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Introduction  

The latest issues of the EWG-MCDA Newsletter have presented several views on what is robustness analysis. In 
this note, I would like to complement them describing what is understood by such term, within the Bayesian 
arena. Further details may be seen in Ruggeri et al (2004). The Bayesian approach to inference and decision 
analysis, see French and Rios Insua (2000), essentially suggests:  

• Modelling beliefs about a parameter  of interest through a prior which, in presence of further 
information, is updated to the posterior. 

• Modelling preferences and risk attitudes about (multicriteria) consequences, with a multiattribute utility 
function. 

• Associate with each alternative its (multiattribute) posterior expected utility. 
• Propose the alternative which maximises the posterior expected utility. 

 As in any quantitative approach, there are many reasons to check the sensitivity of the output (the optimal 
alternative) with respect to the inputs (model, beliefs and preferences). In addition, since, in this framework, 
inputs to the analysis encode the DM's judgements, she should wish to explore their implications and possible 
inconsistencies. The need for sensitivity analysis is further emphasised by the fact that the assessment of beliefs 
and preferences is a difficult task. This is an especially important point, as her judgements will evolve through 
the analysis until they are requisite. Robust Bayesian analysis guides this process. 

The usual practical motivation underlying robust Bayesian analysis is the difficulty in assessing the prior 
distribution. Consider the simplest case in which it is desired to elicit a prior over a finite set of states Θi, 
i=1,…,I. A common technique to assess a precise Π(Θi)= pi , with the aid of a reference experiment, proceeds as 
follows: one progressively bounds Π(Θi) above and below until no further discrimination is possible and then 
takes the midpoint of the resulting interval as the value of pi. Instead, however, one could directly operate with 
the obtained constraints αi <= Π(Θi) <=  βi, acknowledging the cognitive limitations. 

The same situation holds when modelling preferences. One might assess the utility of some consequences 
through, say, the certainty equivalent method, and then fit a utility function. However, in reality, we only end up 
with upper and lower constraints on such utilities, possibly with qualitative features such as monotonicity and 
concavity, if preferences are increasing and risk averse. These constraints can often be approximated by an upper 
and a lower utility function, leading to the consideration of all utility functions that lie between these bounds. If a 
parametrised utility function is assessed, the constraints are typically placed on the parameters of the utility, say 
the risk aversion coefficient. Of course, in developing the model for the data itself there is typically great 
imprecision, and a need for careful study of model robustness. 

A final comment concerning the limits of elicitation concerns the situation in which there are several 
decision makers and/or experts involved in the elicitation. Then it is not even necessarily possible theoretically to 
obtain a single model, prior, or utility; one might be left with only classes of each, corresponding to differing 
expert opinions. 



   

Basic concepts  

Robust Bayesian analysis provides tools to check the impact of the utility function, the prior and the model on 
the optimal alternative, and its posterior expected utility. We distinguish three main approaches to Bayesian 
robustness. We illustrate it considering robustness with respect to changes in the prior, but similar issues are 
raised when considering likelihoods and utilities. A “guided tour” through these three approaches is presented in 
Berger et al. (2000) and the references therein. 

   

Informal approach  

The first approach is the informal one, which considers several priors and compares the quantity of interest (e.g., 
the posterior mean) under them. The approach is very popular because of its simplicity. Its rationale is that since 
we shall be dealing with messy computational problems, why not analyse sensitivity by trying only some 
alternative pairs of utilities and priors? While this is a healthy practice and a good way to start a sensitivity 
analysis, in general this will not be enough and we should undertake more formal analyses: the limited number 
of priors chosen might not include some which are compatible with the prior knowledge and could lead to very 
different values of the quantity. 

It is worth mentioning that the consideration of a finite number of utilities links clearly with multi-objective 
decision making problems. 

   

Global robustness  

The most popular approach in Bayesian robustness is called global sensitivity. All probability measures 
compatible with the prior knowledge available are considered and robustness measures are computed as the prior 
varies in a class. Computations are not always easy since they require the evaluation of suprema and infima of 
quantities of interest. 

