
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, MONTH YEAR 1

Reacting to Different Types of Concept Drift:
The Accuracy Updated Ensemble Algorithm

Dariusz Brzezinski, Jerzy Stefanowski

Abstract—Data stream mining has been receiving increasing
attention due to its presence in a wide range of applications
such as sensor networks, banking, and telecommunication. One
of the most important challenges in learning from data streams is
reacting to concept drift, i.e., unforeseen changes of the stream’s
underlying data distribution. Several classification algorithms
that cope with concept drift have been put forward, however,
most of them specialize in one type of change. In this paper, we
propose a new data stream classifier, called the Accuracy Updated
Ensemble (AUE2), which aims at reacting equally well to different
types of drift. AUE2 combines accuracy-based weighting mecha-
nisms known from block-based ensembles with the incremental
nature of Hoeffding Trees. The proposed algorithm was exper-
imentally compared with 11 state-of-the-art stream methods,
including single classifiers, block-based and online ensembles,
and hybrid approaches in different drift scenarios. Out of all the
compared algorithms, AUE2 provided best average classification
accuracy while proving to be less memory consuming than other
ensemble approaches. Experimental results show that AUE2 can
be considered suitable for scenarios involving many types of drift
as well as static environments.

Index Terms—concept drift, data stream mining, ensemble
classifier, nonstationary environments

I. I NTRODUCTION

L EARNING classifiers from data is one of the main tasks
in machine learning, data mining, and pattern recognition.

Most of the previous and current research in this field is
devoted to static environments, where a complete dataset is
presented to the learning algorithm. These data are usually
electronically stored and, if needed, can be accessed by
algorithms several times. Moreover, the target concepts which
should be learned are fixed. Over the years, many solutions to
this static classification task have been developed and several
quite accurate classifiers are now available.

However, in some of the newest applications, learning
algorithms work in dynamic environments, where data are
continuously generated. Sensor networks, monitoring, traffic
management, telecommunication, or web log analysis are
examples of such applications [1]. In these dynamic envi-
ronments, incoming data form adata streamcharacterized
by huge volumes of instances and rapid arrival-rate which
often requires quick, real-time response. Compared to static
environments, the processing of data streams implies new
requirements for algorithms, such as constraints on memory
usage, restricted learning and testing time, and one scan of
incoming instances [2]–[4]. Furthermore, due to the non-
stationary nature of data streams, the target concepts tendto

The authors are with the Institute of Computing Science, Poznan University
of Technology, 60-965 Poznan, Poland [e-mail: dbrzezinski@cs.put.poznan.pl,
jstefanowski@cs.put.poznan.pl].

change over time in an event calledconcept drift. Concept drift
occurs when the concept about which data is being collected
shifts from time to time after a minimum stability period [1].
Such changes are reflected in incoming instances and dete-
riorate the accuracy of classifiers learned from past training
tuples. Examples of real life concept drifts include spam cate-
gorization, weather predictions, monitoring systems, financial
fraud detection, and evolving customer preferences [5].

Changes of target concepts are categorized into sudden,
gradual, or recurring drifts. A good classifier should be able
to learn incrementally and adapt to such changes. Standard
static classifiers are not capable of fulfilling these conditions,
although the issue of incremental learning has already been
studied. For example, neural networks or Bayesian classifiers
can naturally incorporate incoming examples, while other
approaches, such as decision trees, have been adapted to work
online (see, e.g., VFDT [6]). However, simple incremental
learning is not sufficient for dealing with concept drifts as
forgetting outdated data and quick adaptation to most recent
states are a necessity in nonstationary environments [1].

In recent years, several approaches that cope with concept
drift have been proposed, including mainly: sliding window
approaches, new online algorithms, special detection tech-
niques, and adaptive ensembles; for their systematic reviews
see [1], [7]. Ensembles are popular approaches for improving
classification accuracy in static learning problems [8], how-
ever, they need to be generalized for changing environments.
Such a generalization could concern either modifying the
structure of the ensemble (weaker components are replaced
by base classifiers trained on the most recent data), updating
the aggregation technique (e.g. updating weights in the voting
formula), or introducing direct online learning from single
incoming examples (e.g. online bagging [9]).

