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Introduction   

The discussion developed in this forum is an excellent opportunity to present a different point of view of what 
we consider to be robustness analysis. 

In many real-life combinatorial optimisation problems, robustness is just an important issue as is 
optimality. However, this aspect of optimisation has long been neglected by researchers. For our purposes, 
robustness refers to the insensitivity of a solution with respect to the input data. In our opinion, researchers and 
especially those involved in optimisation should be able to provide solution methods that can find robust 
solutions. 

  

Definitions 

Changing data, uncertainty, and dynamic modifications of data lead current optimisation methods to poor 
solution. One way to deal with stochastic problem data is to find solutions that are robust. We distinguish two 
types of robustness. Quality robustness is a property of a solution whose quality, measured by the objective 
function value, does not deviate much from optimality when small changes in the problem data occur.  

The second type of robustness is called solution robustness and can be described as robustness in the 
solution space. When changes in the problem data occur, the decision maker might be forced to re-optimise the 
problem. In this case, the quality of the solution is guaranteed by the optimisation procedure. In some situations 
however a solution is preferred that is “close” (in the solution space, not the objective function space) to the 
solution currently used. For example, many manufacturers operate with a production schedule that repeats itself 
on a regular basis (e.g. daily or weekly). When e.g. a new job needs to be scheduled, the problem is re-optimised, 
but the new production schedule should be as similar as possible to the one currently used. 

This type of robustness stresses the importance of solution stability. The two types of robustness are not 
entirely equivalent in the sense that quality robustness is a property of a solution that is insensitive to changes in 
the problem data before these changes occur, whereas solution robustness refers to the stability of a solution 
after changes have occurred.  

  

A simple framework for robust optimisation 

Consider an optimisation problem for which the data are uncertain or stochastic. If we want to find an optimal 
solution, we need to adapt a search procedure to be able to take into account the stochastic nature of our 
problem. 

Based on our experiments, we argue that meta-heuristics can very easily be adapted to the requirements of a 
stochastic problem formulation. That there is a need for robust meta-heuristic optimisation is recognised in the 
influential book “Robust discrete optimisation” [KOU97], when the authors say on p. 354: “We believe that 



considerable more effort should be spent in systematic development of [...] metaheuristic frameworks, which 
with minimal adjustment effort can be applied to a large class of robust optimisation problems [...] ”. 

In metaheuristics, the search towards an optimal (or near-optimal) solution is guided by successive 
evaluation of solution in a sequential mode (simulated annealing, tabu search, …) or in a parallel way (genetic 
algorithm, ant colony optimisation, …). If we are able to take into account the stochastic nature of the problem at 
this step, we should be able to guide the search towards a robust solution. Hence, one way to do it is to modify 
the evaluation function and evaluate the robustness of the solution at this step. This is done by replacing the 
evaluation function by a so-called robust evaluation function. 

  

Quality robustness 

Let x be a solution of an optimisation problem. The quality of x is computed by an evaluation function f(x). 
When we want to indicate that f has parameters, we write f(x,P), where P is the set of problem data. To allow the 
robust algorithm (RA) to find robust solutions, the evaluation function f(x) is replaced by a robust evaluation 
function f*(x). The robust evaluation function for quality robust solutions adheres to the following principles 
[SOR01,SOR03]: 

  

Principle 1:          Each solution is implemented on a modified set of characteristics Si(P). S is a sampling 
function, that takes a random sample from the stochastic elements of P. Si(P) is the i-th set of sampled 
parameters of P. We call the implementation of a solution on a modified set of characteristics a derived 
solution. 

Principle 2:          Several evaluations of a solution x on a sample of P are combined into a new evaluation 
function. An evaluation of a derived solution is called a derived evaluation. This new function is the 
robust evaluation function f*(x). 

 A possible form of a robust evaluation function is a weighted average of m derived evaluations: 

 

where ci is a weight associated to this derived evaluation according to its importance and m is the number of 
derived solutions to evaluate. 

A more conservative robust evaluation function may examine the worst-case performance of a solution 
across all derived evaluations: 

 

if f has to be minimised.  

  

Solution robustness 

Solution robustness is a property of a solution that is similar to a given baseline solution, x0 i.e. for which the 
distance to the baseline solution (as measured by some distance function) is small. Of course, solution robustness 
cannot be used as the only objective, since solution quality or quality robustness should always be taken into 
account. The need for solution robustness therefore automatically transforms the problem into a multi-objective 
one and a solution should be found that simultaneously has a high quality (robustness) and a small distance to the 
baseline solution.  



In our framework, solution robustness is obtained by measuring the distance between the baseline solution 
and each solution generated by the metaheuristic along the search. It is assumed that the metaheuristic visits a 
sufficiently diverse set of solutions, so that at least a fraction of them will be solution robust. A solution is then 
chosen using a multi-objective decision making process, taking into account the decision maker's preferences for 
solution robustness and quality (robustness). 

A sensible distance measure should accurately reflect the “similarity” between two solutions. The meaning 
of this concept is highly dependent on the specific situation. For problem where the representation of a solution 
can be undertaken by a permutation, [SOR03a] provides a set of distance measures based on the edit distance 
(also called distance of Levenstein). 

  

Risk preference 

The function f*(x) estimates the average performance or the worst case performance of a solution, given that 
some of the parameters of the problem are stochastic. Clearly, the worst case performance measure will lead to 
solutions that are more conservative. Solutions found using this form of the robust evaluation function will hedge 
only against the worst possible incidence, independent of the probability that this scenario will occur. This type 
of robust evaluation function can be used by extremely risk-averse decision makers. 

A more subtle manner to incorporate the risk preference of the decision maker, is to include into the robust 
evaluation function an estimate of the probability that the quality of a solution will deviate from its expected 
value. A possible measure is the standard deviation of the quality of a given solution over all samples: This could 
be done easily along the search and keep as a second attribute of the solution. 

The two measures (the robust evaluation and the standard deviation computed) can be integrated in a multi-
objective decision making approach. A possible way is to find the solution that minimises f*(x) + γ*(x)σ., where 
γ is a parameter indicating the risk-averseness of the decision maker. A more advanced way is to retain all 
efficient solutions and choose one according to a multi-objective decision making method. 

  

Application in scheduling and routing problems 

To demonstrate the efficiency of such type of approach, we tackle two types of problem. The first one considers 
the optimisation under uncertainty of a one-machine scheduling problem presented in [SEV04]. The 
metaheuristic developed for this problem is a genetic algorithm. The second type of application is dedicated to 
the robust and flexible vehicle routing problem presented in [SOR04]. For this latter application, the 
metaheuristic is a memetic algorithm in which the population is carefully managed. This technique is called 
MA/PM memetic algorithm with population management. 

  

Conclusion 

To conclude, we can summarize our approach as follow. Based on an existing metaheuristic, the stochastic 
nature of the problem can be taken into account through a robust evaluation function that replaces the standard 
evaluation function and guides the search towards a robust solution. This approach has been applied successfully 
to  two types of applications, routing and scheduling that can be considered as two major categories of 
combinatorial optimisation problems. 
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