
V Krajowa Konferencja Inżynierii Oprogramowania, Wrocław 2003

OPHELIA
Software Development Tools Integration Technology∗

Maciej Hapke, Andrzej Jaszkiewicz, Krzysztof Kowalczykiewicz,
Dawid Weiss, Piotr Zielniewicz

Instytut Informatyki, Wydział Informatyki i Zarządzania, Politechnika Poznańska,
{hapke, jaszkiewicz,krzysztof.kowalczykiewicz, dawid.weiss,

piotr.zielniewicz}@cs.put.poznan.pl

Long and painful is the road to success in software development – use shortcuts!

Abstract

This paper is a summary of the OPHELIA project, a tool integration
platform for distributed software development. We present basic concepts of
the project and some of the novel approaches that proved to be interesting
from software engineering point of view. We describe project’s outcomes
and outline the key future perspectives.

1. Introduction

Contemporary software development methodologies define numerous artifact types like
error reports, source code, schedules, test cases or documentation. Development tools aid
in creating and managing these software engineering artifacts. Unfortunately very often
these tools are offered by different software vendors and they vary significantly with the
scope and functionality. They are also specialized, offering aid in a specialized area of
software engineering like requirements management, software model design, project
management, documentation management or risk assessment and control. Finally, it is a
rare case for a software vendor to offer a broad range of tools for all of these different

∗ OPHELIA is a project co-funded by the 5th Framework Program of European Union - IST-

2000-28402/ IST-2000-28402D - and jointly developed by a consortium of academic and
industry partners. http://www.opheliadev.org

V Krajowa Konferencja Inżynierii Oprogramowania, Szklarska Poręba 2003

domains that could cooperate and exchange information across between different project
areas.

Meanwhile one of the most frequent problems with software development is the lack of
consistency between its artifacts. For example, keeping source code and UML model in
sync is a nightmare of every programmer unless the case tool has reverse engineering
capabilities and integration with an IDE environment. The same problem applies to
updating documentation, test cases, schedules and other project elements. It is in general
the problem of reacting to changes introduced to the project and propagating those
changes on related elements. The additional effort this operation requires, unless
supported by integrated tools, is usually higher than the payoff; that is the main reason
most software projects abandon documentation and UML models at certain point of
complexity or their lifecycle. Tight development tools’ integration can help in keeping the
software project consistent and prevent proliferation of redundant (and obsolete) project
artifacts by automating some of tedious tasks related to change propagation and
notification. Unfortunately, what we have already pointed out, most software vendors
provide specialized, black-box products that lack wide integration facilities.

All these problems need resolution to improve the way software projects are run. Two
possible approaches could be distinguished. One of them is to develop a set of tools that
build complete unified and distributed environment for managing all software artifacts.
Some vendors already provide solutions of such flavor [WWW2003a,c,d]. Commercial
software packages are usually of limited availability to small or mid-size companies
because of their price (on the other hand, one could argue whether such small companies
really need complex distributed development aid). Open source packages and solutions,
such as [WWW2003c] require shifting the development process to specific tools, which
is sometimes an obstacle.

An alternative approach is to develop a framework that could bring together existing
software development tools from different domains and create an abstraction layer
consolidating them and adopting them for use in an enterprise environment. The
abstraction layer here would not only create a bundle of different tools, but also provide a
‘global’ view of project artifacts, regardless of the tool used to create them, and an
additional functionality of relationship tracking and event notification. The OPHELIA
project is an example of this second approach.

The OPHELIA project has been created and developed by a number of partners from
software and academic fields. Our work and contribution to the project has been focused
on creating traceability subsystem and integrating it with change notifications. The
challenging task was to define the level of inter-artifact links on the abstract level that
OPHELIA provides, without the knowledge of what the underlying tools might be.

