
Binary Classification in Unstructured Space With

Hypergraph Case-Based Reasoning

(Additional Material)

Alexandre Quemy

IBM Krakow Software Lab, Cracow, Poland

Faculty of Computing, Poznań University of Technology, Poznań, Poland

Introduction

This document contains additional material for the paper ’Binary Clas-
sication in Unstructured Space With Hypergraph Case-Based Reasoning’,
accepted for publication in the Information Systems special issue from DOLAP
2018.
This material includes:

• Section 1: A formal proof of the training algorithm convergence,

• Section 2: The average confusion matrix obtained in the experiments
on structured datasets,

• Sections 3 and 4: The detailed comparison of HCBR with other methods
(w.r.t. accuracy and MCC),

• Section 5: The evolution of MCC depending on the training set size,

• Section 6: A discussion on the learning curves,

• Section 7: The hyperparameters for the genetic algorithms used to
assess the model space limitation,

• Section 8: A discussion on the model locality.

Email address: aquemy@pl.ibm.com (Alexandre Quemy)

Preprint submitted to Information Systems March 8, 2019

1. On the convergence of the training algorithm

For a training iteration k, let assume a case xi with a strength Sk(xi)
that is wrongly classified. The update rule on µ implies that Sk+1(xi) ∈
[−|Sk(xi)|, Sk(xi)]. Any case xj such that xi ∩ xj 6= ∅ is modified, and in the
same direction (toward the same class). Let us assume that Sk(xi) < 0 such
that after the update rule Sk+1(xi) > Sk(xi). Then, Sk+1(xj) > Sk(xj).

The only problematic case is when yj = 0, Sk(xj) < 0 but Sk+1(xj) > 0
(that is to say that xj become wrongly classified due to the modification of µ
involved by xi).

Let us consider any µl for a el that is included in xi and xj. When µl is
modified, then |S(xj)| is smaller because by definition |w(el, xj)µl| ≤ |S(xj)|.

As a result, both the case that triggers the modification of µ and the cases
that are consequently modified have a strength that is closer to 0 than before
the modification.

Therefore, there are only two possible cases:

• All cases become correctly classified and the process stops.

• Some cases cannot be properly classified within the model space and
switch iterations after iterations between classes. Their strength con-
verges toward 0. It does not imply that the process converges toward
the best possible accuracy.

2

2. Average confusion matrix obtained with a 10-fold cross-validation.

Table 1: Average confusion matrix obtained with a 10-fold cross-validation.

TP FN FP TN

adult
without tuning 2182.4 295.3 288.5 488.8
with tuning 2226.6 245.3 311.4 472.7

breast
without tuning 23.0 1.4 0.7 43.9
with tuning 23.5 1.1 0.4 44.0

heart
without tuning 12.4 1.8 1.9 9.9
with tuning 13.5 1.0 1.4 10.1

mushrooms without tuning 390.6 0.0 0.0 420.4

phishing
without tuning 595.4 23.8 19.8 465.0
with tuning 599.1 19.2 15.9 468.9

skin
without tuning 4886.3 132.4 199.4 19286.9
with tuning 4888.3 130.4 194.1 19292.2

splice
without tuning 155.7 9.1 8.5 142.7
with tuning 156.2 8.6 6.9 144.3

3

3. Comparison of HCBR with several methods (Scikit-Learn im-
plementation) w.r.t. MCC.

Table 2: Comparison of HCBR with several methods (Scikit-Learn implementation) w.r.t.
MCC.

Dataset Method MCC #

adult

HCBR 0.5146 3
AdaBoost 0.5455 1
k-NN 0.4785 7
Linear SVM 0.4918 5
RBF SVM 0.5065 4
Decision Tree 0.4821 6
Rand. Forest 0.3776 8
Neural Net 0.5349 2
Naive Bayes 0.2493 9
QDA 0.4785 7

breast

HCBR 0.9222 3
AdaBoost 0.9023 6
k-NN 0.9163 4
Linear SVM 0.9126 5
RBF SVM 0.8829 8
Decision Tree 0.8760 9
Rand. Forest 0.9296 1
Neural Net 0.9280 2
Naive Bayes 0.8991 7
QDA 0.8616 10

heart

HCBR 0.7082 1
AdaBoost 0.5972 6
k-NN 0.5879 7
Linear SVM 0.6849 4
RBF SVM 0.6287 5
Decision Tree 0.5763 8
Rand. Forest 0.5703 9
Neural Net 0.6995 2
Naive Bayes 0.6932 3
QDA 0.4500 10

mushrooms

HCBR 0.9995 2
AdaBoost 1.0000 1
k-NN 0.9993 3
Linear SVM 1.0000 1
RBF SVM 0.9990 5
Decision Tree 0.9991 4
Rand. Forest 0.8840 7
Neural Net 1.0000 1
Naive Bayes 0.9767 6
QDA 1.0000 1

