       1 



In case there is no Condorcet winner 

 Copeland rule : the alternative for which the difference between  
the number of won and the number of lost pairwise comparisons 
with other alternatives is the greatest, is the winner: 

 

31 : A > E > C > D > B 
30 : B > A > E > C > D 
29 : C > D > B > A > E 
10 : D > A > B > C > E 

 
 
 

 Decision: A (won 3, lost 1), B (2 vs. 2), C (2 vs. 2), D (1 vs. 3),  

E (2 vs. 2) – Copeland winner: A 

vs. A B C D E 
A - 41,59 71,29 61,39 100,1 
B 59,41 - 40,60 30,70 69,31 
C 29,71 60,40 - 90,10 39,61 
D 39,61 70,30 10,90 - 39,61 
E 0,100 31,69 61,39 61,39 - 



In case there is no Condorcet winner 

 Kemeny rule : among all permutations, choose the ranking being  
the closest to the voters’ profiles, i.e. maximizing the total number 
of concordant pairwise comparisons: 

7 : M > W > B 
9 : W > B > M 
4 : B > M > W 
Kemeny number of concordant pairwise comparisons: 
M W B : (M vs. W = 11) + (M vs. B = 7) + (W vs. B = 16) = 34 
M B W : (M vs. B = 7) + (M vs. W = 11) + (B vs. W = 4) = 22 
W M B : (W vs. M = 9) + (W vs. M = 16) + (M vs. B = 7) = 32 
W B M : (W vs. B = 16) + (W vs. M = 9) + (B vs. M = 13) = 38 
B M W : (B vs. M = 13) + (B vs. W = 4) + (M vs. W = 11) = 28 
B W M : (B vs. W = 4) + (B vs. M = 13) + (W vs. M = 9) = 26 

 Decision: W > B > M 

vs. M W B 
M - 11 7 
W 9 - 16 
B 13 4 - 
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In case there is no Condorcet winner 

 Maxmin rule : rank the alternatives in the order of decreasing 
minimum numbers of pairwise comparisons being won by them: 

7 : M > W > B 
9 : W > B > M 
4 : B > M > W 

 

 

 Let  score(X,Y) be the number of voters who prefer X over Y 

winner = argmaxX(minYscore(X,Y)) 

 Decision: W > M > B 

vs. M W B min 
won 

M - 11 7 7 
W 9 - 16 9 
B 13 4 - 4 



In case there is no Condorcet winner 

 Coombs rule : similar to single transferable vote;  
eliminate the alternative which is ranked last by the greatest 
number of voters, until one remaining alternative gets over 50%  
of votes: 

7 : M > W > B 
9 : W > B > M 
4 : B > M > W 

 

 Example: choice of the host of olympic games 

Stage 1: eliminate M 

Stage 2: eliminate B, W is the winner 



Jean-Charles de Borda (1733-1799) – Borda rule 

 Each DM gives n-1 points to the most preferred alternative,  
n-2 points to the second most preferred, …, and 0 points  
to the least preferred alternative 

 The alternative with the highest total number of points is the winner 

 An example: 3 alternatives, 9 voters 

4 states that A > B > C 

3 states that B > C > A 

2 states that C > B > A 

A : 4·2 + 3·0 + 2·0 =  8 votes 

B : 4·1 + 3·2 + 2·1 = 12 votes 

C : 4·0 + 3·1 + 2·2 = 7 votes  

B  is the Borda winner 



Generalization of Borda rule 

 Positional scoring rule : 

• Vector of position scores:  s = <s1, s2, …, sn>,  
where  s1 ≥ s2 ≥ … ≥ sn 

• Borda rule:   <n-1, n-2, …, 0> 

• Plurality rule:   <1, 0, …, 0> 

• Antiplurality rule:   <1, …,1, 0> 

 Baldwin rule : in consecutive stages, eliminate the alternative with 

the worst Borda score:  

7 : M > W > B 
9 : W > B > M 
4 : B > M > W 

  

Stage 1: M=18, W=25, B=17, eliminate B 

Stage 2: M=11, W=9, M is the winner 

Ranking:  M > W > B 



Allocating seats in party-list proportional representation 

 D'Hondt method (Poland, Austria, Finland, Israel, Spain, Netherlands) : 

 divide the number of obtained votes by natural numbers, n=1,2,3,… 

 

 

 

 

 

 if s is the number of seats, order s results of the division according 
to decreasing values: 

     360(B), 240(A), 180(B), 150(C), 120(B), 120(A), 90(B), 80(A) 

 assign to party X as many seats as the number of times X appears 

in the above order: 
 in case of tie, take the party with the greatest number of votes,  

and then with the greatest number of winning electoral districts 

B = 4 seats,  A = 3 seats,  C = 1 seat 

party: A B C 
n=1 240 360 150 
n=2 120 180 75 
n=3 80 120 50 
n=4 60 90 37.5 
n=5 48 72 30 

