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Motivations

Rank!

Learn an order relation on a high dimensional space, e.g. Rd

x � x ′ , for x , x ′ ∈ Rd

Drop logistic regression!

Alternative approach to parametric modeling of the posterior
probability

Less is more!

The statistical scoring problem...

... somewhere between classification and regression function
estimation



Predictive Ranking/Scoring

Training data: past data {X1, . . . ,Xn} in Rd and some feedback on
the ordering

Input: new data {X ′1, . . . ,X ′m} with no feedback

Goal: predict a ranking (X ′i1 , . . . ,X
′
im

) from best to worst

Our approach: build a scoring rule: s : Rd → R

Key question: when shall we be happy?

Answer: study optimal elements and performance metrics



Nature of feedback information

Preference model: label Z on pair (X ,X ′)

Plain regression: individual label Y over R

Bipartite ranking: binary classification data (X ,Y ), Y ∈ {−1,+1}

K -partite ranking: ordinal labels Y over {1, . . . ,K}, K > 2



Optimal elements
for statistical scoring

Bipartite case
[ Clémençon and V., IEEE IT, 2009 ]

K -partite case
[ Clémençon, Robbiano and V., MLJ, 2013 ]

Local AUC
[ Clémençon and V., JMLR, 2007 ]



Optimal elements for scoring (K = 2)

Probabilistic modeling: (X ,Y ) ∼ P over Rd × {−1,+1}

Key theoretical quantity (posterior probability)

η(x) = P{Y = 1 | X = x} , ∀x ∈ Rd

Optimal scoring rules:

⇒ increasing transforms of η (by Neyman-Pearson’s Lemma)



Representation of optimal scoring rules (K = 2)

Note that if U ∼ U([0, 1])

∀x ∈ Rd , η(x) = E (I{η(x) > U})

If s∗ = ψ ◦ η with ψ strictly increasing, then:

∀x ∈ Rd , s∗(x) = c + E (w(V ) · I{η(x) > V })

for some:
I c ∈ R,
I V continuous random variable in [0, 1]
I w : [0, 1]→ R+ integrable.

Optimal scoring amounts to recovering the level sets of η:

{x : η(x) > q}q∈(0,1)



Classical performance measures for scoring (K = 2)

Curve:

I ROC curve

Summaries (global vs. best
scores):

I AUC (global measure)
I Partial AUC

(Dodd and Pepe ’03)
I Local AUC

(Clémençon and Vayatis ’07)

ROC curves.
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Optimal elements (K > 2)

Recall for K = 2:

s∗ = T ◦ η = T̃ ◦
(

η

1− η

)
is optimal for any strictly increasing transform T (or T̃ ).

For K > 2, define an optimal element as s∗ by:

∀l < k , ∃Tl ,k strictly increasing such that:

s∗ = Tl ,k ◦
(
ηk
ηl

)
where ηk(x) = P(Y = k | X = x).



Counterexample for optimality with K = 3



Assumption (H1) - Monotonicity condition

For any 1 ≤ l < k ≤ K − 1, we have: for x , x ′,

ηk+1

ηk
(x) <

ηk+1

ηk
(x ′)⇒ ηl+1

ηl
(x) <

ηl+1

ηl
(x ′) (H1)

Sufficient and necessary condition for the existence of an optimal
scoring rule.

Then, the regression function

η(x) = E(Y | X = x) =
K∑

k=1

k · ηk(x)

is optimal.



Assess performance for K = 3 - ROC surface and VUS

α 

γ	  

ROC(S, α,	  γ)	  



Aggregation principle for scoring

Bipartite case
[ Clémençon, Depecker and V., JMLR, 2013 ]

K -partite case
[ Clémençon, Robbiano and V., MLJ, 2013 ]



Motivations

K > 2

Mimic multiclass classification strategies based on binary decision
rules (one vs. one, one against all, ...)

K = 2

Mimic bagging-like strategies for boosting performance and increase
robustness



Agreement with Kendall τ

Let X ,X ′ i.i.d.and s1 and s2 real-valued scoring rules :

τ (s1, s2) = P
{(

s1(X )− s1(X ′)
)
·
(
s2(X )− s2(X ′)

)
> 0
}

+
1

2
P
{
s1(X ) 6= s1(X ′), s2(X ) = s2(X ′)

}
+

1

2
P
{
s1(X ) = s1(X ′), s2(X ) 6= s2(X ′)

}
.

Define pseudo-distance between scoring rules:

dτ (s1, s2) =
1

2
(1− τ(s1, s2))



Median scoring rule

Weak scoring rules ΣN = {s1, . . . , sN}

Candidate class S for median scoring rule (aggregate)

Median scoring rule s̄ with respect to (S,ΣN):

N∑
j=1

dτ (s̄, sj) = inf
s∈S

N∑
j=1

dτ (s, sj)

(if the inf is reached).

