On the estimation of the parameters of Electre Tri model in multi criteria ordinal sorting problem: a proposal of new approach in two phases

Renato De Leonea
Valentina Minnettib

a University of Camerino (Italy),
b Sapienza University of Rome (Italy)

July 10, 2012, Vilnius, Lithuania

25th European Conference on Operational Research
The grouping problems may be divided into:

-- groups defined \emph{a posteriori} (clusters)

-- groups defined \emph{a priori} without preference info (classes)

-- groups defined \emph{a priori} with preference info (categories)

\begin{itemize}
 \item \textbf{Multiple Criteria Sorting Problem (MCSP)}

 Real world case studies of MCSP have been reported in the literature in various domains:

 \begin{itemize}
 \item evaluation of applicants for loans or grants ([Groleau \textit{et al.} 95], [Veilleux \textit{et al.} 96] and [Greco \textit{et al.} 98b])
 \item business failure risk assessment ([Dimitras \textit{et al.} 95], et al.)
 \item screening methods prior to project selection ([Anandalingam \textit{et al.} 89]),
 \item satellite shot planning ([Gabrel 94]),
 \item medical diagnosis ([Slowinski 92], [Tanaka \textit{et al.} 92]),
 \item transportation system
 \end{itemize}

 \begin{itemize}
 \item Marie Sawadogo, Didier Anciaux: Intermodal transportation within the green supply chain: an approach based on the Electre method - Laboratoire de Genie Industriel et de Production de Metz Universite Paul Verlaine, Ile du Saulcy, Metz Cedex 1, France
 \end{itemize}
\end{itemize}

\begin{itemize}
 \item \textbf{ELECTRE TRI method} (implemented in R 2.13)
\end{itemize}
Given a finite set of alternatives $A = \{a_1, a_2, \ldots, a_n\}$ the ordinal sorting problem consists in assigning each alternative to one of the p \textit{a priori} known categories, defined in ordinal way, such that $C_{h+1} > C_h$. They are limited by category tipical elements ('profiles') which play the role of reference central points (\textit{reference points}) between categories.

The assignment of an alternative a to one category results from the comparison of a with the profiles $b_1, b_2, \ldots, b_{p-1}$ defining the limits of the categories.

\textbf{Aim}: construct the relation S: “a outranks b_h” \iff “a is at least as good as b_h” \iff aSb_h
How to construct the outranking relation $S \ [2]$.

Electre Tri is pseudo-criteria based model.

Partial concordance index expresses how many a criterion g_i is agreed with the statement ' a is at least as good as b_h ' (aSb_h).

$$c_i(a, b_h) = \begin{cases}
0 & \frac{a - (b_h - p_h)}{p_h - q_h} \\
1 & 1 \\
0 & \frac{b_h + p_h - a}{p_h - q_h}
\end{cases} = c_i(b_h, a)$$

$$c(a, b_h) = \frac{\sum_{j=1}^{m} w_j \cdot c_j(a, b_h)}{\sum_{j=1}^{m} w_j}$$

global concordance index
Credibility Index $\sigma(a, b_h)$ provides the degree of credibility of the outranking relation S.

It is the synthesis of concordance and discordance indices, i.e. it corresponds to the global concordance index weakened by eventual veto effects.

W.A.L.G we assume no veto situations and then $\sigma(a, b_h) = c(a, b_h)$

from $\sigma(a, b_h)$ - fuzzy - [exploitation procedure] defuzzied using cutting level $\lambda \in [0,1]$ $\rightarrow aSb_h$ - crisp -

\[
\sigma(a, b_h) \begin{cases}
\geq \lambda & \rightarrow aSb_h \\
< \lambda & \rightarrow \neg aSb_h
\end{cases}
\]

\[
\sigma(b_h, a) \begin{cases}
\geq \lambda & \rightarrow b_hSa \\
< \lambda & \rightarrow \neg b_hSa
\end{cases}
\]

