Preference Learning Stream @ EURO 2012

Preference elicitation for interactive learning of Optimization Modulo Theory problems

Andrea Passerini

Dipartimento di Ingegneria e Scienza dell'Informazione Università degli Studi di Trento, Italy

joint work with Paolo Campigotto and Roberto Battiti

Preference Learning Stream @ EURO 2012

I would like to build a house in a safe area, close to my parents and to the kindergarten, with a garden if there are no parks nearby. My maximum budget is 300,000 euro.

Preference MAX-SMT formulation elicitation for OMT problems Variable Description learning has garden x_1 Preference has park nearby Learning x_2 Stream @ **EUBO 2012** crime rate x_3 distance from parents x_{4} distance from kindergarten x_5 $w_1p_1 + w_2p_2 + w_3(p_3 \wedge p_4)$ client utility $\max_{\mathbf{x}}$ subj to: $price(\mathbf{x}) \leq 300000$ $p_1 = (\neg x_2 \Rightarrow x_1)$ $p_2 = (x_3 \le \theta_1)$ client $x_4 \ge \theta_4$ company const $p_3 = (x_4 < \theta_2)$ $x_5 \geq \theta_5$ const $p_4 = (x_5 \le \theta_3)$ hard constraints soft constraints

elicitation for OMT problems learning

Preference

- Satisfiability problem over *predicates* rather than *Boolean variables*
- Predicates defined over *theories* of interest (e.g. FOL, linear arithmetic)
- Solution requires truth assignment of predicates + consistent value of predicate variables (e.g. integer or real variables..)
- MAX-SMT extends SMT as MAX-SAT extends SAT (very recent research trend)

Preference Learning Stream @ EURO 2012

I would like to build a house in a safe area, close to my parents and to the kindergarten, with a garden if there are no parks nearby. My maximum budget is 300,000 euro.

Who is capable of such a precise and exhaustive explanation?

Preference Learning Stream @ EURO 2012

• exact problem formulation unknown (human DM)

- set of candidate *catalogue* features is available (the variables)
- set of candidate constraints over the features (combinations of **predicates**)
- True (unknown) utility is weighted sum of *few* constraints over *few* variables
- DM feedback as pairwise preferences btw solutions

- exact problem formulation unknown (human DM)
- set of candidate *catalogue* features is available (the variables)
- set of candidate constraints over the features (combinations of **predicates**)
- True (unknown) utility is weighted sum of *few* constraints over *few* variables
- DM feedback as pairwise preferences btw solutions

- exact problem formulation unknown (human DM)
- set of candidate *catalogue* features is available (the variables)
- set of candidate constraints over the features (combinations of **predicates**)
- True (unknown) utility is weighted sum of *few* constraints over *few* variables
- DM feedback as pairwise preferences btw solutions

- exact problem formulation unknown (human DM)
- set of candidate *catalogue* features is available (the variables)
- set of candidate constraints over the features (combinations of **predicates**)
- True (unknown) utility is weighted sum of *few* constraints over *few* variables
- DM feedback as pairwise preferences btw solutions

- exact problem formulation unknown (human DM)
- set of candidate *catalogue* features is available (the variables)
- set of candidate constraints over the features (combinations of **predicates**)
- True (unknown) utility is weighted sum of *few* constraints over *few* variables
- DM feedback as pairwise preferences btw solutions

Preference Learning Stream @ EURO 2012

Problem formulation

Catalogue features

- Set of features characterizing candidate solutions
- E.g. for housing problem

feature	Description	type
<i>X</i> ₁	house type	ord
<i>X</i> 2	garden	Bool
<i>X</i> 3	garage	Bool
<i>x</i> ₄	commercial facilities nearby	Bool
X 5	public green areas nearby	Bool
<i>x</i> ₆	distance from downtown	num
X 7	crime rate	num
<i>X</i> 9	public transit service quality index	num
<i>x</i> ₁₀	distance from parents house	num

Problem formulation

Preference elicitation for OMT problems learning

Preference Learning Stream @ EURO 2012

Possible predicates

- All predicates constructible from catalogue features
- E.g. for housing problem

predicate	Description	formula
p_1	has garden	<i>X</i> ₂
p_2	has garage	<i>X</i> 3
p_3	has park nearby	<i>X</i> 5
p_4	close to downtown	$x_6 < \theta_1$
p_5	low crime rate area	$x_7 < \theta_2$
p_6	high quality transit service	$x_8 > \theta_3$

