Efficient Indexing of Hashtags using Bitmap Indices

DOLAP 2019 - Lisbon (Portugal) - Mar 26, 2019 Lawan Subba, Christian Thomsen and Torben Bach Pedersen Aalborg University, Denmark

Outline

- 1. Introduction
 - a. Hashtags
- 2. Background
 - a. Apache Orc
 - b. Bitmap Index
 - c. Apache Hive
 - d. Apache HBase
- 3. Lightweight Bitmap Indexing Framework
 - a. Framework Interface
 - b. Framework Use in Hive
 - c. Index Creation
 - d. Query processing Using Bitmap Index
- 4. Experiments
- 5. Related Work
- 6. Conclusion

Introduction

- Social media platforms like Facebook, Instagram and Twitter have millions of active monthly users.
- Enormous amounts of data being generated regularly means that rapidly accessing relevant data from data stores is just as important as its storage.

Number of active monthly users (Millions)

Hashtags

- A keyword containing numbers and letters preceded by a hash sign(#)
- Simplicity and lack of formal syntax

Distribution of Hashtags used in 8.9 million instagram posts in 2018 [1]

Hashtags

- A keyword containing numbers and letters preceded by a hash sign(#)
- Simplicity and lack of formal syntax
- Challenge
 - SELECT COUNT(*) FROM table
 WHERE (tweet LIKE "%#tag1%")
 - SELECT COUNT(*) FROM table
 WHERE (tweet LIKE "%#tag1%" OR ...)
 - SELECT COUNT(*) FROM table
 WHERE (tweet LIKE "%#tag1%" AND ...)

Distribution of Hashtags used in 8.9 million instagram posts in 2018 [1]

Contributions

- An open source, lightweight and flexible distributed bitmap indexing framework for big data which integrates with commonly used tools incl. Apache Hive and Orc.
- The bitmap compression algorithm to use and key-value store to store indices are easily swappable.
- Demonstrate that search for substrings like hashtags in tweets can be greatly accelerated by using our bitmap indexing framework.

- Storing data in a columnar format lets the reader read, decompress, and process only the values that are required by the current query.
- Stripes=64MB and rowgroups = 10,000 rows
- Min-max based Indices are created at rowgroup, stripe and file level.

Orc File Format [2]

		2		⊢		_		
num	string		Index Data		col: num		rg-1 Index	min=1, max=3
1	500 mg		le l	Ы	col: string		rg-2 Index	min=4, max=6
1	twt3 #tag1		Row Data		col: num	N	rg-1 Index	min="twtl", max="twt3 #tag1"
2	twt2		SI		col: string	$ \rangle$	rg-2 Index	min="twt4", max="twt6"
3	twt1		Stripe Footer	Γ			rg-1 Data	1, 2, 3
4	twt5					1	rg-2 Data	4, 5, 6
5	twt4						rg-1 Data	"twt3 #tag1", "twt2", "twt1"
6							rg-2 Data	"twt5", "twt4", "twt6"
0	twto	\rightarrow						
7	twt7	101	Index Data		col: num		rg-3 Index	min=7, max=9
8	twt8 #tag1 #tag2				col: string		rg-4 Index	min=10, max=50
0	twite wag1 wag2		Row Data		col: num	Ν	rg-3 Index	min="twt7", max="twt9"
9	1019		Str		col: string		rg-4 Index	min="twt10", max="twt50"
10	twt10		Stripe Footer			1	rg-3 Data	7, 8, 9
50	twt50					1	rg-4 Data	10, 50, 11
11	twt11						rg-3 Data	"twt7","twt8 #tag1 #tag2", "twt9"
			Orc File Format				rg-4 Data	"twt10", "twt50", "twt11"

Min-max based indices

• Min-max based indices

• Min-max based indices

- Min-max based indices
 - Possibility of false positives
 - No way to index substrings

- Min-max based indices
 - Possibility of false positives
 - No way to index substrings
- Queries
 - SELECT tweet FROM table WHERE col like "%#tag1%"
 - SELECT tweet FROM table WHERE col like "%#tag1%" AND/OR "%#tag2%"