In this paper, we focus on the topic of adaptive ensembles
which generate component classifiers sequentially from fixed-
size blocks of training examples calleddata chunks. In such
ensembles, when a new block arrives, existing component
classifiers are evaluated and their combination weights are
updated. A new classifier learned from the recent block is
added to the ensemble and the weakest classifiers are removed
according to the result of the evaluation. Moreover, standard,
static learning algorithms, such as C4.5, are applied to generate
classifiers from a given block. The SEA algorithm [3] was the
first of such adaptive ensembles and was soon followed by
the Accuracy Weighted Ensemble [10], which is presently the
most representative method of this type.

However, depending on the occurrence of concept drifts
within the fixed-size data chunk, the mentioned block-based

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, MONTH YEAR

ensembles may not react sufficiently to changes. In particular,
for sudden drifts they may react too slowly as classifiers
generated from outdated blocks still remain valid components
even though they have inaccurate weights. This situation is
connected with the problem of proper tuning of the data block
size. Using small size chunks can partly help in reacting to
sudden changes, but doing so will damage the performance of
the ensemble in periods of stability and increase computational
costs. An unsatisfactory reaction of block-based ensembles to
other types of drifts has already been noticed in [11], [12].On
the other hand, online incremental ensembles, such as Online
or Leveraging Bagging, react faster to sudden drifts but do
not take advantage of periodical weighting mechanisms, which
could offer sufficient reactions to gradual changes. Further-
more, incremental ensembles are also often characterized by
higher computational costs than block-based methods. Such
observations suggest that it could be profitable to combine
characteristic features from both groups of approaches in order
to sufficiently adapt to both gradual and sudden changes.

Following these critical motivations, we have decided to
propose a new hybrid algorithm, calledAccuracy Updated
Ensemble, which should react to different types of concept
drift much better than related adaptive ensembles. Our goal
is to retain the simple schema of learning component classi-
fiers and weighting their predictions, characteristic for block-
based algorithms, while adding elements known from online
methods. Our main novel contribution is the introduction of
incremental updating of component classifiers, which should
improve the ensemble’s reactions to different types of concept
drift as well as reduce the impact of the chunk size. Online
updates allow all ensemble members to adapt to the most
recent concept simultaneously and, therefore, change the basic
idea behind existing block-based algorithms. In [12] we have
already considered a preliminary version of the Accuracy
Updated Ensemble (AUE1). However, now we significantly
extend its concept and that is why in this paper we shall
refer to the proposed algorithm as AUE2. Compared to AUE1,
we put forward a new weighting and updating mechanism
as well as modify many other construction details to reduce
computational costs and improve classification accuracy. As
a result, the analysis of different possible weighting and
updating schemes has led to interesting findings concerning
incremental training of adaptive ensembles.

We experimentally evaluate the proposed AUE2 algorithm
with respect to classification accuracy, processing time, and
memory costs. Furthermore, we extend our experiments to a
wider comparative study including 11 additional state-of-the-
art methods, all implemented and tested through the MOA
framework [13]. To capture the differences in performance of
the algorithms, we collect several real world and synthetic
datasets representing gradual, sudden, and recurrent concept
drifts occurring at different speeds. To the best of our knowl-
edge, no previous research has included such a comprehensive
experimental study comparing so many types of online and
block-based classifiers in such diverse scenarios.

The remainder of the paper is organized as follows. Sec-
tion II presents related work. In Section III, we explain the
basic intuition behind our approach and present its details. The

algorithm is later analyzed and experimentally evaluated on
real and synthetic datasets in Section IV. Finally, in Section V
we draw conclusions and discuss lines of future research.

II. RELATED WORK

A. Basic concepts and notation

In static classification problems, a set of learning examples
contains pairs{x, y}, wherex is a vector of attribute values
and y is a class label (y ∈ {K1, . . . ,Kl}). ClassesKj are
known a priori. The learning algorithm constructs a classifier,
which outputs a class prediction for a given example.

In incremental learning, examples arrive continuously in the
form of a data streamS. A learning algorithm is presented
with a sequence of labeled examplesst = {xt, yt} for
t = 1, 2, . . . , T . At each time stept, a learner can analyze
historical labeled training examples (s1, s2, . . . , st) and an
incoming instancest+1, which is treated as a testing example.
The classifier predicts its class labelŷt+1. It is assumed that
after some time the true class labelyt+1 is provided1. Having
both yt+1 and ŷt+1 the learning algorithm can update its
hypothesis about a classifier if necessary. Then, examplest+1

with its classyt+1 becomes a part of the training data and the
process is repeated when the next instance is observed.