Assignment procedures:

pessimistic procedure: compare an alternative successively to profile b_h, $h = p - 1, p - 2, ..., 1$

b_h being the first profile such that aSb_h, then stop: $a \rightarrow C_{h+1}$

\[
\begin{cases}
\sigma(a, b_h) < \lambda & \Leftrightarrow \neg aSb_h \\
\sigma(a, b_{h-1}) \geq \lambda & \Leftrightarrow a \rightarrow C_h
\end{cases}
\]

optimistic procedure: compare an alternative successively to profile b_h, $h = 1, 2, ..., p - 1$

b_h being the first profile such that $b_h \succ a$, then stop: $a \rightarrow C_h$

\[
\begin{cases}
\sigma(a, b_h) < \lambda & \Leftrightarrow \neg aSb_h \\
\sigma(b_h, a) \geq \lambda & \Leftrightarrow a \rightarrow C_h
\end{cases}
\]
The Electre Tri model parameters are:

-- profiles \(b_h, \ h = 1, \ldots, p - 1\)

-- preference, indifference, veto thresholds \((p_h, q_h, v_h)\)

-- weights \(w_j, \ j = 1, \ldots, m\)

-- cutting level \(\lambda \in [0,1]\)

Mousseau & Slowinski [5] proposed a methodology in order to infer indirectly (rather than directly) the model's parameters through a certain form of regression on Assignment Examples (A.E.) which represent *olistic information* provided by DM. Inferring a form of knowledge from examples of DM's decisions is a typical approach of *artificial intelligence*.

Aim: to find model's parameters as compatible as possible with A.E. provided; in order to minimize the difference between Electre assignments and those given by DM, an optimization procedure is used (without veto situations)

\[a \rightarrow C_h \Rightarrow \begin{cases}
\sigma(a, b_h) < \lambda \\
\sigma(a, b_{h-1}) \geq \lambda
\end{cases} \]

It's realistic to assume that the DM prefers to provide some A.E. rather than to fix directly the used parameters values.
NLP problem to estimate profiles, thresholds (no veto), weights, λ-cut

$$\text{max } z = \alpha + \varepsilon \sum_{a_k \in A^*} (x_k + y_k) \quad \text{where } \alpha = \min_{a_k \in A^*} \{x_k, y_k\} \text{ and } \varepsilon > 0 \text{ small}$$

$$g_j (b_{h+1}) \geq g_j (b_h) + p_j (b_h) + p_j (b_{h+1}) \quad j = 1, \ldots, m \quad h = 1, \ldots, p - 1$$

$$p_j (b_h) \geq q_j (b_h) \quad j = 1, \ldots, m \quad h = 1, \ldots, p$$

$$\lambda \in [0.5, 1]$$

$$\alpha \leq x_k \quad \forall a_k \in A^*$$

$$\alpha \leq y_k \quad \forall a_k \in A^*$$

$$w_j \geq 0 \quad j = 1, \ldots, m$$

$$q_j (b_h) \geq 0 \quad j = 1, \ldots, m \quad h = 1, \ldots, p$$

$$\sum_{j=1}^{m} w_j \cdot c_j (a_k, b_{h-1})$$

\[
\frac{\sum_{j=1}^{m} w_j \cdot c_j (a_k, b_{h-1})}{\sum_{j=1}^{m} w_j} - x_k = \lambda \quad \forall a_k \in A^* \]

\[
\frac{\sum_{j=1}^{m} w_j \cdot c_j (a_k, b_{h-1})}{\sum_{j=1}^{m} w_j} + y_k = \lambda \quad \forall a_k \in A^* \]

Variables $= 2n + 1 + m + 3mp$

Constraints $= 4n + 3mp + 2$

Suggestions [5]: in the case of large problems, the use of metaheuristics in particular genetic algorithms are recommended

Not differentiable

Not convex

Variables $n = \# \text{ASS.E.}$

$\# \text{criteria} m$

$\# \text{profiles} p$
Illustrative example [5]

