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Definition

Stream classification is a variant of incremental learning of classifiers that
has to satisfy requirements specific for massive streams of data: restrictive
processing time, limited memory, and one scan of incoming examples. Ad-
ditionally, stream classifiers often have to be adaptive, as they usually act in
dynamic, non-stationary environments where data and target concepts can
change over time. To fulfill these requirements new solutions include dedi-
cated data management and forgetting mechanisms, concept drift detectors
that monitor the underlying changes in the stream, effective online single
classifiers, and adaptive ensembles that continuously react to changes in the
streams.

Motivation and Background

In many data intensive applications, like sensor networks, traffic control,
market analysis, Web user tracking, and social media, massive volumes of
data are continuously generated in the form of data streams. A data stream
is a potentially unbounded, ordered sequence of data items, which arrive
continuously at high-speeds. These data elements can be simple attribute-
values pairs like relational database tuples or more complex structures such
as graphs.

The main characteristics of streams include:

• continuous flow (elements arrive one after another),

• huge data volumes (possibly of an infinite length),

• rapid arrival rate (relatively high with respect to the processing power
of the system),
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• susceptibility to change (data distributions generating examples may
change on the fly).

Due to the above characteristics, learning from data streams differs from
batch learning, where data are stored in finite, persistent data repositories.
The main dissimilarities include the sequential nature of the data, massive
volumes, processing speed restrictions, and the fact that data elements can-
not be accessed multiple times as it is in the case of learning from static
repositories. Moreover, contrary to online learning, stream classification
does not assume adversarial actions from the instance generating process,
but rather focuses on computational restrictions.

One of the most widely studied tasks in data stream mining is supervised
classification. Apart from the aforementioned general difficulties connected
with learning from streams, classification is also often performed in non-
stationary environments, where the data distribution and target concepts
can change over time. This phenomenon, called concept drift, deteriorates
the predictive accuracy of classifiers as the instances they were trained on
differ from the current data. Typical examples of real-life concept drifts in-
clude content changes in unwanted emails in spam categorization or evolving
customer preferences.

Several researchers imply the following requirements on algorithms learn-
ing classifiers from streams (Bifet et al., 2010):

1. Process one example at a time and inspect it only once.

2. Use a limited amount of memory.

3. Be ready to predict at any time.

4. Be able to react to concept drift in case of evolving data streams.

Typical batch learning algorithms for supervised classification are not
capable of fulfilling all of the listed data stream requirements. Incremental
learning is also insufficient, as it does not meet tight computational de-
mands and does not tackle concept drift. Therefore, several new learning
algorithms have been introduced. Surveys on stream classification, such as
(Ditzler et al., 2015; Gama, 2010; Kuncheva, 2004), showcase research on us-
ing sliding windows to manage memory and provide a forgetting mechanism,
sampling techniques, drift detectors, and new online algorithms.
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Structure of the Learning System

Stream classification can be formalized as follows. Learning instances from
a stream S appear incrementally as a sequence of labeled examples {xt, yt}
for t = 1, 2, . . . , T , where x is a vector of attribute values and y is a class
label (y ∈ {K1, . . . ,Kl}). A new example xt is classified by a classifier C,
which predicts its class label. Here, we consider a completely supervised
framework where after some time the true class label yt is available and can
be used to update the classifier.

Examples from the data stream can be provided either online, i.e., in-
stance by instance, or in portions (blocks). In the first approach, presented
in Fig. 1, algorithms process single examples appearing one by one in con-
secutive moments in time, while in the other approach, presented in Fig. 2,
examples are available only in larger sets called data blocks (or data chunks)
B1, B2, . . . , Bn, where n denotes the last element of the stream up to the
current timepoint. Blocks are usually of equal size and the construction,
evaluation, or updating of classifiers is done when all examples from a new
block are available. This distinction also refers to the availability of class
labels. For instance, in some problems data elements are naturally accumu-
lated through some time and labeled in blocks. However, with class labels
appearing online with single instances, algorithms have the possibility of
reacting to concept drift much faster than in block based environments.
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Two basic models of data streams are considered: stationary, where ex-
amples are drawn from a fixed although unknown probability distribution,
and non-stationary, where data can evolve over time. As process changes
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occur in many real-world problems (Zliobaite et al., 2015), most stream clas-
sification algorithms are capable of predicting, detecting, and adapting to
concept drifts.

