
Environments to Support Collaborative Software Engineering

Cornelia Boldyreff Mike Smith Dawid Weiss
David Nutter Pauline Wilcox Institute of Computing Science
Stephen Rank Rick Dewar Poznan University of Technology

Dept of Computer Science Dept of Computing Pierluigi Ritrovato
University of Durham Heriot-Watt University CRMPA

University of Salerno

Abstract

With increasing globalisation of software production,
widespread use of software components, and the need to
maintain software systems over long periods of time, there
has been a recognition that better support for collabora-
tive working is needed by software engineers. In this paper,
two approaches to developing improved system support for
collaborative software engineering are described: GENE-
SIS and OPHELIA. As both project are moving towards in-
dustrial trials and eventual public releases of their systems,
this exercise of comparing and contrasting our approaches
has provided the basis for future collaboration between our
projects particularly in carrying out comparative studies of
our approaches in practical use.

1 Introduction

From the advent of programming support environments
such as UNIX Programmer’s Workbench in the late 70s,
through to the development of CASE tools and the Inte-
grated Project Support Environments of the 80s, and more
recent Integrated Development Environments, there has
been a trend for the software industry to develop systems
to support their own activities throughout the software life-
cycle from development through to maintenance. Many re-
search projects such as the Portable Common Tool Envi-
ronment (PCTE) and Eureka Software Factory (ESF), and
more specific projects such as PACT, REDO, AMES, AS-
PIS, EAST and AIMS have all developed prototype support
environments. In addition, there have been language spe-
cific projects such as the Common Ada Programming Sup-
port Environments and object-oriented design and develop-
ment toolsets, both from the research community and from
commercial tool suppliers, the most prominent being Ratio-

nal. All of these developments have focused on supporting
software engineering activities throughout the lifecycle for
individuals and co-located teams. Only recently has there
been much attention given to supporting collaborative soft-
ware engineering where the team members are distributed
both in their locations and in time.

Three important factors have driven recent developments
in improved system support for collaborative software en-
gineering. With increasing globalisation of the software in-
dustry, cross organisational multi-company projects are be-
coming commonplace. Most large software projects are un-
dertaken by teams of software staff working across a num-
ber of organisations. This is typical within the open source
software community where projects are undertaken by vari-
ably sized teams of individuals from around the world. In
both cases, the composition of the teams varies over time as
members join and leave the team throughout the projects;
and in some instances as one project takes over the work of
another as happens when a system passes from the develop-
ment team to the maintenance team and thus the nature of
the work and associated support changes.

Secondly, the trend towards component based soft-
ware engineering means that few projects rely entirely on
their own development and maintenance efforts and conse-
quently are forced to work in collaboration with component
suppliers.

Thirdly the long life enjoyed by many large software
systems means that over time large numbers of people are
involved in their evolution as the composition of the sup-
port team itself changes. Thus, there is a recognised need
for more flexible environments to support these diverse ap-
proaches to software engineering. It can no longer be as-
sumed that all the members of a project will be following
the same software process models, nor can it be assumed
that they will be all be employing the same methods and
associated software tools, nor can it be assumed that im-
portant project knowledge and expertise will be preserved



over time as the project team changes, or persist along with
the software system. Preservation of relevant software arte-
facts, i.e. all relevant work products and documentation,
both formal and informal records, is of critical importance.
Much of Reverse Engineering is focused on rectifying situ-
ations where the system code is the only reliable source of
documentation. However, preservation of software artefacts
while necessary is insufficient to support software evolution
if they are disorganised and inaccessible both in the physical
sense and the intellectual sense.

At present, there are two complementary projects work-
ing on the development of support for collaborative soft-
ware engineering: GENESIS - GEneralised eNvironment
for procEsS management in cooperative Software Engineer-
ing and OPHELIA - Open Platform and metHodologies for
devELopment tools IntegrAtion in a distributed environ-
ment.

