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Introduction

The discussion developed in this forum is an egoélbpportunity to present a different point ofwief what
we consider to be robustness analysis.

In many real-life combinatorial optimisation prolve, robustness is just an important issue as is
optimality. However, this aspect of optimisationshang been neglected by researchers. For our pespo
robustness refers to the insensitivity of a sotutidth respect to the input data. In our opiniegsaarchers and
especially those involved in optimisation should ddde to provide solution methods that can findustb
solutions.

Definitions

Changing data, uncertainty, and dynamic modificsti@f data lead current optimisation methods torpoo
solution. One way to deal with stochastic problestads to find solutions that arebust. We distinguish two
types of robustnes®uality robustness is a property of a solution whose quality, meaduog the objective
function value, does not deviate much from optitgalihen small changes in the problem data occur.

The second type of robustness is caketiition robustness and can be described as robustness in the
solution space. When changes in the problem datarpthe decision maker might be forced to re-ojsénthe
problem. In this case, the quality of the soluti®iguaranteed by the optimisation procedure. Inessituations
however a solution is preferred that is “close” {fire solution space, not the objective functioncepdo the
solution currently used. For example, many manufacs operate with a production schedule that tepeself
on a regular basis (e.g. daily or weekly). When a&.gew job needs to be scheduled, the problesrdptimised,
but the new production schedule should be as sim#gossible to the one currently used.

This type of robustness stresses the importana®lafion stability. The two types of robustness o
entirely equivalent in the sense that quality robess is a property of a solution that is insevsito changes in
the problem dat&efore these changes occur, whereas solution robusteéss ito the stability of a solution
after changes have occurred.

A simple framework for robust optimisation

Consider an optimisation problem for which the data uncertain or stochastic. If we want to findogimal
solution, we need to adapt a search procedure table to take into account the stochastic natureusf
problem.

Based on our experiments, we argue that meta-tiearean very easily be adapted to the requirenwras
stochastic problem formulation. That there is adnfee robust meta-heuristic optimisation is recagui in the
influential book “Robust discrete optimisation” [K@7], when the authors say on p. 35¥V*believe that



considerable more effort should be spent in systematic development of [...] metaheuristic frameworks, which
with minimal adjustment effort can be applied to a large class of robust optimisation problems|...] ”.

In metaheuristics, the search towards an optimal n@ar-optimal) solution is guided by successive
evaluation of solution in a sequential mode (sirradaannealing, tabu search, ...) or in a parallel {g@netic
algorithm, ant colony optimisation, ...). If we ardeatp take into account the stochastic nature efttoblem at
this step, we should be able to guide the seamhrtis a robust solution. Hence, one way to do tib is1odify
the evaluation function and evaluate the robustiéghe solution at this step. This is done by aeplg the
evaluation function by a so-called robust evaluafimction.

Quality robustness

Let x be a solution of an optimisation problem. The guadf x is computed by an evaluation functié().
When we want to indicate thihas parameters, we wrii,P), whereP is the set of problem data. To allow the
robust algorithm (RA) to find robust solutions, teealuation functiorf(x) is replaced by aobust evaluation
function f*(x). The robust evaluation function for quality robssiutions adheres to the following principles
[SOR01,SORO3]:

Principle 1: Each solution is implemented on a modifget of characteristic§(P). S is a sampling
function, that takes a random sample from the stochastimesits ofP. S(P) is thei-th set of sampled
parameters oP. We call the implementation of a solution on a ified set of characteristics derived
solution.

Principle 2: Several evaluations of a solutioron a sample oP are combined into a new evaluation
function. An evaluation of a derived solution idled a derived evaluation. This new function is the
robust evaluation function f* (x).

A possible form of a robust evaluation functiomig/eighted average of derived evaluations:

)= L3 A5

wherec; is a weight associated to this derived evaluatiocording to its importance amd is the number of
derived solutions to evaluate.

A more conservative robust evaluation function reggmine the worst-case performance of a solution
across all derived evaluations:

FHx) = Max(i=l--nm fix5(E))

if f has to be minimised.

Solution robustness

Solution robustness is a property of a solutiont thaimilar to a given baseline solutioq,i.e. for which the
distance to the baseline solution (as measured by somandistfunction) is small. Of course, solution rohass
cannot be used as the only objective, since saludigality or quality robustness should always Betainto
account. The need for solution robustness therefotematically transforms the problem into a malijective
one and a solution should be found that simultasigchas a high quality (robustness) and a smathdce to the
baseline solution.



In our framework, solution robustness is obtaingdrieasuring the distance between the baselinei@olut
and each solution generated by the metaheurigiiigathe search. It is assumed that the metaheuvisiis a
sufficiently diverse set of solutions, so thatesdt a fraction of them will be solution robusts@lution is then
chosen using a multi-objective decision making pes¢ taking into account the decision maker's prates for
solution robustness and quality (robustness).

A sensible distance measure should accuratelyctefie “similarity” between two solutions. The maan
of this concept is highly dependent on the spesification. For problem where the representatioa sblution
can be undertaken by a permutation, [SOR03a] pesval set of distance measures based oedih@istance
(also called distance of Levenstein).

Risk preference

The functionf*(x) estimates the average performance or the worst padormance of a solution, given that
some of the parameters of the problem are stoch&3early, the worst case performance measureledtl to
solutions that are more conservative. Solutionsdousing this form of the robust evaluation functigill hedge
only against the worst possible incidence, indepahdf the probability that this scenario will occlihis type
of robust evaluation function can be used by exélgmisk-averse decision makers.

A more subtle manner to incorporate the risk pexfee of the decision maker, is to include intorthteust
evaluation function an estimate of the probabilftat the quality of a solution will deviate frons iexpected
value. A possible measure is the standard deviafidine quality of a given solution over all sangpl&his could
be done easily along the search and keep as acsattabute of the solution.

The two measures (the robust evaluation and timelatd deviation computed) can be integrated in &i-mu
objective decision making approach. A possible gay find the solution that minimisés(x) + y*(x)o., where
yis a parameter indicating the risk-aversenesshefdecision maker. A more advanced way is to redflin
efficient solutions and choose one according tau#iifabjective decision making method.

Application in scheduling and routing problems

To demonstrate the efficiency of such type of appho we tackle two types of problem. The first onasiders
the optimisation under uncertainty of a one-machswheduling problem presented in [SEV04]. The
metaheuristic developed for this problem is a geragorithm. The second type of application isidatéd to
the robust and flexible vehicle routing problem gemeted in [SORO04]. For this latter application, the
metaheuristic is a memetic algorithm in which thepuylation is carefully managed. This technique aed
MA/PM memetic algorithm with population management.

Conclusion

To conclude, we can summarize our approach aswolBased on an existing metaheuristic, the stochast
nature of the problem can be taken into accoumutin a robust evaluation function that replacessthadard
evaluation function and guides the search towambast solution. This approach has been appliedessfully

to two types of applications, routing and schedylthat can be considered as two major categoffies o
combinatorial optimisation problems.
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