The robustness measures provide, in general, a number that, in principle, should be interpreted in the 
following way: 

1. if the measure is “small”, then robustness is achieved and any prior in the class (possibly one 
computationally simple) can be chosen without relevant effects on the quantity of interest, 

2. if the measure is ``large'', then new data should be acquired and/or further elicitation narrows the class, 
recomputing the  robustness measure and stopping as in the previous item; o.w. …. 

3. …. if the measure is “large” and the class cannot be modified, then a prior can be chosen in the class but 
we should  be wary of the relevant influence of our choice on the quantity of interest. Alternatively, we 
may use an ad hoc method such as  the G-minimax, to select an alternative. 

Given a class G of prior measures, global sensitivity analysis will usually pay attention to the range of variation 
of a posterior (or predictive) functional of interest  as the prior ranges over the class. 

   

Local robustness  

The last approach looks for local sensitivity and studies the rate of change in inferences and decisions, using 
functional analysis differential techniques, such as Frechet derivatives of posterior expected utilities and their 
norms, total derivatives or Gateaux differentials. 



   

Decision and utility robustness  

An important and occasionally controversial issue is the distinction between decision robustness and expected 
utility robustness. A variety of situations may hold. For instance, when performing sensitivity analysis, it may 
happen that expected utility changes considerably with virtually no change in the optimal Bayes action, even if 
the utility is fixed. 

   

Foundations  

A number of results show that we may model imprecision in beliefs and preferences  through a class of 
probability distributions and a class of utility functions. These results have two basic implications. First, they 
provide a qualitative framework for sensitivity analysis, describing under what conditions we may undertake the 
standard and natural sensitivity analysis approach of perturbing the initial probability-utility assessments, within 
some reasonable constraints. Second, they point to the basic solution concept of robust approaches, thus 
indicating the basic computational objective in sensitivity analysis, as long as we are interested in decision 
analytic problems: that of non-dominated alternatives. This corresponds to a Pareto ordering of decision rules, 
see  White (1982), based on inequalities on the posterior expected utility. 

As a consequence of this model, the solution concept is the set of non-dominated alternatives. In some cases, 
non-dominance is a very powerful concept leading to a unique non-dominated alternative. However, in most 
cases the non-dominated set will be too large to imply a final decision. It may happen that there are several non-
dominated alternatives and differences in expected utilities are non-negligible. If such is the case, we should look 
for additional information that would help us to reduce the classes, and, perhaps, reduce the non-dominated set. 
Some tools based on functional derivatives to elicit additional information may be seen in  Martín and Ríos Insua 
(1997). Tools based on distance analysis may be seen in Ríos Insua (1990). 

   

Stability Theory  

Stability theory provides another unifying, general sensitivity framework, formalising the idea that imprecisions 
in elicitation of beliefs and preferences should not affect the optimal decision greatly. When strong stability 
holds, careful enough elicitation leads to decisions with expected utility close to the smallest achievable; when 
weak stability holds, at least one stabilised decision will have such property. However, when neither concept of 
stability applies, even small elicitation errors may lead to disastrous results in terms of large losses in expected 
utility. 

   

Conclusion  

The approach we propose may be summarised as follows: at a given stage of analysis, we elicit information on 
the DM's beliefs and preferences, and consider the class of all priors and utilities compatible with such 
information. We approximate the set of non-dominated solutions; if these alternatives do not differ too much in 
expected utility, we may stop the analysis; otherwise, we need to gather additional information, possibly with the 
tools outlined above. This would further constrain the class: in this case the set of non-dominated alternatives 
will be smaller and we could hope that this iterative process would converge until the non-dominated set is small 
enough to reach a final decision. It is conceivable in this context that at some stage we might not be able to 
gather additional information yet there remain several non-dominated alternatives with very different expected 
utilities. In these situations, L × G-maximin solutions may be useful as a way of selecting a single robust 
solution. We associate with each alternative its worst expected utility; we then suggest the alternative with 
maximum worst expected utility. 
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