NUMERICAL METHODS

EX. 1. Complete the sentence. A Floating-point number is coded with using three elements: \qquad
\qquad and \qquad

EX. 2. Complete the name of elements defined below. The value of the floating-point number is computed with using the equation $x=s \mathbf{2}^{\mathbf{a}} \mathbf{f p}$, where:
a) $\mathrm{s}-$ \qquad
b) a- \qquad
c) $\quad \mathrm{fp}-$ \qquad
EX. 3. Represent below numbers with using floating-point numbers coding (*4-6):
$\underline{0,8}$
-2
1,75
-5
0,3
$\underline{9}$

EX. 4. Define the equation of a binary coding of the floating point $b_{1} b_{2} b_{3} . . b_{t}$:

$$
f p=
$$

\qquad
EX. 5. Represent below floating points with using 5bits binary coding (*4-6):
5/8
13/32
11/16
3/4
22/32
3/16

EX. 6. Define the equation which can be used to calculate an approximated value of the $\mathbf{e}^{\mathbf{x}}$ function:

$$
\mathbf{e}^{\mathrm{x}}=
$$

\qquad
EX. 7(*). Write a program with recurrence version of function which will be used to compute the approximated value of the $\mathbf{e}^{\mathbf{x}}$ function assumed that the computation of the Taylor equation will be held to strict value defined as input parameter (not infinity) - example: e^{x} and $\mathrm{x}=3=>\mathrm{e}^{3}=1+\left(3^{1} / 1!\right)+\left(3^{2} / 2!\right)+\left(3^{3} / 3!\right)$ (hint: $n=x$).

EX. 8. Write a program with recurrence version of function numberOfDigits that computes the number of digits of the natural number defined as input parameter.
ZAD. 9. Write a program with recurrence version of function sumOfDigits that computes the sum of digits of the natural number defined as input parameter.

EX. 10. Write a program with recurrence version of function power that computes the value of exponentiation function a^{b} where a and b are natural numbers defined as input parameters.
EX. 11. Write a program with recurrence version of function multi that computes the multiplication of two natural numbers a, b defined as input with using the method of multiple addition.

EX. 12. Write a program with recurrence version of function gcd that computes the value of a greatest common divisor (GCD) of any two natural numbers given as an input with using Euclides algorithm defined below:

$$
\operatorname{gcd}(k, n)= \begin{cases}n & \text { dla } k=0 \\ \operatorname{gcd}(n \bmod k, k) & \text { dla. } k>0\end{cases}
$$

EX. 13. Write a program with recurrence version of function newton that computes the Newton symbol value which is described with equations defined below:

$$
\binom{n}{k}= \begin{cases}1 & \text { gdy } k=0 \text { lub } k=n \\ \binom{n-1}{k-1}+\binom{n-1}{k} & \text { gdy } 0<k<n\end{cases}
$$

EX. 14. Write a program with recurrence version of function legendre that computes the value of Legendre polynomial which is described with equations defined below:

$$
P_{n}(x)=\left\{\begin{array}{ccc}
1 & g d y & n=0 \\
x & g d y & n=1 \\
\frac{2 n+1}{n+1} x P_{n-1}(x) & -\frac{n}{n+1} P_{n-2}(x)
\end{array}\right.
$$

EX. 15. Write a program with recurrence version of function hermite that computes the value of Hermite polynomial for input, floating-point numbers which is described with equations defined below:

$$
H_{n}(x)=\left\{\begin{array}{c}
1 \quad g d y \quad n=0 \\
2 x \quad g d y \quad n=1 \\
2 x H_{n-1}(x)-2 n H_{n-2}(x)
\end{array}\right.
$$

EX. 16. (*) Let's assume that a company is known which exists in the market over 3 years. It is December and the manager of this particular company wants to check the idea to compute workers salaries for a new year taking into consideration the salaries average from last three years and inflation coefficient w. We need to held a few simulations to help the manager make the decision.

Write a program with recurrence version of function salary(s1, s2, s3, w, n) that computes the worker salary for n years (when $n=0$ the result should represent the worker salary at the beginning of new year, for $n=1$ result should represent the worker salary in the next year and so on) with assumption that the average worker salary for a current year is stored in the s1 input parameter, for a last year is stored in the s2 input parameter and finally the year average salary from two years ago is stored in the s3 input parameter. Input parameter w represents inflation coefficient, which for simplification will be the same in next n years (it is defined in the percentage scale - when $w=5$ it means that the inflation will be on the level of 5%).