Dataset Method MCC #

phishing

HCBR 0.9191 1
AdaBoost 0.8637 6
k-NN 0.9138 4
Linear SVM 0.8740 5
RBF SVM 0.9286 2
Decision Tree 0.8585 7
Rand. Forest 0.7582 8
Neural Net 0.9448 1
Naive Bayes 0.5292 10
QDA 0.5872 9

skin

HCBR 0.9551 4
AdaBoost 0.8552 8
k-NN 0.9982 1
Linear SVM 0.8090 9
RBF SVM 0.9950 3
Decision Tree 0.9544 5
Rand. Forest 0.9539 6
Neural Net 0.9967 2
Naive Bayes 0.7600 10
QDA 0.9483 7

splice

HCBR 0.8857 2
AdaBoost 0.8801 3
k-NN 0.6072 9
Linear SVM 0.7282 8
RBF SVM 0.8461 4
Decision Tree 0.8998 1
Rand. Forest 0.5925 10
Neural Net 0.8390 5
Naive Bayes 0.7595 7
QDA 0.8251 6

4

4. Comparison of HCBR with several methods (Scikit-Learn im-
plementation) w.r.t. accuracy.

Table 3: Comparison of HCBR with w.r.t. accuracy.
Dataset Method Acc. #

adult

HCBR 0.8232 5
AdaBoost 0.8444 1
k-NN 0.8156 7
Linear SVM 0.8274 4
RBF SVM 0.8327 3
Decision Tree 0.7918 8
Rand. Forest 0.8223 6
Neural Net 0.8378 2
Naive Bayes 0.4675 10
QDA 0.7528 9

breast

HCBR 0.9833 1
AdaBoost 0.9563 4
k-NN 0.9614 3
Linear SVM 0.9614 3
RBF SVM 0.9457 7
Decision Tree 0.9429 9
Rand. Forest 0.9543 5
Neural Net 0.9671 2
Naive Bayes 0.9533 6
QDA 0.9430 8

heart

HCBR 0.8538 1
AdaBoost 0.8037 6
k-NN 0.7926 7
Linear SVM 0.8444 3
RBF SVM 0.8148 5
Decision Tree 0.7556 9
Rand. Forest 0.7741 8
Neural Net 0.8519 2
Naive Bayes 0.8444 3
QDA 0.8185 4

mushrooms

HCBR 0.9998 2
AdaBoost 1.0000 1
k-NN 0.9996 3
Linear SVM 1.0000 1
RBF SVM 0.9995 4
Decision Tree 0.9996 3
Rand. Forest 0.9582 6
Neural Net 1.0000 1
Naive Bayes 0.9882 5
QDA 1.0000 1

Dataset Method Acc. #

phishing

HCBR 0.9645 3
AdaBoost 0.9477 8
k-NN 0.9505 7
Linear SVM 0.9532 6
RBF SVM 0.9550 5
Decision Tree 0.9625 4
Rand. Forest 0.9738 1
Neural Net 0.9726 2
Naive Bayes 0.7062 10
QDA 0.7656 9

skin

HCBR 0.9847 4
AdaBoost 0.9399 7
k-NN 0.9994 1
Linear SVM 0.9297 8
RBF SVM 0.9984 3
Decision Tree 0.9456 5
Rand. Forest 0.9415 6
Neural Net 0.9989 2
Naive Bayes 0.8802 9
QDA 0.8978 10

splice

HCBR 0.9430 3
AdaBoost 0.9528 2
k-NN 0.7843 10
Linear SVM 0.8645 9
RBF SVM 0.9230 7
Decision Tree 0.9415 4
Rand. Forest 0.9399 5
Neural Net 0.9195 8
Naive Bayes 0.9245 6
QDA 0.9838 1

5

5. Matthew Correlation Coefficient depending on the training set
size.

Figure 1: Matthew Correlation Coefficient depending on the training set size.

6

6. Discussion on the learning curves

6.1. Heuristic

In almost all datasets, in particular phishing and skin, many input vectors
are the same, but with different output (e.g. for skin it’s 583 cases i.e. 5.27%
of the dataset). By definition, there is no way to distinguish between those
vectors, so the best we can do is to assign the class with the highest prevalence.

