

Qualitative Analysis of the SQLShare Workload for Session Segmentation

<u>Verónika Peralta</u>, Willeme Verdeaux, Yann Raimont, Patrick Marcel LIFAT – University of Tours – France

DOLAP – Lisboa – March 2019

Interactive Data Exploration

SELECT	Tyear(Ord Mfgr, sui LineOrder NATURAL	erdate) AS Year, Na m(Quantity) AS Qty NATURAL JOIN Cus JOIN Part	SELECT year(Orderdate) AS Year, Nation sum(Quantity) AS Qty FROM LineOrder NATURAL JOIN Custon NATURAL JOIN Part				
WHER AN	Year	Nation	Mfgr	Qty	WHERE Mfgr = 'MF AND Nation = 'A	Year	Nation
GROUI	2016	Argentina	MFGR#1	130	GROUP BY year(Or	2016	Argent
	2016	Argentina	MFGR#2	235		2015	Argent
	2016	Argentina	MFGR#3	35		2014	Argent
	2016	Argentina	MFGR#4	130		2013	Argent

r N JO	NATURAL JOIN Customer IOIN Part						
MF = 'A	Year	Nation	Qty				
Ur	2016	Argentina	35				
	2015	Argentina	200				
	2014	Argentina	190				
	2013	Argentina	175				

SELECT year(Orderdate) AS Year, Nation,									
S	um(Quantil	ty) AS Qty							
FROIVI LIP	EUrder NA	I URAL JOIN Custom	er						
	NATURAL JOIN Part								
	Voor	Nation	Otv						
AND (I	Teal	Nation	QLY						
GROUP B	2016	Argentina	35						
	2016	Brazil	240						
	2015	Argentina	200						
	2015	Brazil	210						

SELECT year(Orderdate) AS Year, City, sum(Quantity) AS Qty FROM LineOrder NATURAL JOIN Customer NATURAL JOIN Part

AN	Year	City	Qty
KUU	2016	Buenos Aires	0
	2016	La Plata	12
	2016	Mendoza	15
	2016	Rosario	8
		•••	

Discovering explorations is a first step for:

- Discovering user intents, focus/explorative zones, user expertise...
- Adapted visualization, recommendation of data/queries, personalization...

Past experience with OLAP queries

□ Multi-Year SQL-as-a-Service experiment [Jain et al. 2016]

- A large log of hand-written SQL queries over user-uploaded datasets.
- Limitations:
 - Not all datasets are available
 - No timestamps
 - No ground truth

11 137 SQL statements (10 668 SELECT statements) 57 users 3336 user's datasets

Other SQL workloads

- SDSS workload mixes hand-written and bots' queries [Singh et al. 2006]
- Other workloads are too small

Challenge: Session segmentation

Detecting begin-end of explorations in a log of user sessions

Previous work

- In web community: cut after 30 minutes of inactivity
- In SDSS workload: same 30-minutes delay

Simple but not reliable

And timestamps not always available

Approach: Similarity-based Segmentation

Our approach: cut when queries are dissimilar enough

- Several similarity indexes based on query features
 Projections, selections, aggregations and tables
- Voting strategy
- **Extensible to other features and indexes**

Feature extraction

Query text

SELECT latBin, longBin, COUNT(species) FROM [690].[All3col] WHERE latBin > 0 GROUP BY latBin,longBin HAVING COUNT(species) > 5;

Query parts

- Projections
 latBin
 longBin
 COUNT(species)
- Selections

 latBin > 0
 COUNT(species) > 5
- Aggregations =
 COUNT(species)
- Tables
 - □ [690].[All3col]

Intrinsic metrics

- Nb Projections
- Nb Selections
- Nb Aggregations
- Nb Tables

Relative metrics

- Nb common Projections
- Nb common Selections
- Nb common Aggregations
- Nb common Tables
- Relative Edit Distance
- Jaccard Index

Feature extraction

WITH

data AS

(SELECT * FROM [690].[All3col]),

bounds (minLat,minLong,maxLat,maxLong) AS

(SELECT min(latitude), min(longitude), max(latitude), max(longitude)

FROM data),

binnedSpecies AS

(SELECT data.species,floor((data.latitude-bounds.minLat)/0.1) AS latBin,

floor((data.longitude-bounds.minLong)/0.1) AS longBin FROM data, bounds),

binnedSpeciesCount AS

(SELECT latBin,longBin,COUNT(species) AS numSpecies FROM binnedSpecies GROUP BY latBin,longBin)

SELECT * from binnedSpeciesCount

Similarity Indexes

Capture different perspectives of similarity

D Edit Index

- Nb of operations for transforming query q_{k-1} in query q_k.
- Emphasis in differences
- Jaccard Index
 - Emphasis in common parts (relative)

Common Fragments Index

Emphasis in common parts (absolute)

Common Tables Index

Emphasis in common tables w.r.t. max nb of tables in session

Cosine Index

- Comparison of vectors in features' space
- Emphasis in query size

<2,0,0,1,0,0,0,1> <4,2,0,2,0,0,0,1>

□ 4 workloads

Workload	Language	Users	Ground truth	Timestamps	
SQLShare	SQL	Anonymous end-users	×	X	
Open	MDX	Master students	\checkmark	\checkmark	[Djedaini et al. 2017]
Enterprise	MDX-like	Developers	\checkmark	×	[Drushku et al. 2017]
Exam	SQL	Bachelor students	\checkmark	X	[Kul et al. 2018]