Generally, data streams can be processed either incremen-
tally by single examplesst (as described above) or they are di-
vided into equally sized blocks (data chunks)B1, B2, . . . , Bn

and the evaluation or updating of classifiers is performed after
processing all examples from a block. That second perspective
will be further discussed in our paper.

Each training example is generated by a sourceSj with
a stationary distributionPj . If all the data in the stream are
generated by the same distribution, we say that the concepts
represented in incoming data are stable, otherwise, concept
drift occurs [1]. A sudden(abrupt) drift occurs when at a
moment in timet the source distribution inSt is suddenly
replaced by a different distribution inSt+1. Abrupt drifts
directly deteriorate the classification abilities of a classifier,
as a once generated classifier has been trained on a different
class distribution.Gradual drifts are not so radical and they
are connected with a slower rate of changes. The first type
of gradual drift refers to a transition phase where examples
from two different distributionsPj andPj+1 are mixed. As
time goes on, the probability of observing examples from
Pj decreases, while that of examples fromPj+1 increases.
Another type of gradual drift, which we will refer to as
incremental, includes more than two sources, however the
difference between them is small and the change is noticed
in a longer period of time [5], [16]

Yet another type of drift concernsrecurrent concepts, i.e.,
previously active concepts that may reappear after some time.
Moreover, some authors distinguishblips which represent
”rare events” (outliers) in a stable distribution. This is not an
exhaustive discussion of drift types — the reader is referred
to [1], [5], [7], [17], [18] for more information on class label
swaps or changes in underlying data distributions.

1In this paper, we do not consider learning in a semi-supervised framework
where labels are not available for all incoming examples; see,e.g. [14], [15]

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

BRZEZINSKI AND STEFANOWSKI: REACTING TO DIFFERENT TYPES OF CONCEPT DRIFT 3

Discussing the nature of concept drifts, several researchers
refer to a probabilistic view on changes either in attributevalue
incoming distribution or class conditional probabilitiesp(y|x)
[7], [17]. In this study we consider the second case. Finally,
a key issue while handling concept drift is not responding to
minor fluctuations which can be perceived as noise. A good
algorithm should be capable to combine robustness to noise
with sensitiveness to drifts.

B. Classifiers for data streams with concept drift

Different categorizations of methods for handling concept
drift in data streams have been proposed; see e.g. [1], [5],
[7], [17]. For the purposes of this paper, we discuss three
categories most related to our research:windowing techniques,
drift detectors, andensemble methods. Windowing techniques
provide a simple forgetting mechanism by selecting examples
introduced to the learning algorithm, thus eliminating those
examples that come from an old concept distribution. A
different idea stands behind trigger approaches, which are
based on drift detectors that react to concept changes and
alarm when the classifier should be rebuilt or updated. Lastly,
classifier ensembles, due to their modularity, provide a natural
way of adapting to change by modifying ensemble components
or their aggregation. Below, we discuss the most related
algorithms falling into all three categories.

The most common strategy within the category of window-
ing techniques involves using sliding windows, which limit
the number of classifier training examples to the most recent
ones. Sliding windows combined with traditional batch algo-
rithms, known from static environments, can produce stream
classifiers. Unfortunately, when using windows of fixed size
the user is caught in a trade-off. A classifier built on a small
window of examples will react quickly to changes but may
lose on accuracy in periods of stability. On the other hand, a
classifier built on a large window of examples will fail to adapt
to rapidly changing concepts. For this reason, more dynamic
ways of modeling the forgetting process, such as heuristic
adjusting of the window size [19] or decay functions [20],
have been proposed. A windowing technique was also used to
adapt one of the most popular data stream classifiers, called
the Very Fast Decision Tree, to evolving environments.