Bitmap Index

Rowld	Name	Married	Age	
1	Alice	Y	20-30	
2	Bob	N	20-30	
3	Carol	N	30-40	5
4	Dave	N	30-40	
5	Ed	Y	40-50	

Bitmap Index										
Ма	Married Age									
Y	N	20-30	30-40	40-50						
1	0	1	0	0						
0	1	1	0	0						
0	1	0	1	0						
0	1	0	1	0						
1	0	0	0	1	~					
		Л								
R	un Le	engthE	Incodir	ng						
Mai	ried		Age							
Y	Ν									
1* 1	1*0	2* 1								
3*0	1* 3	3*0								
1* 1	1*0		1*0							

Married="Y"	Married="Y" AND Age="40-50"							
1	1	0	0					
0		0	0					
0	0 AND	0	0					
0	0	0	0					
1	1	1	1					

Roaring Bitmap

- Divides the data into chunks of (2¹⁶=65536) integers (e.g., [0, 2¹⁶), [2¹⁶, 2 x 2¹⁶), ...).
- Each chunk can be stored in a uncompressed bitmap, a simple list of integers, or a list of runs.
- Fast random access.

Apache Hive

- Data warehouse solution running on Hadoop.
- Allows users to use the query language HiveQL to write, read and manage datasets in distributed storage structures.
- Allows creation of Orc based tables.

Apache HBase

- Column oriented key-value store.
- The major operations that define a key-value database are put(key, value), get(key) and delete(key).
- Data in HBase is organized as labeled tables containing rows, each row is defined by a sorting key and an arbitrary number of columns.
- High throughput and low input/output latency

Lightweight Bitmap Indexing Framework

- The Orc reader/writer are modified to use our indexing framework.
- The key-value store and bitmap compression algorithm to use are easily replaceable.

Framework Interface

Listing 1: Interface for Indexing framework

```
1 public interface IBitmapIndexingFramework {
       /* find indexable keys in column fields */
 2
 3
       String[] findKeys(String column);
 4
       /* determine if search predicate is usable by framework */
 5
       boolean isProcessable (String ast);
6
7
8
       /* create bitmap index from rownumber and column */
9
       boolean createBitmap(int rowNr, String column);
10
       /* store all key-bitmap pairs in key-value store */
11
12
       boolean storeKeyBitmap(String[] args);
13
14
       /* get bitmap index for a single key */
15
       byte[] getKeyBitmap(String[] args);
16 }
```

- Current implementation uses function to find hashtags, HBase for storage and Roaring bitmap for compression
- Users are free to use their own implementations
 - bitmap compression method
 - key-value store
 - method to find keys

Framework Use in Hive

Listing 2: HiveQL for Bitmap Index creation/use

```
1 /* bitmap index creation */
2
  CREATE TABLE tblorc(id INT, tweet VARCHAR) STORED AS ORC;
  SET hive.optimize.bitmapindex=true;
3
   SET hive.optimize.bitmapindex.format=tbl0rc/tweet/;
4
  SET hive.optimize.bitmapindex.framework='com.BIFramework';
5
  INSERT INTO tblorc SELECT id, tweet FROM tblCSV;
6
  /* bitmap index usage */
7
  SET hive.optimize.ppd=true:
8
   SET hive.optimize.index.filter=true;
9
  SET hive.optimize.bitmapindex=true;
10
  SELECT * FROM tblorc WHERE tweet LIKE '%#tag%';
11
```

- Orc File -> Stripe (64 MB) -> Rowgroup (10,000 rows) -> Row (Rownumber)
- To determine stripe number and rowgroup number from row number the number of rowgroups must be made consistent across stripes in a file.
- Ghost rowgroups added to stripes than contain less rowgroups than the maximum rowgroups per stripe.