Concept drift can be defined from the perspective of hidden data con-
texts, which are unknown to the learning algorithm. However, in case
of evolving streams a more probabilistic view on the matter can be pre-
sented (Gama, 2010). In each point in time t, every example is generated by
a source with a joint distribution P t(x, y) over the data. Concepts in data are
stable if all examples are generated by the same distribution. If for two dis-
tinct points in time t and t+∆ an x exists such that P t(x, y) 6= P t+∆(x, y),
then concept drift occurs. Although different component probabilities of
P t(x, y) may change (Gama et al., 2014), in case of supervised classification
one is mainly interested in real drift, i.e., changes in posterior probabilities
of classes P (y|x).

Usually two basic types of concept drifts are distinguished: sudden

(abrupt) and gradual. The first type of drift occurs when at a moment
in time t the source data distribution in St is suddenly replaced by a dif-
ferent distribution in St+1. Gradual drifts are not so radical and they are
connected with a slower rate of changes that can be noticed while observ-
ing a data stream for a longer period of time. In some domains, situations
when previous concepts reappear after some time are separately treated and
analyzed as recurring drifts (Gomes et al., 2014). Moreover, data streams
can contain outliers and noise, but these are not considered as concept drifts
and stream classifiers should be robust to these random changes.

Evaluation

Stream classification requirements make processing time, memory usage, pre-
dictive performance, and the ability to adapt key evaluation criteria.

The time required to process a single instance and the average memory
usage should remain constant throughout the life of a stream classifier. That
is why training and testing time as well as model size have to be periodically
monitored during stream classification. Additionally, processor time and
memory are also considered key costs when deploying a stream classification
system and are sometimes measured in a single metric called RAM hours.

The predictive performance of stream classifiers is usually assessed using
evaluation measures known from static supervised classification, such as
accuracy or error-rate. However, contrary to batch learning scenarios, it is
assumed that due to the size and speed of data streams repeated runs over
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the data are not necessary to estimate these measures on labeled testing
examples. Due to their computational costs, re-sampling techniques such as
cross-validation or bootstrapping are deemed too expensive for streams. As
a result, simpler error-estimation procedures are used, yet ones that build a
picture of performance over time.

One of such evaluation procedures involves using a holdout test set to
periodically evaluate the classifier’s performance. An alternate scheme of
estimating the performance of stream classifiers involves interleaving testing
with training. Each individual example is first used to test the classifier
before it is used for training (see Fig. 1). This evaluation procedure, often
called test-then-train, has the advantage that it makes maximum use of the
available data. A similar procedure of interleaving testing with training can
also be performed with blocks of examples instead of single instances (see
Fig. 2). However, for evolving streams the prequential evaluation procedure
is suggested (Gama, 2010). The term prequential (blend of predictive and
sequential) stems from online learning and is used in data stream mining
literature to denote algorithms that base their functioning only on the most
recent data, rather than the entire stream. Such a procedure highlights the
current rather than overall performance and, as a result, showcases changes
in the stream more clearly, which is especially important for drift detection.
All three of the aforementioned evaluation procedures (holdout, test-then-
train, prequential) are usually used to periodically calculate a selected met-
ric, e.g., accuracy, and plot its value creating a line chart depicting classifier
performance over time.

Finally, an important criterion when comparing stream classifiers is their
ability to react to various types of concept changes. Adaptability can be
evaluated by comparing drift reaction times. This is done by measuring
the time between the start of a drift and the moment when the tested clas-
sifier’s accuracy recovers to a level from before the drift. More elaborate
methods of assessing the classifier’s ability to adapt include recovery analy-

sis and controlled permutations (Krempl et al., 2014). Nevertheless, in order
to calculate reaction times and other adaptability measures, usually a hu-
man expert needs to determine moments when a drift starts and when a
classifier recovers from it. Alternately, such evaluations are carried out with
synthetic data generators.
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Algorithms

The simplest categorization of algorithms for learning stream classifiers
makes a distinction between single classifiers and ensembles. Addition-
ally, from the perspective of learning from drifting environments, most of
researchers distinguish active approaches, which trigger changes in classi-
fiers when drifts are detected, and passive approaches, which continuously
update the classifier regardless of whether drifts occur in the data stream
or not (Gama et al., 2014). We discuss algorithms from the point of view of
both of these taxonomies.

