
Efficient Indexing of Hashtags using
Bitmap Indices

DOLAP 2019 - Lisbon (Portugal) - Mar 26, 2019
Lawan Subba, Christian Thomsen and Torben Bach Pedersen

Aalborg University, Denmark

Outline

1. Introduction
a. Hashtags

2. Background
a. Apache Orc
b. Bitmap Index
c. Apache Hive
d. Apache HBase

3. Lightweight Bitmap Indexing Framework
a. Framework Interface
b. Framework Use in Hive
c. Index Creation
d. Query processing Using Bitmap Index

4. Experiments
5. Related Work
6. Conclusion 2

Introduction

● Social media platforms like
Facebook, Instagram and Twitter
have millions of active monthly
users.

● Enormous amounts of data being
generated regularly means that
rapidly accessing relevant data
from data stores is just as
important as its storage.

3

Number of active monthly users (Millions)

● A keyword containing numbers and
letters preceded by a hash sign(#)

● Simplicity and lack of formal syntax

Hashtags

4

Distribution of Hashtags used in 8.9 million instagram
posts in 2018 [1]

Hashtags

● A keyword containing numbers and
letters preceded by a hash sign(#)

● Simplicity and lack of formal syntax
● Challenge

○ SELECT COUNT(*) FROM table
WHERE (tweet LIKE “%#tag1%”)

○ SELECT COUNT(*) FROM table
WHERE (tweet LIKE “%#tag1%” OR …)

○ SELECT COUNT(*) FROM table
WHERE (tweet LIKE “%#tag1%” AND …)

5

Distribution of Hashtags used in 8.9 million instagram
posts in 2018 [1]

Contributions

● An open source, lightweight and flexible distributed bitmap indexing
framework for big data which integrates with commonly used tools incl.
Apache Hive and Orc.

● The bitmap compression algorithm to use and key-value store to store indices
are easily swappable.

● Demonstrate that search for substrings like hashtags in tweets can be greatly
accelerated by using our bitmap indexing framework.

6

Apache Orc

● Storing data in a columnar format lets the
reader read, decompress, and process only the
values that are required by the current query.

● Stripes=64MB and rowgroups = 10,000 rows
● Min-max based Indices are created at

rowgroup, stripe and file level.

7Orc File Format [2]

Apache Orc

8

● Min-max based indices

Apache Orc

9

● Min-max based indices

Apache Orc

10

● Min-max based indices

Apache Orc

11

● Min-max based indices
○ Possibility of false positives
○ No way to index substrings

Apache Orc

12

● Min-max based indices
○ Possibility of false positives
○ No way to index substrings

● Queries
○ SELECT tweet FROM table WHERE col like “%#tag1%”
○ SELECT tweet FROM table WHERE col like “%#tag1%” AND/OR “%#tag2%”

Bitmap Index

13

Bitmap Index Example

Roaring Bitmap

● Divides the data into chunks of (216=65536) integers (e.g., [0, 216), [216, 2 x 216), …).
● Each chunk can be stored in a uncompressed bitmap, a simple list of integers, or a

list of runs.
● Fast random access.

14

Apache Hive
● Data warehouse solution running on Hadoop.
● Allows users to use the query language HiveQL to write, read and

manage datasets in distributed storage structures.
● Allows creation of Orc based tables.

15

Apache HBase
● Column oriented key-value store.
● The major operations that define a key-value database are put(key, value),

get(key) and delete(key).
● Data in HBase is organized as labeled tables containing rows, each row is

defined by a sorting key and an arbitrary number of columns.
● High throughput and low input/output latency

Lightweight Bitmap Indexing Framework

16

● The Orc reader/writer are
modified to use our indexing
framework.

● The key-value store and bitmap
compression algorithm to use
are easily replaceable.

Framework Interface

17

● Current implementation uses function to find hashtags, HBase for storage and
Roaring bitmap for compression

● Users are free to use their own implementations
○ bitmap compression method
○ key-value store
○ method to find keys

Listing 1: Interface for Indexing framework

Framework Use in Hive

18

Listing 2: HiveQL for Bitmap Index creation/use

Index Creation

● Orc File -> Stripe (64 MB) -> Rowgroup (10,000 rows) -> Row (Rownumber)
● To determine stripe number and rowgroup number from row number the

number of rowgroups must be made consistent across stripes in a file.
● Ghost rowgroups added to stripes than contain less rowgroups than the

maximum rowgroups per stripe.