In the following part of this paper we describe the basics of the OPHELIA project and our
experiences with the abstract tools layer and tools integration. Chapter 2 compares several
existing approaches to tools integration. Chapter 3 describes the OPHELIA project
approach in more details, presenting basic architecture, components and integration
strategies. The following chapter outlines possibilities the OPHELIA technology could
enable – a new class of tools making use of the abstract access layer to project artifacts.
Chapter 5 presents an implementation of OPHELIA technology – Orpheus solution that

V Krajowa Konferencja Inżynierii Oprogramowania, Wrocław 2003

has been developed to prove the concept. Chapter 6 presents project curriculum and
concepts evolution throughout the project period followed with the chapter on future
plans and perspectives for continuing project effort.

2. Other development tools integration efforts

There are already some solutions on the market that provide different software
engineering tools integration in more-or-less limited form. Feature comparison matrix has
been shown in the Table 1.

2.1. Rational Suite

Rational Suite [WWW2003a] is a toolset including acclaimed modeling and requirements
management applications. The suite includes most of the software engineering tools
developed by Rational. As a toolset provided from a single vendor the integration
between different applications is very tight. They share their data, allow relationship
tracking and provide some traceability services. With software configuration management
mechanisms provided the toolset supports distributed development.

Rational Suite is one of the most mature solutions on the software engineering tools
market. Years of development made this environment industry standard. Unfortunately
price of this solution is quite high and may not be acceptable for many, especially mid-
and small software companies.

2.2. Eclipse

Eclipse [WWW2003b] is a development environment created initially in IBM
laboratories and contributed as free, open-source product to the developers community.
This tool represents new approach to the IDE (Integrated Development Environment)
concept. Eclipse is rather a platform for embedding different tools, not only purely
development-related, but also for modeling, configuration management, documentation
generation etc.

The Eclipse project has been widely acclaimed and has been in active development ever
since its public release by IBM. Many new plug-ins appear, both free ones and
commercial. It seems to be a very good platform for building toolsets and integration
services. At the time of writing, distributed development is supported in this platform
only using common versioning repository for development files.

2.3. Sourceforge Enterprise

Sourceforge website [WWW2003c] became recently one of the centers of open-source
development. Its services host over 60000 projects (May 2003).

V Krajowa Konferencja Inżynierii Oprogramowania, Szklarska Poręba 2003

A version of Sourceforge called Sourceforge Enterprise [WWW2003d] is available for
commercial institutions. It consists of a web-based collaboration environment extended
with project management, requirements tracking and several other software engineering
modules.

2.4. Feature comparison

Table 1. Comparison of tools integration solutions

Feature OPHELIA
(Orpheus)

Rational
Suite

Eclipse Sourceforge
Enterprise

Open integration platform Yes No Yes No

Open source Yes (except
of project

management
module)

No Yes (with
many

commercial
plug-ins)

Yes/No

Distributed development Yes Yes No Yes

Requirements management Yes Yes No Yes *

Project management Yes No Yes * Yes

Bug/issue tracking Yes Yes Yes * Yes

Repository access Yes Yes Yes Yes

Relationship tracking Yes Yes * No Yes *

Modelling support Yes Yes Yes * No

Metrics support Yes Yes No Yes *

Development environment Yes * Yes Yes No

Testing support No Yes Yes * No

Process definition Yes * Yes No Yes

* - limited support

3. OPHELIA - tools integration, unification and
abstraction environment

OPHELIA is an international European Union – co-founded project running within the 5th
Framework Programme – Information Society Technologies domain. It started in

V Krajowa Konferencja Inżynierii Oprogramowania, Wrocław 2003

September 2001 and is due to finish in September 2003. The aim of the project is to build
a unified software engineering tools integration technology. The concept behind the
project involves defining standardized set of interfaces abstracting functionalities of
different kinds of software development tools. These unified interfaces are access points
to the specific tools behind them. This abstraction layer would make OPHELIA
environment adaptable to any set of tools. To maintain implementation language
independence CORBA technology has been chosen for defining these interfaces.