rownr	tweet				0	twt0 #tag1
0	twt0 #tag1			rgu	1	twt1
1	twt1		str0	1	2	twt2
2	twt2			rgı	3	twt3
3	twt3				4	twt4
4	twt4			rg0	5	twt5
5	twt5		str1		6	twt6
6	twt6			rg1	7	twt7 #tag?
7	twt7 #tag2				8	twt8
8	twt8	$ \Rightarrow$		rg0	0	twt0
9	twt9				10	twt10
10	twt10		str2	rg1	10	1.11
11	twt11				11	twt11
12	twt12			n a?	12	twt12
13	twt12			1g2	13	twt13
14	twt14			0	14	twt14
15	twt15			rgu	15	twt15
16	twt16 #tag1#tag2		str3		16	twt16 #tag1 #tag2
17	twt17			rg1	17	twt17

(a) Sample dataset

(b) Sample dataset stored in Orc

str0

str1

rownr	tweet	
0	twt0 #tag1	
1	twt1	
2	twt2	
3	twt3	
4	twt4	
5	twt5	
6	twt6	
7	twt7 #tag2	
8	twt8	$ \Rightarrow$
9	twt9	
10	twt10	
11	twt11	
12	twt12	
13	twt13	
14	twt14	
15	twt15	
16	twt16 #tag1#tag2	
17	twt17	

(a)	Sample	dataset
-----	--------	---------

(b) Sample dataset stored in Orc

twt0 #tag1

twt1

twt2

twt3 twt4

twt5

twt6

twt7 #tag2

twt8

twt9

twt10

twt11 twt12

twt13 twt14

twt15

16 twt16 #tag1 #tag2

0

2

3

 $rg0 \frac{4}{5}$

6

7

9 10

11

rg2 12

rg0 14

rg0

rg1

rg1

rg0

str2 rg1

str3

_			
	rall	0	twt0 #tag1
	igu	1	twt1
	1	2	twt2
str0	rgı	3	twt3
[2	4	
	grg2	5	
		6	twt4
	rgo	7	twt5
[8	twt6
stri	rgı	9	twt7 #tag2
1 1	-	10	
	grg2	11	
\square	0	12	twt8
	rgu	13	twt9
	n ce 1	14	twt10
str2	igi	15	twt11
		16	twt12
	rg2	17	twt13
		18	twt14
	rgu	19	twt15
		20	twt16 #tag1 #tag2
otr?	ra1	20	the stage stage
str3	rgl	20	twt17
str3	rg1	20 21 22	twt17

(c) Sample dataset stored in Orc with ghost rowgroups

rownr	tweet	
0	twt0 #tag1	
1	twt1	
2	twt2	
3	twt3	
4	twt4	
5	twt5	
6	twt6	
7	twt7 #tag2	
8	twt8	
9	twt9	
10	twt10	
11	twt11	
12	twt12	
13	twt13	
14	twt14	
15	twt15	
16	twt16 #tag1#tag2	
17	twt17	

(a) Sample dataset

twt0 #tag1 0 rg0 twt1 str0 twt2 rg1 3 twt3 twt4 rg0 5 twt5 str1 twt6 6 rg1 twt7 #tag2 7 twt8 8 rg0 twt9 9 10 twt10 str2 rg1 twt11 twt12 rg2 twt13 13 twt14 14 rg0 twt15 15 str3 16 twt16 #tag1 #tag2 rgl 17 twt17

(b) Sample dataset stored in Orc

	rall	0	twt0 #tag1	
	igo	1	twt1	
	n a1	2	twt2	
stru	rgı	3	twt3	
		4		
	grg2	5		~
		6	twt4	5/
	rgu	7	twt5	
-4-1		8	twt6	
stri	rgı	9	twt7 #tag2	
	2	10		
	grg2	11		
		12	twt8	
	rgo	13	twt9	
	ro1	14	twt10	
str2	igi	15	twt11	
		16	twt12	
	1g2	17	twt13	
		18	twt14	
	rgo	19	twt15	
atr2	ra1	20	twt16 #tag1 #tag2	
511.5	IgI	21	twt17	
	ana)	22		
	gig2	23		

(c) Sample dataset stored in Orc with ghost rowgroups

stripe	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3	3	3
supe	v	0	0	0	0	v	1	1	1	1	1	1	4	4	-	4	4	4	5	5	5	5	5	5
rowgroup	0	0	1	1	2	2	0	0	1	1	2	2	0	0	1	1	2	2	0	0	1	1	2	2
rownr	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
#tag1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
#tag2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0