GENESIS intends to develop an Open Source platform
that supports co-operation and communication among soft-
ware engineers belonging to distributed development teams
involved in modeling, controlling, and measuring software
development and maintenance processes. Moreover, it in-
cludes an artifact management module to store and manage
software artifacts produced by different teams in the course
of their work.

The OPHELIA project has a similar aim of developing
an open source platform to support software engineering in
a distributed environment. Its primary product is a set of
core interfaces that support interoperability between a range
of tool categories: project management, requirements cap-
ture, modelling and software design, code generation and
bug tracking accompanied by a methodology appropriate to
working in a distributed manner.

The remainder of the paper will consist of the following:
more detailed overviews of both GENESIS and OPHELIA.
A discussion of their key differences, similarities, and com-
plementary points; and finally an outline of areas where fu-
ture collaboration is planned.

2 GENESIS Overview

The GENESIS project’s focus is multi-site projects
where each site is able to execute instances of a software
process or subprocess that accept software artefacts as pro-
cess inputs and produce software artefacts as process out-
puts. These artefacts form the basis for inter-site interaction.
Co-ordination of software engineering activities at each site
is supported by a workflow management system [1] , a no-
tification engine, and a communication engine following
an Event/Condition/Action paradigm. These components,
together with an active artefact management system, OS-
CAR [2], allow the management of both formal and infor-
mal communication among software engineers. The whole

platform will be released under an Open Source software li-
cence and it has been conceived following a service oriented
approach facilitating extensibility and simplifying its tailor-
ing to any specific organisation’s software process needs.
These services form a layer sandwiched between a resource
management system and the artefact management system.
An overview of the GENESIS platform is given in Figure
1; while Figure 2 gives an overview of the GENESIS site
architecture.

Figure 1. GENESIS Platform Architecture

OSCAR

WFMS

OSCAR

WFMS

LOCAL NODE

GLOBAL NODE

*

Manager
Global Process

1

Local Process
Manager

<<Agent>>

*

Developer

1

Figure 2. GENESIS Site Architecture

One of the key project objectives is to keep the level of
invasiveness as low as possible. Each site is free to choose
whatever tools are appropriate to their processes, varying
from generic tools such as word processors, to more specific
software engineering tools such as design tools or compil-



ers. The only requirement being that the tool output should
be locatable by the artefact management system, e.g. in a
file system, on a web server, accessible from a document
management system, etc. Once submitted to the artefact
management system, an artefact’s primary content remains
unchanged but is augmented by metadata to facilitate its fu-
ture use within the current project and potential reuse by
other projects. The artefact management system also holds
process descriptions and personnel profiles as artefacts to
assist project managers.

Version control of artefacts is achieved through an ab-
straction over core configuration management system func-
tionalities. At any particular site’s instance of OSCAR,
these are mapped to an underlying SCM server, for exam-
ple, in the present prototype to CVS. In this way, conven-
tional configuration management discipline can be applied
to all artefacts, but the choice of system employed is left to
each site.

Two novel aspects of the GENESIS project are partic-
ularly relevant to our vision of collaborative software en-
gineering. First, the provision, through an integrated and
Open Source platform, of services supporting three key
software engineering aspects, namely the software process
enactment and management, the active artefacts manage-
ment, and the software engineers’ ability to communicate
and collaborate through these. Second, the choice of events
as a mechanism for achieving loosely coupled interoperabil-
ity of software services by delegating the management of
these events to specific components such as software agents
acting as global co-ordinators.

3 OPHELIA Overview

The main goal of OPHELIA [9, 7] project is to unify var-
ious types of software development tools into an abstract,
transparent platform, where access to project elements and
relationships among these elements is seamless with regard
to the underlying software used to create and maintain them.

Among the central objectives of the project are: to pro-
vide an abstract set of programming interfaces, representing
types of tools used in software development; to define how
existing software can be adopted to those interfaces and to
develop a prototype implementation.

The novelty of the OPHELIA project thus lies in bridg-
ing tools from different vendors into one project workspace.
This integration is achieved using a set of CORBA [3] inter-
faces, responsible for exposing a uniform view of elements
and services available in a certain area of software develop-
ment process. In case of OPHELIA these include: require-
ments management, (UML) modelling, project manage-
ment (schedules), documentation management, bug track-
ing and repositories of other elements of the project (such
as source code).