The number of seats to be shared 

s=8 



Allocating seats in party-list proportional representation 

 Sainte-Laguë method (Norway, Sweden, Danmark, Bosnia, Latvia, 
Kosowo, Germany, New Zealand, Poland in 2001) : 

 divide the number of obtained votes by odd numbers, n=1,3,5,… 

 

 

 

 

 if s is the number of seats, order s results of the division according 
to decreasing values: 

     360(B), 240(A), 150(C), 120(B), 80(A), 72(B), 51.43(B), 50(C) 

 assign to party X as many seats as the number of times X appears 

in the above order: B = 4 seats,  A = 2 seats,  C = 2 seats 

party: A B C 
n=1 240 360 150 
n=3 80 120 50 
n=5 48 72 30 
n=7 34.28 51.43 21.43 

The number of seats to be shared 

s=8 



Coalitions 

 If the voting procedure is known voters may form coalitions  
that serve their purposes 

 Eliminate an undesired alternative 

 Support a commonly agreed alternative 



Weak preference order 

 The opinion of the DMi about two alternatives is called  
a weak preference order Ri: 

 The DMi thinks that x is at least as good as y  ⇔  x Ri y  (outranking) 

 

 How the collective preference R should be determined when there 
are k decision makers? 

 What is the social choice function f that gives R=f(R1,…,Rk)? 

 Voting procedures are potential choices for social choice functions 



Requirements on the social choice function (1/2) 

1) Non trivial 

 There are at least two DMs and three alternatives 

 

2) Complete and transitive Ri’s 

 If x ≠ y ⇒ x Ri y  ∨  y Ri x  (i.e. all DMs have an opinion) 

 If x Ri y ∧ y Ri z ⇒ x Ri z 

 

3) f is defined for all Ri’s 

 The group has a well defined preference relation, regardless of   
what the individual preferences are 



Requirements on the social choice function (2/2) 

4) Independence of irrelevant alternatives 

     The group’s choice doesn’t change if we add an alternative that is 

 considered inferior to all other alternatives by all DMs, or  

 is a copy of an existing alternative 

 

5) Pareto principle 

 If all group members prefer x to y, the group should choose the 
alternative x 

 

6) Non dictatorship 

 There is no DMi such that x Ri y ⇒ x R y 



Arrow’s theorem      (Kenneth Arrow, 1921-) 
                   Nobel Prize 1972 

There is no complete and transitive  
social choice function f  

satisfying the conditions 1-6 



Arrow’s theorem - an example 

Borda voting procedure: 

                  DM1             DM2              DM3             DM4            DM5          total 
        x1 3 3 1 2 1                10 

        x2 2 2 3 1 3                11 

        x3 1 1 2 0 0                 4 

        x4 0 0 0 3 2                 5 

Suppose that DMs’ preferences do not change.  
A ballot between the alternatives 1 and 2 gives 

                  DM1             DM2              DM3             DM4            DM5          total 
        x1 1 1 0 1 0                3 

        x2 0 0 1 0 1                2 

The fourth condition is not satisfied! 

Alternative x2 
is the winner! 

Alternative x1 
is the winner! 



Value (utility) aggregation (1/2) 

Theorem (Harsanyi [1994 Nobel Prize] 1955, Keeney 1975): 

Let vi(·) be a measurable marginal value function describing  
the preferences of DMi. There exists a k-dimensional  
differentiable function vg() with positive partial derivatives 
describing group preferences >g in the definition space,  
such that  

a >gb  ⇔  vg[v1(a),…,vk(a)] ≥ vg[v1(b),…,vk(b)] 
and  conditions 1-6 are satisfied. 



Value aggregation (2/2) 

 In addition to the weak preference order also a cardinal scale 
describing the strength of the preferences is required 

 

 

 

 

 

 

 

 Value function describes also the strength of the preferences 

Value 

beer 

1 

wine tea 

Value 

beer 

1 

wine tea 

DM1: beer > wine > tea DM2: tea > wine > beer 



Problems in value aggregation 

 There is a function describing group preferences but it may be difficult 
to define in practice 

 Comparing the values of different DMs is not straightforward 

 Solution: 

 Each DM defines her/his own value function 

 Group preferences are calculated as an aggregate (weighted sum?) 
of the individual preferences 

 Unequal or equal weights?  

 Should the chairman get a higher weight 

 Group members can weight each others’ expertise 

 Defining the weight is likely to be politically difficult (e.g. in EU) 

 Are the DMs preferentially independent?  

 Use more complex aggregation models – loose in transparency? 
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