<table>
<thead>
<tr>
<th></th>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(g_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>70</td>
<td>64.75</td>
<td>46.25</td>
</tr>
<tr>
<td>(a_2)</td>
<td>61</td>
<td>62</td>
<td>60</td>
</tr>
<tr>
<td>(a_3)</td>
<td>40</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td>(a_4)</td>
<td>66</td>
<td>40</td>
<td>23.125</td>
</tr>
<tr>
<td>(a_5)</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>(a_6)</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

ASS.E.

\[a_1 \rightarrow C_3 \]
\[a_2 \rightarrow C_3 \]
\[a_3 \rightarrow C_2 \]
\[a_4 \rightarrow C_2 \]
\[a_5 \rightarrow C_1 \]
\[a_6 \rightarrow C_1 \]

Assignment Examples set (Training set)

Starting Point:

\[g_j (b_h) = \frac{1}{2} \left(\sum_{a_i \rightarrow C_h} g_j(a_i) \frac{n_h}{n_{h+1}} + \sum_{a_i \rightarrow C_{h+1}} g_j(a_i) \frac{n_{h+1}}{n_h} \right) \]

Heuristic Rule

<table>
<thead>
<tr>
<th></th>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(g_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_1)</td>
<td>35.25</td>
<td>31.25</td>
<td>23.65</td>
</tr>
<tr>
<td>(b_2)</td>
<td>59.25</td>
<td>62.75</td>
<td>41.60</td>
</tr>
<tr>
<td>(q_1)</td>
<td>1.762</td>
<td>1.563</td>
<td>1.376</td>
</tr>
<tr>
<td>(q_2)</td>
<td>2.960</td>
<td>2.710</td>
<td>2.080</td>
</tr>
<tr>
<td>(p_1)</td>
<td>3.525</td>
<td>3.125</td>
<td>2.813</td>
</tr>
<tr>
<td>(p_2)</td>
<td>5.925</td>
<td>5.419</td>
<td>4.160</td>
</tr>
</tbody>
</table>

\(w_j\)

\[w_j = 0.517 \]
\[1.000 \]
\[0.483 \]

\[\lambda = 0.629 \]
\[\alpha = 0.37 \]

NLP

\[b_1 \]
\[35.25 \]
\[31.25 \]
\[23.65 \]

\[b_2 \]
\[59.25 \]
\[62.75 \]
\[41.60 \]

\[q_1 \]
\[1.762 \]
\[1.563 \]
\[1.376 \]

\[q_2 \]
\[2.960 \]
\[2.710 \]
\[2.080 \]

\[p_1 \]
\[3.525 \]
\[3.125 \]
\[2.813 \]

\[p_2 \]
\[5.925 \]
\[5.419 \]
\[4.160 \]

\[w_j \]

\[0.517 \]
\[1.000 \]
\[0.483 \]

\[\lambda = 0.629 \]
\[\alpha = 0.37 \]

\[q_j (b_h) = 0.05 \cdot g_j (b_h) \]
\[p_j (b_h) = 0.10 \cdot g_j (b_h) \]

\[w_j = 1 \quad j = 1, 2, 3 \]

\[\lambda = 0.75 \]
\[a_4 \rightarrow C_1 \]
\[
q_j(b_h) = 0.05 \cdot g_j(b_h) \quad W.A.L.G.: \text{veto thresholds are not considered}
\]
\[
p_j(b_h) = 0.10 \cdot g_j(b_h)
\]
\[
v_j(b_h) = 0.20 \cdot g_j(b_h) \quad \sigma(a, b_h) = c(a, b_h) = \frac{\sum_{j=1}^{m} w_j \cdot c_j(a, b_h)}{\sum_{j=1}^{m} w_j}
\]