Very Fast Decision Tree (VFDT or Hoeffding Tree) is an
incremental classifier for massive data streams proposed by
Domingos and Hulten [6]. The algorithm induces a decision
tree from a data stream incrementally by modifying the tree,
without the need for storing examples after they have been
used to update the tree. It works similarly to the classic
tree induction algorithm and differs mainly in the selection
of the split attribute. Instead of selecting the best attribute
(in terms of a given split evaluation function) after viewing
all the examples, it uses the Hoeffding bound to calculate
the number of examples necessary to select the right split-
node with a user-specified probability. The originally proposed
VFDT algorithm was designed for static data streams and
provided no forgetting mechanism. Hulten et al. [21] addressed
this issue by introducing a new algorithm called CVFDT,
which used a fixed-size window to determine which nodes
are aging and may need updating.

In the category of drift detectors, first approaches used
statistical tests to verify if the class distribution remains
constant over time and rebuilt the base learner otherwise [22].
The most popular algorithm, called Drift Detection Method
(DDM) [23], relies on the fact that in each iteration an online
classifier predicts the class of an example. The prediction
errors are modeled according to a binomial distribution. With
such a model, one can track the error rate and verify whether it
falls into the expected bounds or a warning or alarm level [23].
If the alarm level is reached, the classifier is dropped and a new
one is created but only from examples stored in the separate
“warning” window. DDM works best on data streams with
sudden drift as gradually changing concepts can pass without
triggering the alarm level. Baena-Garcı́a et al. [24] proposed a
modification of DDM, called EDDM, which works better than
DDM for slow gradual drift but is more sensitive to noise.

Aside from drift detectors and windowing techniques, many
researchers propose to use classifier ensembles to mine evolv-
ing data streams [2], [7]. Two general types of ensembles
dedicated for evolving data are considered: online ensembles,
which learn incrementally after processing single examples
and ensembles based on processing blocks of data. Within the
first group of approaches, generalizations of static solutions
are often considered, e.g., Oza introduced an online version
of bagging [25]. In Online Bagging, component classifiers
are incremental learners that combine their decisions using a
simple majority vote. The sampling, crucial to batch bagging,
is performed incrementally by presenting each example to
a componentk times, wherek is defined by the Poisson
distribution. Recently, Bifet et al. introduced a modification
of Oza’s algorithm called Leveraging Bagging [26], which
aims at adding more randomization to the input and output
of the base classifiers. The analysis of levels of diversity of
ensembles was also considered in the DDD algorithm, a meta-
system combining four diversified ensembles [27].

Another incremental ensemble was presented in an algo-
rithm called Dynamic Weighted Majority (DWM) [28]. In
DWM, a set of incremental classifiers is weighted accord-
ing to their accuracy after each incoming example. With
each mistake made by one of DWM’s component classifiers,
its weight is decreased by a user-specified factor. Although
weighting based on component predictions is the most popular
aggregation technique, it is worth mentioning that special
Bayesian combinations of local expert classifiers have also
been studied [29]. A different approach was proposed by
Kirkby in an algorithm called the Hoeffding Option Tree
(HOT) [30]. This generalization of the Hoeffding tree includes
option nodes where instead of selecting only the best split-test
attribute all promising attributes are kept. Later, for each of
those attributes a decision subtree is constructed. Makinga
final decision with an option tree involves weighted combining
of the predictions of all applicable subtrees.

An alternative approach to learning ensembles involves re-
evaluating ensemble components with fixed-size blocks of in-
coming examples, calleddata chunks, and replacing the worst
component with a classifier trained on the most recent exam-
ples. The most representative ensemble following this scheme
was proposed by Wang et al. [10]. In their algorithm, called

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, MONTH YEAR

Accuracy Weighted Ensemble (AWE), the authors propose to
train a new classifier on each incoming data chunk by a typical
static learning algorithm such as C4.5, RIPPER, or Naive
Bayes. After the new classifier is trained, all previously learned
component classifiers, already existing in the ensemble, are
evaluated on the most recent chunk. These evaluations are
done with a special version of the mean square error (see
Section III for the precise formula), which allows the algorithm
to select thek best classifiers to create a new ensemble.
Usually the newest classifier replaces the worst performing
from the existing ones. Moreover, the structure of the ensemble
is pruned if errors of component classifiers are worse than the
error of a random classifier. Similar chunk-based approaches
include the Streaming Ensemble Algorithm (SEA) [3] and
more recently Learn++.NSE [31]. It is important to notice that
the similarity of distributions in data chunks depends largely
on the size of the chunks. Thus, bigger chunks will build more
accurate classifiers but may contain more than one change. On
the other hand, smaller chunks are better at separating changes
but usually lead to poorer classifiers. In particular, ensembles
built on large data chunks may react too slowly to sudden
drifts occurring inside the chunks [12].

