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Introduction

Various concepts and tools associated with robastimve been appearing more and more in the literat
during the last few years. Many alternative d¢ifims of robustness are made in different contekMsreover,
there are different subjects of robustness, suclolagst decisions, robust solutions, or robust owthand
algorithms. In its general form, robustness referthe ability of the subject to cope well withcentainties.
The different ways in which the performance of subject is evaluated and the framework used foretnagl
the uncertainties lead to many alternative defingi of robustness. The concepts and definition®lmiistness
originally emerged as independent of the field afitiple criteria decision making (MCDM). In receygars,
however, the relationship between robustness antipteucriteria decision analysis has been obsered
number of researchers (see, for instance, Roy (1898cke (1999), Hites et al. (2003)). The praisdssues of
this newsletter have featured articles by prominef@DM researchers contributing to the discussion of
robustness mostly from the point of view of mukigkiteria decision analysis. In this article, wi# look at the
issue more from an optimization perspective.

Robustness without probabilities

Since uncertainty is a critical element of robustdaking a probabilistic modeling approach to pgheblem
sounds quite natural. However, for the purposesobftion practicality and interpretation easas ipossible to
avoid a probabilistic approach and study the probleder a fully deterministic optimization settingds such,
the field of robust optimization has been the ol several studies. One construct in robugimipation
calls for introducing different scenarios into aagle objective optimization problem to hedge adaihe
uncertainties in the decision environment as ituegowith different realizations of data. Scensrman be
defined in two different ways, by defining contiusointervals (Averbakh (2004), Yaman (2001)) odefining
discrete scenarios. For the case of continuaesvials, there are certain parallels to paramgtegramming.
Whether this class of research relates to previtusies in MCDM which considers multiple objective
optimization with interval data poses an interagtjnestion.

Robust Optimization and Multiple Objective Optimization

On the discrete scenarios front, the deviatiorusbllecision, as Kouvelis and Yu (1997) have defibeis a
decision that minimizes the maximum deviation froxdividual criterion best values. This is what Haeen
known as minimizing the Tchebycheff distance toitteal solution of a multiple objective optimizatiproblem
in MCDM. Bowman (1975) introduced this approachaaneans of characterizing efficient solutions.utalis
and Yu (1997) have noticed that the robust optittomaproblem and the multiple objective optimizatio
problem have similarities when certain assumptiares met. This implies, obviously, that the rielaship
between the two different problems can lead ta@stiing developments for the solution of both.

The similarity between the discrete scenario o@tidbn problem and the multiple objective optimiaat
problem can lead to interesting new research topicsgeneral, the robust optimization problenst #re dealt
with have resulted in proposition of novel solutiprocedures and algorithms for efficient solutioitioe



problem. Whether these solution approaches canilied to solve particular multiple objective opization
problems is a question worthy of investigation. c&®ely, Kouvelis and Sayin (2005) have studied the
computational aspects of an algorithm for bicréediscrete optimization motivated by ideas in rabus
optimization. Their algorithm performs an exhaustsearch in the weight space while solving cowadmg
weighted robust optimization problems. The aldnitis originally designed to obtain all efficiemtlgtions of
the Multiple Objective Discrete Optimization profvlebut it can be customized to generate a representa
sample of the efficient set as well.

A recent study that relates robustness to Multiptieria Optimization in a different way is gively Perny,
Spanjaard and Storme (2004). Their work is rempesiwe of an alternative way of approaching the
relationship between robustness and efficiency.d8scribing robustness in one particular way thatrgntees
efficiency of resulting solutions, they argue thatalgorithm for finding robust solutions to a id&m problem
can serve as a means of creating a sample ofegffisolutions since the set of efficient solutiomay be too
large to be useful especially in discrete optimraproblems.

Another link between robust optimization and muétipbjective optimization is possible via the n@dering
problem which calls for optimizing the worst of seal objective functions and is therefore by déifm a min-
max type problem. Although this problem is notieglent to the multiple objective optimization ptem as it

is, it is possible to generalize the problem dé&bini to lexicographic max-ordering, and then a Hart
generalization of the objective function by therdawofuction of weights brings equivalence to multiplgective
optimization (Ehrgott (1997)). Relating the maxierng problem with studies that work on equivalent
definitions of robustness may lead to further redeguestions.

As discussed above, we see more and more algorithahsise concepts of robust optimization for filgdsome
or all of efficient solutions of the multiple objae optimization problem. When robustness is dedibased on
possible variations of data representations inothjective function of a single objective optimizatiproblem,
the parallelism is in a sense not surprising. ésearch in robust optimization has led to cultoratof many
specialized algorithms to solve the defined rohustblems, this approach provides a new opportufaty
enumerating efficient solutions of certain multiplgjective optimization problems.

Robustness in a probabilistic setting

There are also many unexplored alternatives, ealbediegarding probabilistic definitions of robuess.

Although the parallelism between such studies dfustness and multiple objective optimization is ast
straight forward as in the deterministic case, #nedpresence of probabilistic definitions might @adiifficulties

in terms of describing and interpreting the assedianultiple objective optimization problem, sudfogs might
turn out to be quite rewarding since these robgstadgorithms are usually computationally morecédfit than
their deterministic discrete scenarios counterpalrsparticular, Bertsimas and Sim (2003) show tkiile the
use of discrete scenarios lead to NP-hard probéaren for cases where the simple single objectitenigation

problem is polynomially solvable, their definitiafi robustness leads to a polynomially solvable fenobwhen
the original problem is a polynomially solvable @bgramming problem.

Conclusion

We have seen that some definitions and tools ofigbloptimization are being used in multiple objesti
optimization to find the efficient solutions. Bhe future, working on alternative, perhaps morkecive,

definitions of efficiency might lead to establisgi links to certain other forms of robustness tiete been
demonstrated to lead to computationally more ttdetaolution algorithms. In that respect, the ibiiplaphy of
robust optimization given by Nikulin (2004) congtis a good starting point.
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