<table>
<thead>
<tr>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(g_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_j(a_1, b_2))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(c_j(a_2, b_2))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(c_j(a_3, b_2))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(c_j(a_3, b_1))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(c_j(a_4, b_2))</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(c_j(a_4, b_1))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(c_j(a_5, b_2))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(c_j(a_6, b_2))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(c_j(a_6, b_1))</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\left\{ \begin{array}{l}
\frac{w_1}{w_1 + w_2 + w_3} < \lambda \\
\frac{w_3}{w_1 + w_2 + w_3} < \lambda
\end{array} \right\} \Rightarrow \lambda > \max \left\{ \begin{array}{l}
\frac{w_1}{w_1 + w_2 + w_3}, \frac{w_3}{w_1 + w_2 + w_3}
\end{array} \right\}
\]

If \(w_3 < w_1\) \quad \frac{w_1}{w_1 + w_2 + w_3} < \lambda < 1; \quad \text{if instead} \quad w_3 > w_1 \quad \frac{w_3}{w_1 + w_2 + w_3} < \lambda < 1
Illustrative example [5]

<table>
<thead>
<tr>
<th></th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>70</td>
<td>64.75</td>
<td>46.25</td>
</tr>
<tr>
<td>a_2</td>
<td>61</td>
<td>62</td>
<td>60</td>
</tr>
<tr>
<td>a_3</td>
<td>40</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td>a_4</td>
<td>66</td>
<td>40</td>
<td>23.125</td>
</tr>
<tr>
<td>a_5</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>a_6</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

ASS.E.

- $a_1 \rightarrow C_3$
- $a_2 \rightarrow C_3$
- $a_3 \rightarrow C_2$
- $a_4 \rightarrow C_2$
- $a_5 \rightarrow C_1$
- $a_6 \rightarrow C_1$

Assignment Examples set (Training set)

Starting Point:

$$g_j(b_h) = \frac{1}{2} \left\{ \frac{\sum_{a_i \rightarrow C_h} g_j(a_i)}{n_h} + \frac{\sum_{a_i \rightarrow C_{h+1}} g_j(a_i)}{n_{h+1}} \right\}$$

Heuristic Rule

NLP

<table>
<thead>
<tr>
<th></th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>35.25</td>
<td>31.25</td>
<td>23.65</td>
</tr>
<tr>
<td>b2</td>
<td>59.25</td>
<td>62.75</td>
<td>41.60</td>
</tr>
<tr>
<td>q1</td>
<td>1.762</td>
<td>1.563</td>
<td>1.376</td>
</tr>
<tr>
<td>q2</td>
<td>2.960</td>
<td>2.710</td>
<td>2.080</td>
</tr>
<tr>
<td>p1</td>
<td>3.525</td>
<td>3.125</td>
<td>2.813</td>
</tr>
<tr>
<td>p2</td>
<td>5.925</td>
<td>5.419</td>
<td>4.160</td>
</tr>
<tr>
<td>w_j</td>
<td>0.517</td>
<td>1.000</td>
<td>0.483</td>
</tr>
</tbody>
</table>

$\lambda = 0.629$

$\alpha = 0.37$

$q_j(b_h) = 0.05 \cdot g_j(b_h)$
$p_j(b_h) = 0.10 \cdot g_j(b_h)$

$w_j \equiv 1 \quad j = 1, 2, 3 \quad \Rightarrow 0.33 < \lambda \leq 0.67 \quad a_4 \rightarrow C_2'$

$\lambda \approx 0.75$
How to estimate profiles? 2 ideas ...