Figure 3. The OPHELIA Platform Architecture

Having established an abstraction of all available project
elements, OPHELIA utilises them to provide other project-
wide valuable services, such as knowledge management,
semi-automatic conversion between project elements (i.e.
generation of template schedules or code from an UML
model), traceability (relationships among project elements),
change notifications and others.

The main product of the OPHELIA project is the spec-
ification of the interfaces mentioned above called Module
Interface Specifications (MIS). This architecture will there-
fore support the integration of a set of tools that the users
choose to work with, specific tools are not mandatory (how-
ever, all the integrated tools must implement their corre-
sponding MIS). Another product of the OPHELIA project
is a prototype implementation of this architecture, called
Orpheus, involving several Open Source development tools
available on the market together with a deployment envi-
ronment. Orpheus is a proof of concept to test the interface
definitions and the platform architecture. An illustration of
the OPHELIA platform architecture is provided in Figure 3.

4 Key differences, similarities and comple-
mentary points

Although the two projects are addressing the common
goal of developing an environment to support collaborative
software engineering, it has been instructive at recent joint
meetings of staff from both projects to compare the two ap-
proaches. The two projects have taken different approaches
to their support for software evolution. This is reflected in
their approaches to tool integration, software process sup-
port, more significantly in the design of their repositories.

The OPHELIA project’s strategy is more focused on the
uniform integration of project management and system de-



velopment tools through a common set of abstract tool ser-
vices. Every kind of activity in project development is rep-
resented in a form of aModule Interface Specificationin-
terface, which constitutes a bridge between some particular
tool and the rest of the platform. It is only with respect
to configuration management that GENESIS has taken this
strategy.

There are no requirements for artefact repositories for
tools working as part of OPHELIA platform - every tool
may have its own repository (i.e. CVS), some tools may
share a repository (instance of a database), some types
of tools may not even hold a repository at all (such as
dynamically-generated metrics). What joins these all to-
gether is solely implementations of CORBA interfaces
specified by the platform. Project elements are acquired
not from a common repository, but via requests made to
each individual module (type of tool). This also applies to
meta-data, such as version information, events generated by
objects and others.

The model of relationships in OPHELIA seems to be
fairly similar to that found in the GENESIS project’s OS-
CAR, though it stores relationships as intrinsic parts of the
artefacts they link while OPHELIA has a separate service
for managing them, which utilises object abstraction (the
links only point to where an element can be found and are
stored separately).

To the user, the two systems will appear very similar
although the efficiency and dependability of the two ap-
proaches is an area for further investigation once both plat-
forms are in use.

Rather than the GENESIS approach of explicit coordi-
nation of activities via Work Flow Management, one of key
concepts for OPHELIA is traceability. This is determined
by events at the application tool level and predefined or au-
tomatically determined relationships amongst objects, i.e.
outputs of application tools. For example, from the relation-
ships established by a conversion utility from project model
to source code (and possibly documentation), a change to
the requirement will result in notifications sent to people re-
sponsible for source code and documentation maintenance.
In GENESIS, changes to artefacts give rise to events which
can be notified to co-workers, but events are also raised
from within the work flow management system.

OPHELIA is a very generic architecture - the event types
and notifications can be bound to any of the pre-existing,
or defined types of events. In GENESIS, event notification
is realised through a notification engine which provides a
similarly generic service.

The focus on configuration management differs slightly.
For OSCAR, configuration management is an essential part
of the environment and the system will not work without ac-
cess to some form of SCM system. By contrast, OPHELIA
treats SCM as another client module exposing objects to the

rest of the integrated tools. Indeed one possible avenue for
future collaboration is that OSCAR could be integrated with
relative ease into the OPHELIA platform to provide artefact
management functionality!