Data Management and Forgetting Mechanisms

Many approaches to dealing with time changing streams involve the use of
some sort of data management or forgetting mechanism. Data management
strategies specify which data is used for learning, while forgetting strategies
specify how old data are discarded. Both mechanisms are necessary to meet
time and memory requirements posed by data streams and serve as a way
of reacting to drifts by eliminating those examples that come from an old
concept.

Online classifiers decide if an example will be included in the learning
model on a per-instance basis. Such an approach promotes gradual adapta-
tion to evolving concepts mainly by continuously updating the model with
new examples. As an alternative, several classifiers apply sliding windows to
keep the classifier consistent only with the most recent data. As sliding win-
dows encompass a larger set of examples, they can be used to periodically
build classifiers by conventional batch algorithms. From this point of view,
this data management mechanism can be viewed as a general approach to
transforming batch learners into classifiers for concept-drifting data streams.

The basic windowing algorithm is straightforward. Each example up-
dates the window and later the classifier is updated by that window. The
key part of this algorithm lies in the definition of the window, i.e., in the way
it models the forgetting process. In the simplest approach, sliding windows
are of fixed size and include only the most recent examples from the data
stream. With each new data point the oldest example that does not fit in
the window is discarded. More complex approaches vary the window size
depending on, e.g., the indications of a drift detector (Bifet and Gavaldà,
2007).

Sliding windows are also one of the most popular forgetting mechanisms
— examples that fall outside of the window are instantly excluded from
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the model. From this perspective, two basic types of windows are defined:
sequence based, where the size of a window is characterized by the number of
instances, and timestamp based, where the size is defined by duration time.

There are two common alternatives to forgetting using sliding windows:
sampling and fading factors. The first alternative aims at summarizing the
characteristics of the data stream over a long period of time using a limited
number of examples. One of the best known data stream sampling algo-
rithms is reservoir sampling, which keeps a fixed-size sample of the stream
that is updated with randomly selected instances (Aggarwal, 2007). Fading
factors, on the other hand, provide a way of gradually forgetting examples.
This is usually done with a decay function that assigns a weight to each
example in the entire stream or a large window. Older examples receive
smaller weights and are gradually treated as less important by the learner.
Popular fading factors include linear, exponential, polynomial, and chordal
functions.

Drift Detectors

Apart from sliding windows, another group of techniques that allow to con-
struct an active stream classifier are drift detectors. Their task is to detect
concept drift and alarm a base learner that its classifier should be rebuilt or
updated. For example, when a detector signals a sudden change, an existing
classifier can be discarded and replaced by a new one trained only on the
most recent data.

Drift detectors are usually implemented using statistical tests based on
sequential analysis, process control charts, or monitoring differences between

two distributions. Detectors based on sequential analysis check whether the
classification error calculated on the most recent instances is significantly
different from its value calculated for range of older instances. Examples of
sequential tests include CUSUM and the Page-Hinkley test (Gama, 2010).
Drift detectors based on control charts take inspiration from statistical tech-
niques used in quality control during product manufacturing. In these ap-
proaches, each prediction a classifier makes is treated as a Bernoulli trail.
Then, the number of classification errors can be modeled with a Binomial dis-
tribution, which in turn can be tested for significantly improbable changes.
Examples from this group include algorithms such as DDM, EDDM, and
EWMA (Gama et al., 2014). Finally, several detection methods use two
subsets of the stream: a reference window and a sliding window of the most
recent examples. If the distributions over these two windows are signifi-
cantly different, a change is signaled, suggesting that only examples from
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the sliding window should be used to create a new model.

Single Classifiers

First proposals of stream classifiers concentrated on processing massive sta-
tionary data sets in constant time per example. Decision trees were one
of the first algorithms to be adapted to meet these requirements using the
Hoeffding bound. This bound states that with probability 1 − δ, the true
mean of a random variable of range R will not differ from the estimated
mean after n independent observations by more than:

ǫ =

√

R2ln(1/δ)

2n
. (1)

Using the Hoeffding bound, Domingos and Hulten (2000) proposed a
classifier called Very Fast Decision Tree (VFDT). This algorithm incremen-
tally induces a tree from a massive data stream, without the need for storing
examples after they have been used to update the tree. Its key idea is the
selection of the split attribute, which is realized differently than in static
trees (e.g., C4.5). Instead of selecting the best attribute (in terms of a split
evaluation function) after viewing all the examples, VFDT uses the Hoeffd-
ing bound to calculate the number of examples necessary to select the right
split-node with probability 1− δ. From the theoretical point of view, recent
studies have shown that other bounds, as the McDiarmid inequality, are
more suitable depending on the assumptions made about the distribution of
values of the split evaluation function.