A number of most popular tools categories have been chosen and for each of them a
CORBA interface has been defined representing its common internal object model. All
these interfaces define the OPHELIA technology. They are described in a set of
documents called Module Interface Specification. Base OPHELIA technology includes
the following MIS documents:
• Kernel Services Module Interface Specification
• Requirements Module Interface Specification
• Modeling Module Interface Specification
• Project Management Module Interface Specification
• Metrics Module Interface Specification
• Bug Tracking Module Interface Specification
• Repository Module Interface Specification
• Knowledge Management Module Interface Specification
• Traceability Module Interface Specification
• Notifications Module Interface Specification

Depending on the software configuration in a given environment, suitable OPHELIA
instances could be created. As different tools may expose different set of functionalities
the effort needed to OPHELIA-enable them may differ. The approach is to develop a
plug-in that exposes application’s functionalities through CORBA interfaces. Because
each OPHELIA module becomes in the end a server of a certain artifact type, the
underlying tools must have the ability to work in client-server mode. For desktop tools
missing this functionality, an additional effort is required to develop the server part of
such software. These approaches are summarized in the Table 2.

V Krajowa Konferencja Inżynierii Oprogramowania, Szklarska Poręba 2003

Table 2. Integration of development tools with OPHELIA platform

Type of tool Steps needed to integrate into OPHELIA

Desktop tool Server component needs to be written (or reused)
implementing appropriate MIS interface.

Plug-in for the software needs to be written to communicate
with the server.

Client-server tool Plug-in for the server part of the software needs to be written
implementing MIS interface.

Web tool Adapter needs to be written to access the data in the tool’s
database through module’s MIS interface.

To enable multi-project and multi-user environment additional interfaces have been
defined for managing projects and user accounts as well as security mechanisms. These
compose OPHELIA kernel services interfaces. The architecture of an OPHELIA solution
is presented in Figure 1.

OPHELIA Services Layer
Integrator Metrics Notification

Services
Traceability

Services
Knowledge

Management

…Requirements

interface
Modelling
interface

Bug tracking
interface

OPHELIA Module Interfaces Layer

Abstract

Tool
Services

Requirements

tool
Modelling

tool
Bug tracking

tool …

OPHELIA Kernel Services

Figure 1. Architecture of OPHELIA platform

Summarizing OPHELIA itself as a technology is only composed of several CORBA
interfaces that should be implemented to build OPHELIA instance. In other words,
OPHELIA technology could be compared to a bus in computer architecture forming a
base for co-operation of various modules.

V Krajowa Konferencja Inżynierii Oprogramowania, Wrocław 2003

4. OPHELIA services – utilizing tools abstraction

With different tools’ interfaces defined, new services can be built on top of the existing
abstraction layer. These services do not need to rely on any particular tools that lay
behind these interfaces. This abstraction creates uniform view on the software artifacts
and possibilities emerge to create new kinds of services [KOW2002]. A few of such
possible services are listed in this chapter.

4.1. Integrators

An example of the new service type that can be built using OPHELIA technology is an
integrator-type application. Such application can extract data from one tool (using its
OPHELIA interface), process it automatically or semi-automatically (with user
assistance) and create new project artifacts utilized by different tool type. This type of
operation facilitates transferring data from one type of tool to another while minimizing
the human effort required for such task.

An example of such integrator software could be a wizard that migrates the requirements
defined in the project directly to use cases within the modeling tool. Depending on the
software process reverse action could be taken as well. Another example of such
integration process is an integrator for creating schedule tasks using information about
classes and use cases. Relationships defined within modeling tool between these objects
affect precedence constraints of the tasks created [HAP1999], [HAP2000]. Integrators
that only migrate the data are of course of limited usefulness since they amplify data
duplication and synchronization problems mentioned at the beginning. We think that once
we have the abstraction layer, the integrators can be pushed further toward intelligent,
automated synchronization agents. These, working behind-the-scenes, agents would be
responsible for keeping artifacts in sync among all components of an OPHELIA instance.