To overcome AWE’s slow drift reactions, Nishida proposed
a hybrid approach in which a data chunk ensemble is aided
by a drift detector [11]. This solution, implemented in an
algorithm called Adaptive Classifier Ensemble (ACE), aims
at reacting to sudden drifts by tracking the classifier’s error
rate with each incoming example, while slowly reconstructing
a classifier ensemble with large chunks of examples. This
proposal could be also seen as a hybridization of the data
chunk scheme with an incremental element. With a similar
intention of tackling sudden and gradual drifts, Brzezinski and
Stefanowski put forward the Accuracy Updated Ensemble, an
algorithm that combines the principles of chunk-based ensem-
bles with incremental base components [12]. The algorithm
presented in this paper builds on that last solution and offers
a mechanism capable of achieving accurate predictions in the
presence of different types of drift at relatively low computa-
tional costs. In the following section, we discuss the details of
the proposed algorithm and highlight its characteristic features.

III. T HE ACCURACY UPDATED ENSEMBLE

Most data stream classification algorithms tend to specialize
in one type of drift. Some classifiers are more accurate on
datasets with sudden drifts while others perform better in the
presence of gradual changes. The aim of our research is to put
forward a data stream classifier that will react equally well
to different types of drift. To achieve this goal, we propose
to combine accuracy-based weighting mechanisms known
from block-based ensembles with the incremental nature of
Hoeffding Trees, in an algorithm called the Accuracy Updated
Ensemble (AUE2).

The Accuracy Updated Ensemble maintains a weighted pool
of component classifiers and predicts the class of incoming ex-
amples by aggregating the predictions of components using a
weighted voting rule. After each data chunk of examples a new
classifier is created, which substitutes the weakest perform-
ing ensemble member. The performance of each component

classifier is evaluated by estimating its expected prediction
error on the examples from the most recent data chunk. After
substituting the poorest performing component, the remaining
ensemble members are updated, i.e. incrementally trained,
and their weights are adjusted according to their accuracy.
We propose to use Hoeffding trees as component classifiers,
but the presented algorithm can be considered as a general
method, and in principle, one could use other online learning
algorithms as base learners.

Let S be a data stream partitioned into evenly sized chunks
B1, B2, . . . , Bn each containingd examples. For every incom-
ing chunkBi, the weightswij of component classifiersCj ∈ E
(j = 1, 2, . . . , k) are calculated by estimating the error rate on
data chunkBi as shown in Equations 1-3.

MSEij =
1

|Bi|

∑

{x,y}∈Bi

(1− f j
y (x))

2, (1)

MSEr =
∑

y

p(y)(1− p(y))2, (2)

wij =
1

MSEr +MSEij + ǫ
(3)

Functionf j
y (x) denotes the probability given by classifier

Cj that x is an instance of classy. Following inspirations
from the AWE algorithm [10], instead of single class predic-
tions, probabilities of all classes are considered. The value
of MSEij estimates the prediction error of classifierCj on
chunkBi, whileMSEr is the mean square error of a randomly
predicting classifier and is used as a reference point to the
current class distribution. Additionally a very small positive
value ǫ is added to the equation to avoid division by zero
problems. The weighting formula presented in Equation 3 aims
at combining information about the classifier’s accuracy and
the current class distribution. Furthermore, by using a non-
linear function, compared to a linear one used in AWE, we
highly differentiate component classifiers. The final version of
the component weighting function (as well as the candidate
weighting function discussed further in this section) was cho-
sen after performing a comparative study of several alternative
weighting approaches discussed in Section IV-C.