--- Heuristic Rule ---

Centroid of category C_1 on criterion g_2

Centroid of category C_3 on criterion g_3

--- Equal Size Intervals ---

\[g_i^j = g_{i*} + \frac{j-1}{\alpha_i-1} (g_{i*}^j - g_{i*}) \]
Linear Programming (LP) problem to estimate profiles [10]

\[\min \ z = \sum_{j=1}^{m} \sum_{a_k \to C_h} \mathcal{G}_j(a_k) \quad \text{where} \quad \mathcal{G}_j(a_k) = \begin{cases} 0 & \text{se } g_j(a_k) \in [g_j(b_{h-1}); g_j(b_h)] \\ \text{diff}_j(a_k) & \text{se } g_j(a_k) \notin [g_j(b_{h-1}); g_j(b_h)] \end{cases} \]

\[g_j(b_h) > g_j(b_{h-1}) \quad \forall j = 1, ..., m, \forall h = 2, ..., p \]
\[\mathcal{G}_j(a_k) \geq 0 \quad \forall j = 1, ..., m, \forall a_k \to C_h \]

\[\min \ z = \sum_{j=1}^{m} \sum_{a_k \to C_h} \mathcal{G}_j(a_k) \quad \text{subject to} \]

\[\mathcal{G}_j(a_k) \geq g_j(a_k) - g_j(b_h) \quad \forall j = 1, ..., m, \forall a_k \to C_h \quad (1) \]
\[\mathcal{G}_j(a_k) \geq g_j(b_{h-1}) - g_j(a_k) \quad \forall j = 1, ..., m, \forall a_k \to C_h \quad (2) \]
\[g_j(b_h) > g_j(b_{h-1}) \quad \forall j = 1, ..., m, \forall h = 2, ..., p - 1 \quad (3) \]
\[\mathcal{G}_j(a_k) \geq 0 \quad \forall j = 1, ..., m, \forall a_k \to C_h \quad (4) \]

Note that \(z^* = \min (z) = 0 \) iff
\[\mathcal{G}_j(a_k) = 0 \quad \forall j = 1, ..., m, \forall a_k \to C_h \quad \text{iff} \]
\[g_j(a_k) \in [g_j(b_{h-1}); g_j(b_h)] \quad \forall j = 1, ..., m, \forall a_k \to C_h \]

We assume that \(b_0 \to -\infty, b_p \to +\infty \)
Application of the LP problem to the illustrative example by [5]

<table>
<thead>
<tr>
<th></th>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(g_3)</th>
<th>(\text{ASS.E.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>70</td>
<td>64.75</td>
<td>46.25</td>
<td>(a_1 \rightarrow C_3)</td>
</tr>
<tr>
<td>(a_2)</td>
<td>61</td>
<td>62</td>
<td>60</td>
<td>(a_2 \rightarrow C_3)</td>
</tr>
<tr>
<td>(a_3)</td>
<td>40</td>
<td>50</td>
<td>37</td>
<td>(a_3 \rightarrow C_2)</td>
</tr>
<tr>
<td>(a_4)</td>
<td>66</td>
<td>40</td>
<td>23.125</td>
<td>(a_4 \rightarrow C_2)</td>
</tr>
<tr>
<td>(a_5)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>(a_5 \rightarrow C_1)</td>
</tr>
<tr>
<td>(a_6)</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>(a_6 \rightarrow C_1)</td>
</tr>
</tbody>
</table>

weights

<table>
<thead>
<tr>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(b_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_1) = (20 40 30)'</td>
<td>(b_2) = (66 50 37)'</td>
<td></td>
</tr>
<tr>
<td>(b_1) = (20 20 30)'</td>
<td>(b_2) = (66 50 37)'</td>
<td></td>
</tr>
<tr>
<td>(b_1) = (20 20 23.125)'</td>
<td>(b_2) = (61 50 37.000)'</td>
<td></td>
</tr>
</tbody>
</table>

SAS

\(b_1 = (20 40 30)' \)
\(b_2 = (66 50 37)' \)

R

\(b_1 = (20 20 30)' \)
\(b_2 = (66 50 37)' \)

MPL

\(b_1 = (20 20 23.125)' \)
\(b_2 = (61 50 37.000)' \)

\(z^* = 11.875 \)