4.2. Abstract Tool Services

The MIS interfaces define a unified and public way of accessing project artifacts. With
this transparent layer it is possible to provide services for tracing relationships and
receiving events from any project element, regardless of the tool used to create or
maintain it. Within OPHELIA this layer is called an ATS (Abstract Tool Services). Using
the ATS services it is possible to retrieve basic artifact properties and subscribe to events
fired from it. The ATS forms the base for other OPHELIA services.

4.3. Traceability

Traceability is one of the key aspects of the OPHELIA project. Traceability involves
defining and managing relationships between any kinds of objects in the OPHELIA
environment. This constitutes a brand new value in a distributed multi-tool environment.

V Krajowa Konferencja Inżynierii Oprogramowania, Szklarska Poręba 2003

Table 3. Types of relationships in OPHELIA

Type of relationship Description

Internal explicit Some tools may manage relationships between their
objects internally. To maintain their usefulness they
should be transferred into OPHELIA traceability
services in order to make them propagable.

External implicit This kind of relations is created automatically by
integrator-type applications. Any integrator used to
transfer data from one tool to another should create
traceability links between the items transferred.

External explicit Traceability services allow defining explicit
relationships. It is possible to select any two objects and
create a traceability relationship propagating or not
propagating the events.

With traceability relationships defined it is possible to determine the impact potential
changes may have on the project by analysis of the graph of affected objects. Moreover it
is possible to use traceability relationships to propagate events and supply consistency
warnings to items (and users responsible for these items) that may be potentially involved
in the change propagation chain.

All the objects in the OPHELIA environment and the relationships defined within
traceability service make a global traceability graph of the project. This graph includes
several types of relationships, which may be created in different ways (see figure 3).

4.4. Notifications

Using the notification service one can subscribe and receive information about any
changes made to a particular project artifact. Artifact owners and managers can track the
changes on objects and the set of depending objects easier than it was the case when
performed manually. An example of such process could be a requirement change that is
propagated through previously defined traceability links to the related use cases and then
to their implementation files. This way a developer in charge of a given implementation
file gets a notification when requirement is changed.

We have found out that the fact that no change to an artifact or its dependency graph gets
unnoticed is both an advantage and a potential problem. When pushed to the extremes,
the number of notification can exhaust any user’s patience limits… A careful study of
usability of notifications and traceability links is scheduled as part of the OPHELIA
project, but the results are currently not yet available.

V Krajowa Konferencja Inżynierii Oprogramowania, Wrocław 2003

4.5. Knowledge management

Knowledge management module allows the user to search project artifacts of different
types according to various search criteria. It monitors also changes made in project’s
artifacts and update project’s documentation after each change. If automatic
documentation generating facilities are available, this results in always up-to-date
documentation available to project stakeholders.

What is particularly beneficial and distinguishes the OPHELIA project is that the
documentation is generated using the ATS services, so the documentation-engine has no
knowledge of what exact tool type it is accessing or how the artifact should be
documented (the module that manages that artifact knows these facts).

4.6. Metrics

Unified events management in OPHELIA environment allows building software which
can monitor these events and perform certain operations when predefined actions happen.
An example of such a service can be an event-driven metrics services. Such services may
monitor artifacts that are used for calculating project metrics. With any depending artifact
changed or added, the metrics daemon receives an event notification and may recalculate
metric value to its current state. It could be even possible to define alert thresholds that
would notify project managers if the threshold is exceeded (for example, when module-
cross-references exceed a given level).

V Krajowa Konferencja Inżynierii Oprogramowania, Szklarska Poręba 2003

5. Orpheus – OPHELIA solution example

One of the key tasks for the OPHELIA project was to create an instance of the OPHELIA
technology. Example implementation was assumed to use free, open-source tools where
possible. If such tools had not been available, they were to be developed. Commercial
tools could be used as a last resort. To present the diversity of approaches for integrating
different tools into OPHELIA solution the Orpheus system has been proposed. The
components of this solution are presented in the Table 4.