Statistics on feature extraction

	Min	1 quartile	2 quartile	3 quartile	Max
Nb projections	1	2	5	10	509
Nb selections	0	0	1	1	83
Nb aggregations	0	0	0	0	49
Nb tables	0	1	1	1	84
Nb common projections	0	0	1	5	509
Nb common selections	0	0	0	1	82
Nb common aggregations	0	0	0	0	48
Nb common tables	0	0	1	1	83
Rel. edit distance	0	2	4	12	1020
Jaccard index	0	0	0.43	0.83	1

Example of similarity values

Similarity thresholds

	Edit index	Jackard index	Cosine index	Common fragments index	Common tables index	
Min	0,00	0,00	0,05	0,00	0,00	
10pc	0,00	0,00	0,68	0,00	0,00	
20рс	0,00	0,00	0,72	0,00	0,00	
30рс	0,00	0,10	0,81	0,10	0,00	
40pc	0,40	0,29	0,89	0,20	0,05	
Median	0,60	0,50	0,95	0,30	0,20	
60рс	0,80	0,67	0,99	0,50	0,50	
70рс	0,80	0,80	1,00	0,60	0,50	
80pc	0,90	0,91	1,00	0,90	1,00	
90рс	1,00	1,00	1,00	1,00	1,00	
Max	1,00	1,00	1,00	1,00	1,00	

Preliminary segmentation

□ Split of the initial 451 sessions in 2 960 explorations

- Half of sessions were not segmented.
- Extremely large sessions were very segmented.
- □ Increase of common fragments. Decrease of edit distance.

	Before segmentation				After segmentation					
	Min	1 quartile	2 quartile	3 quartile	Max	Min	1 quartile	2 quartile	3 quartile	Max
Nb queries	1.00	2.00	6.00	19.75	936.00	1.00	1.00	3.00	6.00	78.00
Avg NCT	0.00	0.66	0.97	1.00	4.00	0.00	0.80	1.00	1.00	83.00
Avg NCF	0.00	2.00	4.20	7.33	306.33	1.00	2.69	5.00	9.50	510.00
Avg RED	0.00	2.30	4.64	8.29	204.73	0.00	1.67	3.00	7.00	267.00
Avg JI	0.00	0.38	0.55	0.71	1.00	0.01	0.43	0.65	0.84	1.00

Characteristics and feature extraction

	Open	Enterprise	Exam	SQLShare
nb sessions	16	24	1	451
nb explorations	28	104	2	
nb queries	941	525	102	10 668
queries/session	58	21	102	24
queries/exploration	34	5	51	
explorations/session	2	4	2	
avg Nb projections	3.62	2.18	1	9.36
avg Nb selections	1.33	0.76	1.57	1.19
avg Nb aggregations	1.34	1.14	0.77	0.41
avg Nb tables	3.28	2.03	3.02	1.50
avg common project	3.16	1.34	0.22	4.90
avg common select.	1.13	0.46	0.07	0.59
avg common aggreg.	1.17	0.77	0.09	0.21
avg common tables	2.97	1.46	2.57	0.85

Comparison with ground-truth :

$$< q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, \dots >$$

Our segmentation $\longrightarrow < 0, 0, 0, 1, 0, 1, 0, 0, 0, \dots >$ 0=cut
Ground truth $\longrightarrow < 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, \dots >$ 1=cut

accuracy, precision, recall, f-measure and adjusted rand index (ARI)

Threshold setting : k-percentile in value distribution, k in {0, 5,... 30}
 Keep threshold that obtains best results

Qualitative results

	Open	Enterprise	Exams	Open (timestamp)
Accuracy	0.98	0.88	0.94	0.97
Precision	1	0.78	0.17	1
Recall	0.42	0.63	1	0.25
F-measure	0.42	0.48	0.17	0.25
ARI	0.75	0.77	0.54	0.75
Best threshold	0	15	5	

The exact break is not always found, while the overall segmentation remains good

Correlation between similarity metrics and ground truth

	Open	Enterprise	Exam
Edit index	0.34	0.62	0.05
Jackard index	0.86	0.73	0.04
Cosine index	0.75	0.32	0.13
Common fragments index	0.86	0.69	0.10
Common tables index	0.90	0.50	0.01

Conclusions

- A proposal for segmenting sequences of SQL queries into meaningful explorations when:
 - only the query text is available (no access to instances)
 - no available timestamps
- based on:
 - a set of simple query features
 - a set of similarity indexes among queries
- Preliminary results are promising
 - Good results for datasets with ground truth

Both can be extended

Perspectives

- Extensions and tunning:
 - Further query features : common fragments w.r.t. near queries, query results
 - Other similarity indexes and thresholds.
- Discard preliminary hypothesis about chronological ordering
 - Test other ways of segmenting, in particular via clustering methods.
- □ Long term goal : measure the quality of SQL explorations
 - detection of focus/exploratory zones, discovery of latent user intents, recommendation of next queries...
 - for assisting interactive database exploration