Problem formulation

Preference elicitation for OMT problems learning

Preference Learning Stream @ EURO 2012

Possible constraints

- All constraints constructible from predicates
- E.g. for housing problem

predicate	Description	formula
<i>C</i> ₁	has garden	p_1
<i>C</i> ₂	garden if no park nearby	$ eg p_3 o p_1$
<i>C</i> ₃	good transportation	$ eg p_4 o p_6$
	if far from downtown	
<i>C</i> ₄	garage if high crime rate	$ eg p_5 ightarrow p_2$

Problem formulation

Preference elicitation for OMT problems learning

Preference Learning Stream @ EURO 2012

Feasible set

- The set of feasible solutions is defined by known hard constraints
- E.g. for housing problem

hard constraint

price $\leq \theta_1$ location-based taxes and fees $\leq \theta_2 =>$ *not* public green areas nearby crime rate $\leq \theta_4 =>$ downtown distance $\geq \theta_5$ working place distance + parents house distance $\geq \theta_6$ working place distance + high schools distance $\geq \theta_7$ parents house distance + high schools distance $\geq \theta_8$ garden => house type $\geq \theta_{13}$

Preference Learning Stream @ EURO 2012

User utility

- User utility is linear combination of (some) constraints
- We use polynomial mapping φ(**p**) from predicates to all products (i.e. conjunctions) of up to *d* predicates
- User utility formalized as:

$$f(\mathbf{p}) = \mathbf{w}^T \phi(\mathbf{p})$$

Note

• True (unknown) *f* extremely **sparse** (most weights should be zero)

Preference Learning Stream @ EURO 2012

Ranking task

- User feedback comes as ranking of candidate solutions
- Need feature sparsity: 1-norm regularization
- Dataset D of pairwise comparisons (**p**_i, **p**_j) (**p**_i better than **p**_j)
- Support vector ranking with 1-norm regularization:

$$\min_{\mathbf{w}} \sum_{(\mathbf{p}_i, \mathbf{p}_j): \mathbf{p}_i \prec \mathbf{p}_j} \left[1 - \mathbf{w}^T \left(\Phi(\mathbf{p}_i) - \Phi(\mathbf{p}_j) \right) \right]_+ + \lambda ||\mathbf{w}||_1$$

Preference Learning Stream @ EURO 2012

MAX-SMT problem

- A given utility *f* (+ hard constraints) defines a MAX-SMT problem
- Optimizing utility consists of solving the MAX-SMT problem
- Diversity should be injected to avoid premature convergence (utility is learned..)
 - E.g. re-optimize adding diversification constraints

Preference elicitation algorithm

Algorithm

- Select s random configurations
- Ask the DM for their ranking and initialize ${\cal D}$
- while (termination_criterion)
 - Learn ranking function as:

$$\min_{\mathbf{w}} \sum_{(\mathbf{p}_i, \mathbf{p}_j): \mathbf{p}_i \prec \mathbf{p}_j} \left[1 - \mathbf{w}^T \left(\Phi(\mathbf{p}_i) - \Phi(\mathbf{p}_j) \right) \right]_+ + \lambda ||\mathbf{w}||_1$$

- Optimize learned MAX-SMT and get s/2 new configs
- Ask the DM for their ranking and update ${\cal D}$
- return configuration optimizing the final MAX-SMT

Preference Learning Stream @ EURO 2012

Algorithm

- Select s random configurations
- Ask the DM for their ranking and initialize $\ensuremath{\mathcal{D}}$
- while (termination_criterion)
 - Learn ranking function as:

$$\min_{\mathbf{w}} \sum_{(\mathbf{p}_i, \mathbf{p}_j): \mathbf{p}_i \prec \mathbf{p}_j} \left[1 - \mathbf{w}^T \left(\Phi(\mathbf{p}_i) - \Phi(\mathbf{p}_j) \right) \right]_+ + \lambda ||\mathbf{w}||_1$$

- Optimize learned MAX-SMT and get s/2 new configs
- Ask the DM for their ranking and update ${\cal D}$
- return configuration optimizing the final MAX-SMT

Preference Learning Stream @ EURO 2012

Algorithm

- Select s random configurations
- Ask the DM for their ranking and initialize $\ensuremath{\mathcal{D}}$
- while (termination_criterion)

Learn ranking function as:

 $\min_{\mathbf{w}} \sum_{(\mathbf{p}_i, \mathbf{p}_j): \mathbf{p}_i \prec \mathbf{p}_j} \left[1 - \mathbf{w}^T \left(\Phi(\mathbf{p}_i) - \Phi(\mathbf{p}_j) \right) \right]_+ + \lambda ||\mathbf{w}||_1$