Table 4. Orpheus solution components

Tool type Orpheus implementation

Kernel services custom implementation (free, open-source)

Requirements management DRES (custom implementation, free, open-source)

Modelling ArgoUML (free, open-source)

Project management Microsoft Project (commercial)

Bug tracking Bugzilla (free, open-source)

Metrics The Metrix (custom implementation, free, open-source)

Repository CVS (free, open-source)

Knowledge management (custom implementation, free, open-source)

Traceability Traceplough (custom implementation, free, open-source)

Notifications (custom implementation, free, open-source)

Integrators Modeling Project Management Integrator

(custom implementation, free, open-source)

Portal custom implementation based on Apache Jetspeed

(free, open-source)

Additionally, several utility software components have been developed to help future
OPHELIA solution developers with their work. For instance, common storage repository
has been developed to supply versioning XML storage facility for any tools not offering
server counterpart.

To provide unified front-end for the users utilizing Orpheus solution a web-based portal
application has been proposed. It provides users with a common startup point for their
daily operations with Orpheus.

V Krajowa Konferencja Inżynierii Oprogramowania, Wrocław 2003

6. Project curriculum summary

The OPHELIA project is a joint research, development and evaluation effort. The intent
was to provide OPHELIA technology specification, develop example solution that relies
on this technology and then evaluate the product created in the software development
companies there were part of the project consortium.

The project started in September 2001 with a debate on the OPHELIA architecture. Few
approaches have been identified and discussed upon. These finally transformed into two
alternative architectures to choose from. The first one was based on a centralized
repository of all software artifacts. This repository would take care of events
management, change detection and would provide common storage facility for all the
modules. The second approach was to create a more distributed infrastructure with the
tools utilizing their own storage facilities where applicable. OPHELIA interfaces would
be implemented not by the repository, but by the server counterparts of the tools. As can
be concluded from the architecture description in the previous chapters, the second
approach has been finally chosen in December 2001.

Soon after the architecture debate new concepts arose to supply functionalities not
described in the initial project description. It turned out that the modules abstraction
OPHELIA will provide can be utilized to create new services for managing inter-object
relationships and events management. This is how traceability and notification services
concepts started in early 2002. Later, a portal application has been proposed to provide a
front-end for the Orpheus user.

In the spring of 2002 module interface specification documents were prepared including
initial interface definitions Orpheus solution should implement. It soon turned out that
one of the major issues with these specifications is a level of objects granularity they
should provide. At this stage events management facilities have been decided to include
in the interface specifications.

Major development effort was conducted during summer 2002 resulting with early alpha
version of the Orpheus solution in autumn 2002. Further development had led to the beta
version released during spring of 2003. This version was passed to two companies –
Azertia (Spain) and ICCC (Czech Republic) – for conducting evaluation stage. The two
companies run test projects using Orpheus solution during summer-autumn 2003.
Unfortunately no results were known at the time this paper has been submitted for
publication.

7. Future plans

After OPHELIA project finishes the consortium plans to continue efforts to popularize
the OPHELIA technology. Consulting services for companies desiring to adopt the
technology are planned as well as supporting broader range of tools. The software created
with the project effort will be free and will be contributed to the open-source community.

V Krajowa Konferencja Inżynierii Oprogramowania, Szklarska Poręba 2003

Starting from the beginning of the OPHELIA project it was obvious that this technology
opens new possibilities for managing software projects and for developing new services
utilizing software artifacts abstraction. Soon the scope became too broad and some of the
aspects have been excluded from the OPHELIA project.