19

Index Creation

20

(a) Sample dataset (b) Sample dataset
stored in Orc

Index Creation

21

(a) Sample dataset (b) Sample dataset
stored in Orc

(c) Sample dataset
stored in Orc with
ghost rowgroups

Index Creation

22

(a) Sample dataset (b) Sample dataset
stored in Orc

(c) Sample dataset
stored in Orc with
ghost rowgroups

(d) Bitmap representation

Index Creation

23

(a) Sample dataset (b) Sample dataset
stored in Orc

(c) Sample dataset
stored in Orc including
ghost rowgroups

(d) Sample dataset
stored in Orc with
ghost rowgroups

(e) Key and bitmaps

Query processing using Bitmap Indices

24

Experiments

● Distributed cluster on Microsoft Azure with 1 node acting as master and 7
nodes as slaves.

● Ubuntu OS with 4 VCPUS, 8 GB memory, 192 GB SSD
● Hive 2.2.0, HDFS 2.7.4 and HBase 1.3.1
● Datasets

○ Three datasets: 55GB, 110GB and 220GB
○ Schema for the datasets contains 13 attributes [tweetYear, tweetNr, userIdNr, username,

userId, latitude, longitude, tweetSource, reTweetUserIdNr, reTweetUserId, reTweetNr,
tweetTimeStamp, tweet]

25

Queries Used

26

27

(a) Execution times for LIKE queries on Tweets220

(b) Stripes/Rowgroups accessed by LIKE queries on Tweets220

LIKE Queries

28

LIKE and OR-LIKE Queries

(a) Execution times for LIKE and OR-LIKE queries on Tweets 220

(b) Stripes/Rowgroups accessed by OR-LIKE queries on Tweets220

29

JOIN Queries

(a) Execution times for JOIN queries on Tweets220 (b) Stripes/Rowgroups accessed by JOIN queries on Tweets220

30

Index Creation Times and Sizes

(a) Tweets datasets and their Index sizes (b) Index creation times for Tweets datasets

● Size of bitmap indices and the
the Hbase table where they are
stored are substantially smaller
their Orc based tables.

● Runtime overhead due to the
index creation process.

Related Work
● Bitmap Index for Database Service (BIDS)

○ Peng Lu, Sai Wu, Lidan Shou, and Kian-Lee Tan. 2013. An efficient and compact indexing
scheme for large-scale data store. In Data Engineering (ICDE), 2013 IEEE 29th
International Conference on. IEEE, 326–337.

○ Uses WAH[3], bit-sliced encoding or partial indexing depending on the data characteristics.
○ The compute nodes are organized according to the Chord protocol, and the indexes are

distributed across the nodes.

● Pilosa
○ Open source (https://www.pilosa.com/)
○ Modified version of roaring bitmap for compression.
○ Bitmaps are stored in disk using their own data model.

31

Related Work
● Bitmap Index for Database Service (BIDS)

○ Peng Lu, Sai Wu, Lidan Shou, and Kian-Lee Tan. 2013. An efficient and compact indexing
scheme for large-scale data store. In Data Engineering (ICDE), 2013 IEEE 29th
International Conference on. IEEE, 326–337.

○ Uses WAH[3], bit-sliced encoding or partial indexing depending on the data characteristics.
○ The compute nodes are organized according to the Chord protocol, and the indexes are

distributed across the nodes.

● Pilosa
○ Open source (https://www.pilosa.com/)
○ Modified version of roaring bitmap for compression.
○ Bitmaps are stored in disk using their own data model.

32

● Existing Work
○ Use a fixed compression algorithm
○ Lock users to their specific implementation to store, distribute and retrieve bitmap indices.

Conclusion

● A lightweight, flexible and open source bitmap indexing framework is
proposed to efficiently index and search for substrings in big data.

● Execution times can be significantly accelerated for queries with high
selectivity.

● Storage costs are minimal.
● Initial runtime overhead due to the index creation process.

33

Thank You - DOLAP 2019

34

● Workshop Chairs
○ Il-Yeol Song, Drexel University, United States (General Chair)
○ Oscar Romero, Universitat Politecnica de Catalunya, Spain (Program

Chair)
○ Robert Wrembel, Poznan University of Technology, Poland (Program

Chair)
● Steering Committee
● Program Committee

References

35

[1] https://www.quintly.com/blog/instagram-study

[2] https://www.slideshare.net/Hadoop_Summit/orc-file-optimizing-your-big-data

[3] Kesheng Wu, Ekow J Otoo, and Arie Shoshani. 2006. Optimizing bitmap indices with efficient
compression. ACM Transactions on Database Systems
(TODS) 31, 1 (2006), 1–38.