In most cases the model choses itself the class with the highest prevalence
among those redundant input vectors or if it does not, it has very little impact
(because the prevalence is close to 0.5 and the size of the redundant vector
set is small in comparison to the dataset size).

The heuristic consists in estimating the prevalence of the set of redundant
vectors in the training set, and then in bypassing the model prediction with
the class associated to this prevalence. For instance, the overall prevalence
of phishing is 0.5562 but the prevalence of the redundant vectors is 0.9674.
About 5.27% of the test set should consists of cases already in the casebase,
among which 0.9674 are of class 1. It represents the insurance of a 5.27 x
0.9674 = 5.20% of the training set correctly labeled.

The reason why the heuristic works in this case is because the prevalence
of the redundant vectors set is higher than the accuracy obtained by the
model (about 92.5% versus 96%). The gain corresponds exactly to this 5.20%
(because without the heuristic, with the grain used by the experiment, the
model uses the wrong label).

This heuristic is independant of HCBR as it could be applied to any
margin-based discrimative methods (e.g. SVM also cannot discriminate
between redundant points with different labels).

6.2. Learning curve

The learning curves for phishing and skin are surprising for two reasons.
First, the test accuracy is significantly higher than the training accuracy
as depicted by Figure A6.1 and A6.2. The prediction phase on those two
datasets uses the heuristic described above. For both datasets, the difference
in accuracy between the two curves is much higher than the possible gain
due to the heuristic. The learning curves for the same experiment without
the heuristic are displayed on Figures A6.3 and A6.4 and it seems to explain
perfectly the phenomena. Notice that this is specific to those two datasets
that contains several redundant points with the same output. For instance,
the heuristic is activated also on splice but as the number of redundant

7

elements is very low w.r.t. the dataset size, the impact on the accuracy is not
significant.

Figure 2: Learning curves on phishing and skin datasets. The accuracy on the test set is
higher than on the training set. On the training set, the accuracy starts by increasing and
remains globally stable (with a drop for skin).

Figure 3: Learning curves on phishing and skin datasets without the heuristic. Compared
to Figure 2, the learning curve behave as expected in theory.

8

Figure 4: Learning curves on phishing for very small training set sizes.

7. Hyperparameters for the genetic algorithm.

Table 4: Hyperparameters for the genetic algorithm. Mutation σ factor is a factor used to

set the standard deviation of the gaussian mutation. We use σ = µ−

α where α is the factor
and µ− defined by min

i,j
µi − µj .

Dataset Generations Mutation σ factor
adult 200 10000
breasts 200 10
heart 200 10
phishing 100 1000
skin 100 1000
splice 200 100

9

8. Model Locality

In case x has too many discretionary features, the classification rule is
likely to be irrelevant. Indeed, the intersection between x and FX is to small
to hold enough information and make strong analogies with x. To overcome
this drawback, 2F is split into two subsets:

• F1 = {x ∈ 2F | |x ∩ FX| ≥ δ}, ∀δ ∈ N

• F2 = 2F \ F1

F1 corresponds to the elements s.t. they share some features with the examples.
An alternative may be considered by using F1 = {x ∈ 2F | Dx

|x| ≤ δ}, ∀δ ∈ [0, 1].
In this case, F1 contains the elements for which we have enough information
provided by the examples. From our preliminary tests, the choice depends on
the dataset structure.

Finally, the decision rule for new cases is built as follows:

J̄(x) =

{
J̃(x) if x ∈ F1

ox if x ∈ F2
(R2)

where ox is one draw from a random variable that has Bernoulli law with
parameter p = |{x∈X|J(x)=1}|

|X| , i.e. the prevalence of class 1 in X. It assumes

that the prevalence of X is close to the prevalence over 2F (or that the
prevalence does not change in time for sequential problems in which the new
cases are generated by an unknown random measure). The rationale behind
is that if for a case x, it is not possible to exploit the model built on the
hypergraph, then we can still model J as a Bernoulli random variable and
use a maximum likelihood estimation for p. In a sense, it is extending the
local model to the entire input space 2F.

10

	On the convergence of the training algorithm
	Average confusion matrix obtained with a 10-fold cross-validation.
	Comparison of HCBR with several methods (Scikit-Learn implementation) w.r.t. MCC.
	Comparison of HCBR with several methods (Scikit-Learn implementation) w.r.t. accuracy.
	Matthew Correlation Coefficient depending on the training set size.
	Discussion on the learning curves
	Heuristic
	Learning curve

	Hyperparameters for the genetic algorithm.
	Model Locality