Many enhancements to the basic VFDT algorithm, often called the Ho-
effding Tree, have been proposed. They include methods of limiting memory
usage, the use of alternative bounds which requires less examples for each
split node, approaches to dealing with numerical attributes, pruning mech-
anisms, and the use of sliding windows or drift detectors to adapt the al-
gorithm to non-stationary settings (Gama, 2010). Nevertheless, the VFDT
algorithm paved the way for many other learning algorithms that use the
Hoeffding bound to incrementally process massive datasets (Ditzler et al.,
2015).

Several traditional incremental classifiers were also adapted to compu-
tational and concept drift requirements. An illustrative example could be
learning neural networks. By abandoning the epoch protocol and presenting
examples in a single pass, neural networks can be adapted to changing data
streams. Bayesian methods can also learn incrementally and require con-
stant memory. To add a forgetting mechanism to this group of algorithms,
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sliding windows are usually employed to “unlearn” the oldest examples. Sim-
ilarly, nearest neighbor classifiers are naturally transformed to incremental
versions with different techniques for selecting the limited subset of the most
“useful” examples for accurate predictions. Rule-based algorithms were also
adjusted to data stream environments, in fact, FLORA algorithms devel-
oped by Kubat and Widmer were one of the first classifiers to cope with
concept drift (Deckert, 2013). Other algorithms use a structure similar to
a decision tree to create rules and rule-specific drift detectors to react to
changes (Kosina and Gama, 2015).

Ensembles

Ensembles are easily adapted to non-stationary data streams. Due to their
modular construction they are capable of incorporating new data elements
by introducing a new component into the ensemble, updating existing com-
ponent classifiers, or changing weights in the aggregation phase. Ensembles
are usually categorized into block-based and online approaches.

Most block-based ensembles periodically evaluate component classifiers
with the newest data block and substitute the worst ensemble member with a
new (candidate) classifier. Additionally, practically all proposed approaches
work with fixed sized blocks. A generic block-based ensemble scheme is
presented in Algorithm 1.

Algorithm 1 Generic Block-based Ensemble

Input: S: data stream of examples partitioned into blocks of size d, k: num-
ber of ensemble members, Q(): classifier quality measure;
Output: E : ensemble of k weighted classifiers

1: for all blocks Bi ∈ S do

2: build and weight candidate classifier Cc using Bi and Q();
3: weight all classifiers Cj in ensemble E using Bi and Q();
4: if |E| < k then

5: E ← E ∪ {Cc};
6: else if ∃j : Q(Cc) > Q(Cj) then
7: replace weakest ensemble member with Cc;
8: end if

9: end for

For each block Bi, the weights of current component classifiers Cj ∈ E
are calculated by a quality measure Q(), which depends on the particular
algorithm. For instance, in Accuracy Weighted Ensemble (AWE), Q() is
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realized as a version of the mean square error of the component classifier Cj

calculated on the recent block Bi, which is compared to the error of a random
classifier on the same block (Wang et al., 2003). In addition to component
re-weighting, a candidate classifier Cc is built from the recent block Bi and
added to the ensemble if the ensemble’s size is not exceeded. If the ensemble
is full, the candidate classifier Cc substitutes the weakest ensemble member.
It is worth noting that some algorithms, e.g., Learn++.NSE (Ditzler et al.,
2015), do not limit the number of component classifiers in order to react to
recurring concepts. The label prediction for new examples is usually based
on a weighted majority vote of component classifiers. Most block-based
ensembles take advantage of batch learning algorithms as component classi-
fiers. This is not the case for hybrid algorithms, like the Accuracy Updated
Ensemble (Brzezinski and Stefanowski, 2014), which updates classifiers after
processing each block.

