
Enhancing ER Diagrams to View Data

Transformations Computed with Queries

Carlos Ordonez, Ladjel Bellatreche

UH (USA), ENSMA (France)

Disclaimer

• Teaching Database Systems courses many years

• Database processing requires understanding data

structure before processing

• But I have hardly worked on conceptual modeling

or database modeling

• Ladjel gave me guidance

Motivation: Data Sets for Analytics

• Input for Machine Learning or Statistical Models: n records, p

features/variables (dimensions, categorical/discrete)

• Built by many SQL queries: SPJA

• Original database does have some ER diagram behind, maybe

denormalized

• Queries, views: disorganized, written independently

• DB populated by queries instead of transactions/ETL

• Data set does have entity (and relational) representation

• In general, no ER diagram exists for temporary

tables/views/exports

Our contributions

• Extending existing ER diagram with “data

transformation entities”

• Minimal changes to UML diagram notation

• Entity universe: source + transformation

• Tranformed attribute: any expression from SPJA

relational algebra

• Fast algorithm to create ER diagram from queries

• Preliminary study of ER diagram properties

Preliminaries

• UML entity notation: scalable, Object-Oriented

• n tables: all linked by 1:N and 1:1 relationships

• Entity and referential integrity: satisfied

Ti (K)  Tj (K)

K (T i)  K (T j)

• New tables derivedvonly with SPJA queries

• Derived attributes with aggregations, math and

string expressions, including CASE statements

Example: Input Database ER Diagram

Our ER diagram extensions

• Logical level: minimal:

– labeling entity names,

– same notation for relationships

• Physical level (SQL):

– zoom in view with relational queries

• Semantics: data analyst point of view

Data Transformations

• Entity (table) level: only relational queries

– join (denormalization to gather attributes, left

outer joins)

– aggregation/projection (to derive new

attributes)

– selection (filter is important)

• Attribute (column) level:

– denormalization (expressions, functions,

CASE)

– aggregation (GROUP BY, global)

Properties of our ER diagram

• Logical and physical level come closer, but still

separate

• PKs and Fks remain the glue

• Queries take the role of insert/delete/update in

traditional DB

• Complete (no table left out) and consistent (every

piece of data derived via queries)

• Transformation entities are weak entities

• Provenance can be tracked; flow can be embedded in

entity labels

Algorithm

Conclusions

• Any diagram helps analysts, but there will not be

an ER model in the traditional sense

• A first step to have a DB ER diagram of data

transformations

• Complements flow diagrams

• Relational, but can be later extended to non-

relational data (text, semistructured)

• DB state: As of now, source refreshed via

transactions/ETL. Versioning: future (temporal &

stream databases)