Members of the consortium have further research and development plans on extensions to
OPHELIA platform. The potential research topics are:
• New tool types specifications (risk management, workflow, testing)
• Intelligent project monitoring software, detecting process disturbances,

management reporting
• Workflow integration and process definition facilities
• Integrating with IDEs, e.g. Eclipse [WWW2003b] development platform
• Migrating to alternative distribution providers (web services)

8. Summary

The assumptions and achievement of OPHELIA project have been presented. OPHELIA
platform constitutes a new approach to software development tools integration in
distributed environment. Its main advantages are openness, low cost, support for
distributed work in decentralized environment and the additional functionality like event-
driven metrics or traceability, provided on top of the existing software development tools.

Within OPHELIA project a specific instance of OPHELIA technology has been built. At
the time of writing the paper it is intensively tested in several projects run by partners of
project consortium. It is expected, that, in the future, further solutions, both open-source
and commercial, based on OPHELIA technology should be developed.

To some extend OPHELIA platform is a competitor to other development tools
integration systems (see chapter 2). At the same time, however, due to distinct and often
complementary approaches used in OPHELIA platform and other systems, new
promising paths for further integration appear. For example, OPHELIA based solutions
may be integrated with open IDEs, e.g. Eclipse. Existing, closed collaborative
development environments, e.g. Sourceforge, may re-use OPHELIA technology in order
to assure openness of their systems and take advantage of some OPHELIA-specific tools
like traceability.

Bibliografia
[BOL2003] Boldyreff C., Dewar R., et al., Environments to Support Collaborative Software

Engineering. 2nd Workshop on Cooperative Supports for Distributed Software
Engineering Processes, Benevento, Italy, March 25, 2003.

[DEW2003] Dewar R., Smith M., et al., The OPHELIA Traceability Layer. 2nd Workshop on
Cooperative Supports for Distributed Software Engineering Processes,
Benevento, Italy, March 25, 2003.

V Krajowa Konferencja Inżynierii Oprogramowania, Wrocław 2003

[HAP1999] Hapke M., Jaszkiewicz A., Kominek P., Integrated tools for project scheduling
under uncertainty (in Polish). Proceedings of 1st National Conference on
Software Engineering, Kazimierz Dolny 11�13.10.1999, Informatyka
Stosowana S4/99, Politechnika Lubelska, 65�76.

[HAP2000] Hapke M., Kominek P., Jaszkiewicz A., Slowinski R., Integrated tools for
software project scheduling under uncertainty. In: P. Brucker, S.
Heitmann, J. Hurink, S. Knust (Eds.) Proc. 7th Int. Workhop on Project
Management and Scheduling PMS'2000, Osnabrueck, Germany, April
17-19, 2000, pp.149-151.

[HAP2001] Hapke M., Jaszkiewicz A., Perani S.: OPHELIA - Open platform and
methodologies for development tools integration in a distributed environment.
Proceedings of 3rd National Conference on Software Engineering,
Otwock/Warsaw, p. 189-198.

[KOW2002] Kowalczykiewicz K., Weiss D., Traceability: Taming uncontrolled change in
software development. Proceedings of 4th National Conference on Software
Engineering, Tarnowo Podgórne, Poland, 2002.

[WWW2003a] http://www.rational.com/products/entstudio/index.jsp
[WWW2003b] http://www.eclipse.org
[WWW2003c] http://www.sourceforge.net
[WWW2003d] http://www.vasoftware.com/products

	1. Introduction
	2. Other development tools integration efforts
	2.1. Rational Suite
	2.2. Eclipse
	2.3. Sourceforge Enterprise
	2.4. Feature comparison

	3. OPHELIA - tools integration, unification and abstraction environment
	4. OPHELIA services – utilizing tools abstraction
	4.1. Integrators
	4.2. Abstract Tool Services
	4.3. Traceability
	4.4. Notifications
	4.5. Knowledge management
	4.6. Metrics

	5. Orpheus – OPHELIA solution example
	6. Project curriculum summary
	7. Future plans
	8. Summary