(d) Bitmap representation

rownr	tweet	
0	twt0 #tag1	
1	twt1	
2	twt2	
3	twt3	
4	twt4	
5	twt5	
6	twt6	
7	twt7 #tag2	
8	twt8	$ \rightarrow $
9	twt9	
10	twt10	
11	twt11	
12	twt12	
13	twt13	
14	twt14	
15	twt15	
16	twt16 #tag1#tag2	
17	twt17	

(a) Sample dataset

twt0 #tag1 0 rg0 twt1 str0 twt2 rgl 3 twt3 twt4 rg0 5 twt5 str1 twt6 6 rg1 7 twt7 #tag2 twt8 8 rg0 twt9 9 10 twt10 str2 rg1 twt11 twt12 rg2 twt13 13 twt14 rg0 15 twt15 str3 16 twt16 #tag1 #tag2 rgl 17 twt17

(b) Sample dataset stored in Orc

str0	ral	0	twt0 #tag1	
	igo	1	twt1	
	n a1	2	twt2	
	rgı	3	twt3	
	2	4		
	grg2	5		~
		6	twt4	5/
	rgu	7	twt5	
ate 1	-	8	twt6	
sui	Igi	9	twt7 #tag2	
	2	10		
	grgz	11		
	rg0	12	twt8	
		13	twt9	
	rg1	14	twt10	
str2	Igi	15	twt11	
		16	twt12	
	1g2	17	twt13	
str3		18	twt14	
	rgo	19	twt15	
	n n 1	20	twt16 #tag1 #tag2	
	rgı	21	twt17	
		22		
	grg2	23		1
				-

(c) Sample dataset stored in Orc including ghost rowgroups

	_	_				_							_				_	_		_		_	_	_
stripe	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3	3	3
rowgroup	0	0	1	1	2	2	0	0	1	1	2	2	0	0	1	1	2	2	0	0	1	1	2	2
rownr	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
#tag1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
#tag2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0

(d) Sample dataset stored in Orc with ghost rowgroups

Key	Value							
	WorkerNode-OrcFilename							
mrgps	3							
#tag1	Roaring(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0							
#tag2	Roaring(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0							

(e) Key and bitmaps

Query processing using Bitmap Indices

- SELECT tweet FROM tweets WHERE tweet like "%#tag1%" OR tweet like "%#tag2%"
 - Predicate: tweet like "%#tag1%" OR tweet like "%#tag2%"
 - #tag1 = RoaringBitmap(Stripe0, Stripe1,...,StripeN)
 - #tag2 = RoaringBitmap(Stripe0, Stripe1,...,StripeN)
 - maxRowgroupsPerStripe = value
 - rowsPerRowGroup = 10000
 - Stripes: (Stripe0, Stripe1,...)
 - Slice: Slice(bitmap, StartStripe, EndStripe)
 - Slice(#tag1, 0, 1) and Slice(#tag2, 0, 1)
 - #tag1 = RoaringBitmap(Stripe0, Stripe1)
 - #tag2 = RoaringBitmap(Stripe0, Stripe1)
 - resultBitmap = #tag1 OR #tag2
 - Calculate Stripes and Rowgroups

Calc(resultBitmap, maxRowgroupsPerStripe, rowsPerRowgroup)

Experiments

- Distributed cluster on Microsoft Azure with 1 node acting as master and 7 nodes as slaves.
- Ubuntu OS with 4 VCPUS, 8 GB memory, 192 GB SSD
- Hive 2.2.0, HDFS 2.7.4 and HBase 1.3.1
- Datasets
 - Three datasets: 55GB, 110GB and 220GB
 - Schema for the datasets contains 13 attributes [tweetYear, tweetNr, userIdNr, username, userId, latitude, longitude, tweetSource, reTweetUserIdNr, reTweetUserId, reTweetNr, tweetTimeStamp, tweet]

Dataset	Tuples	Total HashTags	Unique Hastags	Orc Files	Stripes	Rowgroups
Tweets55	192,665,259	32,534,370	5,363,727	66	285	19,360
Tweets110	381,478,160	62,281,496	9,063,962	128	624	38,351
Tweets220	765,196,395	126,603,736	16,149,621	224	1342	76,918

Queries Used

LIKE:

SELECT tweetSource, COUNT(*) as Cnt FROM TableName WHERE tweet LIKE '%hashtag1%'

GROUP BY tweetSource;

OR-LIKE:

SELECT tweetSource, COUNT(*) as Cnt FROM TableName

WHERE (tweet LIKE '%hashtag1%' OR tweet LIKE '%hashtag2%',...)

