

Profiling user belief in BI exploration for measuring subjective interestingness

<u>Alexandre Chanson</u>, Ben Crulis, Krista Drushku, Nicolas Labroche, Patrick Marcel DOLAP 2019 - 26 March 2019

University of Tours

What is Alice best next move?

In fact, it depends!

A very subjective question?

We would need to "brain dump" analysts

What is subjective interestingness?

Objective interestingness

- \cdot user agnostic, based only on data
- generality, reliability, peculiarity, diversity and conciseness,
- directly measurable evaluation metrics: support confidence, lift or chi-squared measures in the case of association rules
- summaries: compact descriptions of raw data at different concept levels (Geng & Hamilton)

Subjective interestingness

- characterize the patterns' surprise and novelty when compared to **previous user knowledge** or **expected data distribution**
- user adaptive exploration
- subjective interestingness for explorative data mining

De Bie's framework

- + a pattern p \approx restriction of data space
- a belief(p) ≈ prior knowledge as a probability distribution over the pattern space
- surprise(p) = -log(belief(p))

Two main problems:

- Define the "pattern"
 - Cell?
 - Query?
 - Query parts?
- Learn the belief function
 - how to take into account the specificities of BI?
 - how can we decide that two pieces of information are related in BI?
 - do we consider the **usage** (the query logs)?
 - do we consider the **structure** (the DB schema)?

Our proposal

Classically, a query part is either:

- \cdot A group by set attribute
- A measure
- \cdot A selection predicate

Query parts as patterns

Our recipe so far

- consider a graph where vertices are query parts and edges are relations (precedence, co-occurrence) between them
- $\cdot\,$ the user does a random walk over this graph
- the long term distribution of the user gives a measure of importance of the query parts
- it can be computed with a Page Rank
- or better, by a Topic-Specific Page Rank: a Page Rank where the user's query parts are more important than the others

Baking the pie

Logs 01:09 Action Al 01:09 Action A1 01:09 Action A2 01:09 Action A2 01:09 Action A3 01:09 Action A3 01:09 Action A4 011 ction A4 01:09 Action AS ction AS 01:09 Action Estimates Alice's Log Alice Alice's Graph Topic Specific PageRank Final Graph Common Graph Cube Schema

Experiments

- Artificial data generated with CubeLoad [1]
- mimic prototypical explorations
- More "consistent" than real users
- Less noisy
- Only 4 profiles

Figure 3: CubeLoad Templates

Protocol of the qualitative experiment

• determine if there is a belief profile that is representative of each CubeLoad template

Different user different beliefs

Protocol of the quantitative experiment

Introducing a user agnostic recommender in the loop Robustness to logs exploring different regions (of the cube)

Tests\References	Explorative	Goal Oriented	Slice All	Slice and Drill	
Explorative	0.64	0.60	0.47	0.60	
Goal Oriented	0.64	0.61	0.46	0.60	
Slice All	0.67	0.63	0.47	0.62	
Slice and Drill	0.63	0.60	0.43	0.58	
				Conservative behavior	
Explorative behavior				Cognitive bubble ?	

Average Hellinger distance values on 10 runs when log files are identical

- First attempt to model belief in BI
- Capture potential relations between user knowledge as a graph
- \cdot \Rightarrow use well-known Page-Rank for estimating probabilities
- Experiments
 - Different simulated user templates == different beliefs distributions
 - Possible detection of the cognitive bubble phenomena

On-going and Future work

- What about belief distribution over cell contents?
 - theoretically appealing but computationally painful...
 - $\cdot \,$ (but we're on it)
- \cdot What about belief evolution along the exploration?
- Subjective interestingness is a trade-off between surprise and complexity of description
 - how to measure complexity of description in BI?
- How to validate a user "brain dump"?
 - Perform a user study based on an improved query recommender system with interestingness

Questions?

S. Rizzi and E. Gallinucci. Cubeload: A parametric generator of realistic OLAP workloads. In Advanced Information Systems Engineering - 26th International Comparison of Comp

In Advanced Information Systems Engineering - 26th International Conference, CAiSE 2014, Thessaloniki, Greece, June 16-20, 2014. Proceedings, pages 610–624, 2014.