Link with the AUC (K = 2):

| AUC(s1)−AUC(s2) |≤ 1

2p+p−
dτ (s1, s2)



Inverse control under low noise assumption (H2)

The posterior probability η(X ) is a continuous random variable and
there exist c <∞ and a ∈ (0, 1) such that

∀x ∈ Rd , E
[
|η(X )− η(x)|−a

]
≤ c . (H2)

Sufficient condition: η(X ) has bounded density function

Inverse control under (H2):

dτ (s, s∗) ≤ C (AUC∗ −AUC(s))a/(1+a)

for some C = C (a, c , p+).



Main results - Aggregation does not hurt!

K > 2

Aggregation permits to derive a consistent scoring rule for the
K -partite problem from consistent rules on the pairwise bipartite
subproblems.

K = 2

Aggregation of consistent randomized scoring rules preserves AUC
consistency .



The TreeRank algorithm

Plain TreeRank
[ Clémençon and V., IEEE IT, 2009 ]

Optimized TreeRank
[ Clémençon, Depecker and V., MLJ, 2011 ]

Aggregate TreeRank = Ranking Forests
[ Clémençon, Depecker and V., JMLR, 2013 ]



TreeRank - building ranking (binary) trees

Input domain [0, 1]d
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TreeRank - building ranking (binary) trees

Input domain [0, 1]d

A wiser option: use orthogonal splits!



Empirical performance of TreeRank

Gaussian mixture with orthogonal split

easy with overlap vs. difficult and no overlap
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TreeRank and the problem with recursive partitioning

The TreeRank algorithm:
I implements an empirical version of local AUC maximization procedure
I yields AUC- and ROC- consistent scoring rules (Clémençon-Vayatis ’09)

I boils down to solving a collection of nested optimization problems

Main goal:
I Global performance in terms

of the ROC curve

Main issue:
I Recursive partitioning not so

good when the nature of the
problem is not local

Key point: choice of a splitting rule for the AUC optimization step
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Nonlocal splitting rule - The LeafRank Procedure

Any classification method can be used as a splitting rule

Our choice: the LeafRank procedure

I Use classification tree with orthogonal splits (CART)
I Find optimal cell permutation for a fixed partition
I Improves representation capacity and still permits interpretability



Iterative TreeRank in action- synthetic data set

a. Level sets of the true regression function η.
b. Level sets of the estimated regression

function η.

c. True (blue) and Estimated (black) Roc Curve.



TreeRank in action!

Extended comparison
[ Clémençon, Depecker and V., PAA, 2012 ]



RankForest and competitors on UCI data sets (1)

Data sets from the UCI Machine Learning repository

I Australian Credit
I Ionosphere
I Breast Cancer
I Heart Disease
I Hepatitis

Competitors:
I AdaBoost (Freund and Schapire ’95)
I RankBoost (Freund et al. ’03)
I RankSvm (Joachims ’02, Rakotomamonjy ’04)
I RankRLS (Pahikkala et al. ’07)
I KLR (Zhu and Hastie ’01)
I P-normPush (Rudin ’06)



RankForest and competitors (2)



Local AUC
u = 0.5
u = 0.2 TreeRank RankBoost RankSVM
u = 0.1

0.425 (±0.012) 0.412 (±0.014) 0.404 (±0.024)

Australian Credit 0.248 (±0.039) 0.206 (±0.013) 0.204 (±0.013)

0.111 (±0.002) 0.103 (±0.011) 0.103 (±0.010)

0.494 (±0.062) 0.288 (±0.005) 0.263 (±0.044)

Ionosphere 0.156 (±0.002) 0.144 (±0.003) 0.131 (±0.024)

0.078 (±0.001) 0.072 (±0.003) 0.065 (±0.014)

0.559 (±0.010) 0.534 (±0.018) 0.537 (±0.017)

Breast Cancer 0.442 (±0.076) 0.265 (±0.012) 0.271 (±0.009)

0.146 (±0.010) 0.132 (±0.014) 0.137 (±0.012)

0.416 (±0.027) 0.361 (±0.041) 0.371 (±0.035)

Heart Disease 0.273 (±0.070) 0.176 (±0.027) 0.188 (±0.022)

0.118 (±0.017) 0.089 (±0.017) 0.094 (±0.011)

0.572 (±0.240) 0.504 (±0.225) 0.526 (±0.248)

Hepatitis 0.413 (±0.138) 0.263 (±0.115) 0.272 (±0.125)

0.269 (±0.190) 0.133 (±0.057) 0.137 (±0.062)



Perspectives

Nonparametric multivariate homogeneity tests

Application to experimental design

Statistical theory (rates of convergence? analysis of R-processes?)