\((5,4,3) \)
\(0.583 < \lambda \leq 0.75 \)
0 misclass

\((4,5,3) \)
\(0.667 < \lambda \leq 0.75 \)
0 misclass

\((3,4,5) \)
\(0.75 < \lambda \leq 0.8712 \)
1 misclass

\((0.5 0.3 0.2) \)
\(0.5 < \lambda \leq 0.7424 \)
0 misclass

\(0.75 < \lambda \leq 0.7854 \)
1 misclass

\(0.75 < \lambda \leq 0.8283 \)
1 misclass

\(0.75 < \lambda \leq 0.8712 \)
1 misclass

\(0.75 < \lambda \leq 0.7424 \)
1 misclass

\(\lambda > 0.75 \)
0 misclass

\(\lambda > 0.75 \)
0 misclass

\(\lambda > 0.80 \)
0 misclass

\(0.75 < \lambda \leq 0.7854 \)
1 misclass

\(\lambda > 0.75 \)
0 misclass

\(\lambda > 0.75 \)
0 misclass

\(\lambda > 0.80 \)
0 misclass
Remark that \(g_j(a_k) = 0 \iff g_j(a_k) \in [g_j(b_{h-1}); g_j(b_h)] \quad \forall j = 1, \ldots, m, \forall a_k \rightarrow C_h \)

on \(g_1 \)
\[
\begin{align*}
g_1(b_2) &\leq 70 \\
g_1(b_2) &\leq 61 \\
g_1(b_1) &\leq 40 \leq g_1(b_2) \\
g_1(b_1) &\leq 66 \leq g_1(b_2) \\
g_1(b_1) &\geq 20 \\
g_1(b_1) &\geq 15
\end{align*}
\]

on \(g_2 \)
\[
\begin{align*}
g_2(b_2) &\leq 50 \\
g_2(b_1) &\leq 64.75
\end{align*}
\]

on \(g_3 \)
\[
\begin{align*}
g_3(b_2) &\leq 60 \\
g_3(b_1) &\leq 37
\end{align*}
\]
Heuristic Rule

Non Linear Programming

\[b_1 = (35.25 \ 31.25 \ 23.65) \]
\[b_2 = (59.25 \ 62.75 \ 41.6) \]

\[z(b_1, b_2) = 13.625 \]

Linear Programming

\[z^* = \min (z) = 11.875 \]

\[b_1 = (20 \ 40 \ 30)' \]
\[b_2 = (66 \ 50 \ 37)' \]
(by SAS)

\[b_1 = (20 \ 20 \ 30)' \]
\[b_2 = (66 \ 50 \ 37)' \]
(by R)

\[b_1 = (20 \ 20 \ 23.125)' \]
\[b_2 = (61 \ 50 \ 37.000)' \]
(by MPL)

Equal Size Intervals

\[b_1 = (33.33 \ 31.58 \ 33.33)' \]
\[b_2 = (51.67 \ 48.167 \ 46.67)' \]

\[z(b_1, b_2) = 26.79166 \]
I phase: inference on profiles (LP problem / other procedures)
II phase: inference on weights and cutting level (system of non linear inequalities)

\[b_1 = (35.25, 31.25, 27.50)' \]

\[b_2 = (59.25, 54.19, 41.60)' \]

Heuristic Rule

plot of lambda as a function of misclassified

if \(w = (3 \ 2 \ 1) \)

plot of lambda as a function of misclassified

if \(w = (1 \ 1 \ 1) \)

\[0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0 \]

\[0.0 \ 0.5 \ 1.0 \ 1.5 \ 2.0 \ 2.5 \ 3.0 \]

misclassified

\[0.5 \ 0.83 \]

\[0.33 \ 0.67 \]

\[0.75 \]
• choose in case of multiple optimal solutions: use of evolutionary algorithms
• profiles as stochastic process of random variables (probabilistic approach)
• inconsistent system of non-linear/linear inequalities
• additional constraints to be added

Work in progress

Thanks for your attention!!
References

[9] Vincent Mousseau, Luís C. Dias, José Figueira : Dealing with inconsistent judgments in multiple criteria sorting models - August 31, 2004