• Optimize learned MAX-SMT and get *s*/2 new configs

• Ask the DM for their ranking and update ${\cal D}$

return configuration optimizing the final MAX-SMT

Preference elicitation algorithm

Algorithm

- Select s random configurations
- Ask the DM for their ranking and initialize $\ensuremath{\mathcal{D}}$
- while (termination_criterion)
 - Learn ranking function as:

$$\min_{\mathbf{w}} \sum_{(\mathbf{p}_i, \mathbf{p}_j): \mathbf{p}_i \prec \mathbf{p}_j} \left[1 - \mathbf{w}^T \left(\Phi(\mathbf{p}_i) - \Phi(\mathbf{p}_j) \right) \right]_+ + \lambda ||\mathbf{w}||_1$$

- Optimize learned MAX-SMT and get s/2 new configs
- Ask the DM for their ranking and update $\ensuremath{\mathcal{D}}$
- return configuration optimizing the final MAX-SMT

Learning Stream @ FURO 2012

Algorithm

- Select *s* random configurations
- Ask the DM for their ranking and initialize $\ensuremath{\mathcal{D}}$
- while (termination_criterion)
 - Learn ranking function as:

$$\min_{\mathbf{w}} \sum_{(\mathbf{p}_i, \mathbf{p}_j): \mathbf{p}_i \prec \mathbf{p}_j} \left[1 - \mathbf{w}^T \left(\Phi(\mathbf{p}_i) - \Phi(\mathbf{p}_j) \right) \right]_+ + \lambda ||\mathbf{w}||_1$$

- Optimize learned MAX-SMT and get s/2 new configs
- Ask the DM for their ranking and update $\ensuremath{\mathcal{D}}$
- return configuration optimizing the final MAX-SMT

Preference elicitation algorithm

Algorithm

- Select s random configurations
- Ask the DM for their ranking and initialize $\ensuremath{\mathcal{D}}$
- while (termination_criterion)
 - Learn ranking function as:

$$\min_{\mathbf{w}} \sum_{(\mathbf{p}_i, \mathbf{p}_j): \mathbf{p}_i \prec \mathbf{p}_j} \left[1 - \mathbf{w}^T \left(\Phi(\mathbf{p}_i) - \Phi(\mathbf{p}_j) \right) \right]_+ + \lambda ||\mathbf{w}||_1$$

- Optimize learned MAX-SMT and get s/2 new configs
- Ask the DM for their ranking and update $\ensuremath{\mathcal{D}}$

return configuration optimizing the final MAX-SMT

Preference elicitation algorithm

Algorithm

- Select *s* random configurations
- Ask the DM for their ranking and initialize $\ensuremath{\mathcal{D}}$
- while (termination_criterion)
 - Learn ranking function as:

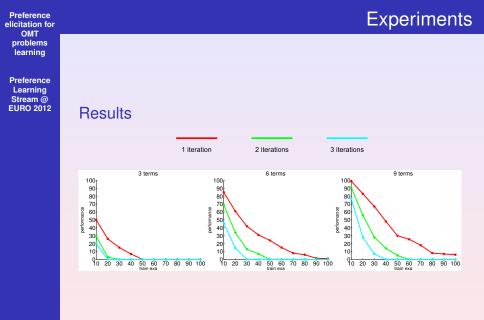
$$\min_{\mathbf{w}} \sum_{(\mathbf{p}_i, \mathbf{p}_j): \mathbf{p}_i \prec \mathbf{p}_j} \left[1 - \mathbf{w}^T \left(\Phi(\mathbf{p}_i) - \Phi(\mathbf{p}_j) \right) \right]_+ + \lambda ||\mathbf{w}||_1$$

- Optimize learned MAX-SMT and get s/2 new configs
- Ask the DM for their ranking and update $\ensuremath{\mathcal{D}}$
- return configuration optimizing the final MAX-SMT

Preference Learning Stream @ EURO 2012

Housing problem

- 15 features, 40 predicates, max term size 3, term weights in [1, 100].
- inaccurate feedback: (p = 0.1 of incorrect ranking)
- Evaluate by approximation error w.r.t. gold solution (found optimizing true utility)
- Experiments for growing number of terms (medians over 400 runs)



- · Fewest knowledge assumed on utility
- Simple feedback required to DM
- Handling of inaccurate feedback
- Large class of problems can be modelled

- lack of optimality guarantees
- small-scale problems (explicit mapping):
 - OK for human DM
 - can use implicit mapping (kernels) but :
 - lower results (no feature sparsity)
 - problems with tight SAT Theory solvers integration
- simple preference elicitation strategy
 - can try Bayesian approaches but need to retain feature sparsity