The origins of online stationary ensembles come from research on the
Winnow algorithm and theWeighted Majority Algorithm (Littlestone and Warmuth,
1994), which combine the predictions of several experts (classifiers) by ma-
jority voting. When the ensemble misclassifies an instance, the weights of
the wrong experts are decreased by a user-specified coefficient. The Dy-
namic Weighted Majority (DWM) is an extension of this idea for drifting
data streams (Kolter and Maloof, 2007). It uses a set of incremental clas-
sifiers, which are generated by the same learning algorithm. When a new
example is available, the final prediction is obtained as a weighted vote of all
classifiers. The weights of all classifiers that misclassify the example are de-
creased in the same way as in the Weighted Majority Algorithm. However,
DWM dynamically creates and deletes component classifiers in response to
changes in classification performance. If the ensemble’s overall prediction is
incorrect, a new classifier is added to the ensemble.

Another group of online ensembles includes generalizations of static en-
sembles. The most well know are online versions of bagging and boost-
ing (Oza and Russell, 2001). In case of online bagging the key idea is to
adapt the bootstrap sampling step to a streaming setting. This is done by
using single examples multiple times according to the Poisson distribution.
This proposal of randomly updating training sets was an inspiration to de-
velop several other approaches, e.g., Leveraging bagging, Online Boosting
or the DDD ensemble (Ditzler et al., 2015).

Comprehensive reviews of various ensembles can be found in (Ditzler et al.,
2015; Gama, 2010; Kuncheva, 2004).
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Other Approaches

Although developing classifiers for concept drifting streams is in itself a
non-trivial task, some other characteristics of learning problems can make
this task even more difficult. In most current algorithms, it is assumed
that all information, in particular class labels of instances, are complete,
immediately available and received for free (Krempl et al., 2014). However,
these assumptions may not hold true in some real-world problems, e.g. in
fraud detection or patient health monitoring, where the labeling of examples
is scarce or missing. In the case of static data these problems are studied
with semi-supervised learning. For adapting such techniques to streams, the
availability of at least some labeled data from the most recent distribution
is required. For instance, (Masud et al., 2008) divide the stream into blocks
containing partly labeled examples and then propose various approaches to
combine learning ensemble classifiers with semi-supervised clustering. Ac-
tive learning is also often related to semi-supervised frameworks. However,
many sampling techniques developed for static data are not well suited for
non-stationary streams (Spiliopoulou and Krempl, 2013). A review of recent
active learning strategies is presented in (Žliobaitė et al., 2011).

A particularly challenging problem is learning classifiers from initially la-
beled non-stationary streams, where completely labeled examples are avail-
able for the first period only, followed by unlabeled data which may be
drawn from a different distribution. Research on this topic is still at an
early stage. Yet another problem is dealing with delayed information. In
the case of verification latency, the class labels of preceding examples are
not available before the subsequent instance has to be predicted. Therefore,
feedback from correct predictions cannot be instantly used to improve the
classifier. For a review of approaches that try to deal with this problem see
(Ditzler et al., 2015).

Dealing with the class imbalance problem in non-stationary streams also
introduces additional difficulties. Recent proposals to this problem pay at-
tention to drifts of the minority class and specialized evaluation methods
(Wang et al., 2015). The problem of class imbalance is also related to an
increasing interest in studying other types of changes (Gama et al., 2014).
Finally, other research concerns more complex representations of instances
in streams, as graphs, semi-structured documents or text messages, as well
as complex target outputs, like multi-labeled or ordinal classification. Other
open issues are discussed in (Ditzler et al., 2015; Krempl et al., 2014).
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Applications

Applications of stream classification can be organized into three groups:
monitoring and control, information management, and analytics and diag-
nostics (Zliobaite et al., 2015).

Monitoring and control mostly relates to the detection of abnormal
events. Domains from this group include sensor networks, telecommuni-
cations, traffic control, and fraud detection. Information management en-
compasses applications such as product recommendation, crime prediction,
personalized search, and customer profiling. Analytics and diagnostics ad-
dress domains like evaluation of creditworthiness, budget planning, or drug
resistance prediction.

Each of the aforementioned groups differs also in the way stream clas-
sification is modeled. Monitoring and control usually involves sequential
data where the task is to detect sudden changes. Information manage-
ment is mostly based on relational data and gradual rather than abrupt
changes are to be expected. Finally, diagnostic applications often involve
recurring concepts. For an in-depth analysis of different application settings
see Zliobaite et al. (2015).
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