GROUP BY tweetSource;

JOIN:

SELECT t1.tweetSource, COUNT(*) as Cnt FROM TableName AS t1 JOIN TableName AS t2 JOIN (t1.tweetNr = t2.reTweetNr) WHERE t1.tweetNr != -1 AND (t1.tweet LIKE '%hashtag1%')

AND (t2.tweet LIKE '%hashtag1%')

GROUP BY t1.tweetSource;

LIKE Queries

(a) Execution times for LIKE queries on Tweets220

(b) Stripes/Rowgroups accessed by LIKE queries on Tweets220

LIKE and OR-LIKE Queries

(a) Execution times for LIKE and OR-LIKE queries on Tweets 220

(b) Stripes/Rowgroups accessed by OR-LIKE queries on Tweets220

JOIN Queries

(a) Execution times for JOIN queries on Tweets220

(b) Stripes/Rowgroups accessed by JOIN queries on Tweets220

Index Creation Times and Sizes

(a) Tweets datasets and their Index sizes

• Size of bitmap indices and the the Hbase table where they are stored are substantially smaller their Orc based tables.

(b) Index creation times for Tweets datasets

• Runtime overhead due to the index creation process.

Related Work

- Bitmap Index for Database Service (BIDS)
 - Peng Lu, Sai Wu, Lidan Shou, and Kian-Lee Tan. 2013. An efficient and compact indexing scheme for large-scale data store. In Data Engineering (ICDE), 2013 IEEE 29th International Conference on. IEEE, 326–337.
 - Uses WAH[3], bit-sliced encoding or partial indexing depending on the data characteristics.
 - The compute nodes are organized according to the Chord protocol, and the indexes are distributed across the nodes.
- Pilosa
 - Open source (https://www.pilosa.com/)
 - Modified version of roaring bitmap for compression.
 - Bitmaps are stored in disk using their own data model.

Related Work

- Bitmap Index for Database Service (BIDS)
 - Peng Lu, Sai Wu, Lidan Shou, and Kian-Lee Tan. 2013. An efficient and compact indexing scheme for large-scale data store. In Data Engineering (ICDE), 2013 IEEE 29th International Conference on. IEEE, 326–337.
 - Uses WAH[3], bit-sliced encoding or partial indexing depending on the data characteristics.
 - The compute nodes are organized according to the Chord protocol, and the indexes are distributed across the nodes.
- Pilosa
 - Open source (https://www.pilosa.com/)
 - Modified version of roaring bitmap for compression.
 - Bitmaps are stored in disk using their own data model.

- Existing Work
 - Use a fixed compression algorithm
 - Lock users to their specific implementation to store, distribute and retrieve bitmap indices.

Conclusion

- A lightweight, flexible and open source bitmap indexing framework is proposed to efficiently index and search for substrings in big data.
- Execution times can be significantly accelerated for queries with high selectivity.
- Storage costs are minimal.
- Initial runtime overhead due to the index creation process.

Thank You - DOLAP 2019

- Workshop Chairs
 - II-Yeol Song, Drexel University, United States (General Chair)
 - Oscar Romero, Universitat Politecnica de Catalunya, Spain (Program Chair)
 - Robert Wrembel, Poznan University of Technology, Poland (Program Chair)
- Steering Committee
- Program Committee

References

[1] https://www.quintly.com/blog/instagram-study

[2] https://www.slideshare.net/Hadoop_Summit/orc-file-optimizing-your-big-data

[3] Kesheng Wu, Ekow J Otoo, and Arie Shoshani. 2006. Optimizing bitmap indices with efficient compression. ACM Transactions on Database Systems (TODS) 31, 1 (2006), 1–38.