Unlike the GENESIS project, the OPHELIA project has
actually undertaken specific tool development. An open
source requirements management tool has been developed
and integrated (via MIS) with ORPHEUS. Initial work has
also been done in integrating different types of develop-
ment tools using MIS specifications. For example, an in-
tegration of metrics generation based on data acquired from
modelling MIS (with underlying Argo/UML), or an inte-
gration of modelling MIS with project management MIS
(Argo/UML with MS Project). Work on higher level ser-
vices such as documentation generation and cross-module
object traceability has been started as well.

OPHELIA also differs from GENESIS in the level of in-
tegration. Tools integrated with OPHELIA need to be in
contact the system when performing any operation on the
data (such as load/save). Tools used to create data for use
in GENESIS do not need to be modified1, nor to have con-
tact with OSCAR when working on the data. Much of OS-
CAR’s integration will rely on internal transformation of
data to extract appropriate meta-data from files under its
control whilst OPHELIA relies on modification of the client
tools.

Both projects introduce unique object addresses (in the
form of URLs). In GENESIS these addresses may point to
any artefact, as well as any specific version of an artefact. In
OPHELIA only elements (objects) can be addressed. Ver-
sioning is therefore not part of the generic object definition
in OPHELIA.

5 Identified areas for GENESIS/OPHELIA
collaboration

Currently both projects are completing the first releases
of their platforms; and as these undergo further develop-
ment, they will be also be trialled by the respective projects’
industrial partners and possibly within the open source de-
velopment community. Both projects intent to instrument
their developments and collect usage and performance data.
In order to make comparisons between these platforms in
use, a common set of basic measures and monitoring pro-
cedures will be agreed and implemented. It is intended that
these will allow joint studies on efficiency and dependabil-
ity. The two projects also intend to investigate the potential
for uniting both platforms in a multi-organisation project.

1As long as they operate on standard files, if they do not then they must
be integrated with OSCAR.



Acknowledgements

We would like to acknowledge our colleagues who have
contributed to the development of the research discussed
here and in the development of the GENESIS and OPHE-
LIA research programmes.

References

[1] Aversano, Lerina; Cimitile, Aniello; Gallucci, Pier-
paolo; Villani, Maria Luisa (2002), “FlowManager: a
workflow management system based on Petrie nets”, in
the Proceedings of the 26th Annual International Com-
puter Software and Applications Conference, COMP-
SAC02, IEEE Computer Press, pp. 1054-1059.

[2] Boldyreff, Cornelia; Nutter, David and Rank, Stephen
(2002), “Active Artefact Management for Distributed
Software Engineering”, in the Proceedings of the 26th
Annual International Computer Software and Appli-
cations Conference, COMPSAC02, IEEE Computer
Press, pp. 1081-1086.

[3] CORBA (2002) [@:] http://www.corba.org

[4] Dewar, RG; MacKinnon, LM; Pooley, RJ; Smith, AD;
Smith, MJ & Wilcox, PA (2002); “The OPHELIA
Project: Supporting Software Development in a Dis-
tributed Environment”, IADIS WWW/Internet 2002

[5] Gaeta, Matteo & Ritrovato, Pierluigi (2002), “Gener-
alised Environment for Process Management in Co-
operative Software Engineering”, Proceedings of the
Workshop on Cooperative Supports for Distributed
Software Engineering Processes, in the Proceedings of
the 26th IEEE Annual International Computer Software
and Application Conference, August 2002, pp. 1049-
1053.

[6] Genesis project website (2002)
[@:] http://www.genesis-ist.org/

[7] Hapke, M.; Jaszkiewicz, A. & Perani, S. (2001);
“OPHELIA – Open Platform and metHodologies for
devELopment tools IntegrAtion in a distributed envi-
ronment”, Proceedings of 3rd National Conference on
Software Engineering, Otwock/Warsaw, pp. 189-198.

[8] Kowalczykiewicz K., Weiss D. (2002) “Traceability:
Taming uncontrolled change in software development”,
Proceedings of IV National Software Engineering Con-
ference, Tarnowo Podgorne, Poland, 10 pages.

[9] Ophelia project website (2002)
[@:] http://www.opheliadev.org


