J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S. WĄSIK

NUMERICAL METHODS

EX. 1. Complete the sentence. A Floating-point number is coded with using three elements:,											
and											
 EX. 2. Complete the name of elements defined below. The value of the floating-point number is computed with using the equation x = s * 2^a * fp, where: a) s											
D)	a –,										
c)	fp –										
EX. 3. Represent below numbers with using floating-point numbers coding (*4-6):											
	<u>0,8</u>	<u>-2</u>	<u>1,75</u>	<u>-5</u>	<u>0,3</u>	<u>9</u>					
EX. 4. Define the equation of a binary coding of the floating point $b_1b_2b_3b_t$:											
fp =											
EX. 5. Represent below floating points with using 5bits binary coding (*4-6):											
	<u>5/8</u>	<u>13/32</u>	<u>11/16</u>	<u>3/4</u>	<u>22/32</u>	<u>3/16</u>					
EX. 6. Define the equation which can be used to calculate an approximated value of the e ^x function:											

e^x =

EX.	7(*).	Write	а	progran	ו with	recurrence	version	of	function	which	will	be	used	to	compute	the
appr	oximat	ed valu	ie d	of the e '	functi	on assumed	l that the	со	mputatior	n of the	Tayl	or e	equati	on ۱	will be hel	d to
strict value defined as input parameter (not infinity) – example: e^x and x=3 => e^3 =1+($3^1/1!$)+($3^2/2!$)+($3^3/3!$)																
(hint	: n = x)															

EX. 8. Write a program with recurrence version of function *numberOfDigits* that computes the number of digits of the natural number defined as input parameter.

ZAD. 9. Write a program with recurrence version of function *sumOfDigits* that computes the sum of digits of the natural number defined as input parameter.

EX. 10. Write a program with recurrence version of function *power* that computes the value of exponentiation function a^b where a and b are natural numbers defined as input parameters.

EX. 11. Write a program with recurrence version of function *multi* that computes the multiplication of two natural numbers *a*, *b* defined as input with using the method of multiple addition.

EX. 12. Write a program with recurrence version of function *gcd* that computes the value of a greatest common divisor (GCD) of any two natural numbers given as an input with using Euclides algorithm defined below:

$$\gcd(k,n) = \begin{cases} n & \text{dla } k = 0;\\ \gcd(n \bmod k,k) & \text{dla } k > 0. \end{cases}$$

EX. 13. Write a program with recurrence version of function *newton* that computes the Newton symbol value which is described with equations defined below:

$$\binom{n}{k} = \begin{cases} 1 & \text{gdy } k = 0 \text{ lub } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{gdy } 0 < k < n \end{cases}$$

EX. 14. Write a program with recurrence version of function *legendre* that computes the value of Legendre polynomial which is described with equations defined below:

$$P_{n}(x) = \begin{cases} 1 & gdy \quad n = 0 \\ x & gdy \quad n = 1 \\ \frac{2n+1}{n+1} x P_{n-1}(x) - \frac{n}{n+1} P_{n-2}(x) \end{cases}$$

ſ

EX. 15. Write a program with recurrence version of function *hermite* that computes the value of Hermite polynomial for input, floating-point numbers which is described with equations defined below:

$$H_{n}(x) = \begin{cases} 1 & gdy \quad n = 0\\ 2x & gdy \quad n = 1\\ 2xH_{n-1}(x) - 2nH_{n-2}(x) \end{cases}$$

EX. 16.(*) Let's assume that a company is known which exists in the market over 3 years. It is December and the manager of this particular company wants to check the idea to compute workers salaries for a new year taking into consideration the salaries average from last three years and inflation coefficient *w*. We need to held a few simulations to help the manager make the decision.

Write a program with recurrence version of function salary(s1, s2, s3, w, n) that computes the worker salary for n years (when n=0 the result should represent the worker salary at the beginning of new year, for n=1 result should represent the worker salary in the next year and so on) with assumption that the average worker salary for a current year is stored in the s1 input parameter, for a last year is stored in the s2 input parameter and finally the year average salary from two years ago is stored in the s3 input parameter. Input parameter w represents inflation coefficient, which for simplification will be the same in next n years (it is defined in the percentage scale – when w=5 it means that the inflation will be on the level of 5%).