Apart from assigning new weights to ensemble members,
with each data chunkBi a candidate classifier, denoted asC ′,
is created from examples within the most recent chunk. AsC ′

is trained on the most recent data, it is treated as a “perfect”
classifier and assigned a weight according to Equation 4.

wC′ =
1

MSEr + ǫ
(4)

Compared to the function used to weight existing ensemble
members, the weight of the candidate classifierwC′ does not
take into account the prediction error ofC ′ on Bi. Such an
approach is based on the assumption that the most recent
chunk provides the best representation of the current and near-
future data distribution. SinceC ′ is trained on the most recent
data it should be treated as the best possible classifier.

If the ensemble contains less thank components the candi-
date classifier is simply added to the ensemble. Otherwise,

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

BRZEZINSKI AND STEFANOWSKI: REACTING TO DIFFERENT TYPES OF CONCEPT DRIFT 5

out of the k existing ensemble membersCj ∈ E , the
poorest performing classifier, i.e., the component with the
lowest weight, is substituted with the candidate classifier
C ′. After the substitution, remaining ensemble members are
incrementally trained by presenting examples from the most
recent data chunkBi. Our experiments (discussed in more
detail in Section IV-C) have shown that for datasets which do
not contain any drift the incremental training of component
classifiers in AUE2 can cause non-constant memory usage. For
this reason, after each data chunk the size of the ensemble is
compared with a user-specified memory limit. If the memory
limit is exceeded, then the least active leaves of component
Hoeffding trees are pruned to match the memory restriction.
After pruning, the ensemble is ready to classify examples from
the next incoming data chunk. The pseudocode of AUE2 is
presented in Algorithm 1.

Algorithm 1 Accuracy Updated Ensemble (AUE2)
Input: S: data stream of examples partitioned into chunks,

k: number of ensemble members,m: memory limit
Output: E : ensemble ofk weighted incremental classifiers

1: E ← ∅;
2: for all data chunksBi ∈ S do
3: C ′ ← new component classifier built onBi;
4: wC′ ← 1

MSEr+ǫ
(4);

5: for all classifiersCj ∈ E do
6: applyCj on Bi to deriveMSEij ;
7: compute weightwij based on (3);
8: if |E| < k then
9: E ← E ∪ {C ′};

10: else
11: substitute least accurate classifier inE with C ′;
12: for all classifiersCj ∈ E \ {C

′} do
13: incrementally train classifierCj with Bi;
14: if memory usage(E) > m then
15: prune (decrease size of) component classifiers;

In contrast to earlier proposed block-based ensembles, such
as AWE or SEA, the AUE2 algorithm is not designed to
use batch static learners but, instead, incrementally updates
component classifiers. In our opinion, this should lead to better
classification accuracy in the presence of slow gradual drifts
and periods of stability. Additionally, since the components
can be retrained, the algorithm should be less dependent on the
chunk size and can use smaller chunks without deterioratingits
accuracy [12], [32]. The first version of the proposed algorithm
(AUE1) inherited several mechanisms from its predecessor
AWE, such as candidate cross-validation and a classifier
buffer, but also improved upon many elements, e.g., AUE1
conditionally updates component classifiers. However, our
experiments, discussed in Section IV-C, have shown that there
is significant room for improvement in terms of memory usage
and classification accuracy. That is why, compared to AUE1,
AUE2 introduces a new weighting function, does not require
cross-validation of the candidate classifier, does not keepa
classifier buffer, prunes its base learners, and always updates
its components.

The Accuracy Updated Ensemble also differs from other
data stream ensemble approaches. Ensemble members of
AUE2 are weighted and can be removed, unlike in online
bagging. Compared to VFDT-based ensembles like ASHT
and HOT, we do not limit base classifier size and do not
use any windows. Compared to Learn++.NSE, the proposed
algorithm incrementally trains existing component classifiers,
retains only k of all the created components, and uses a
different weighting function which ensures that components
will have non-zero weights. In contrast to DWM, AUE2
processes the stream in chunks, weights components according
to their prediction error, treats the candidate classifier as a
perfect learner, and its weighting function does not require
any user-specified parameters.

In a way, AUE2 can be considered as a hybrid approach —
it can react to sudden drifts and it can gradually evolve with
slow changing concepts. The rapid adaptation after sudden
drifts is achieved by weighting classifiers according to their
prediction error and giving the highest possible weight to the
newest classifier. On the other hand, because components are
updated after every chunk, they can react to gradual drifts.
Additionally, the modular structure of AUE2 should protect
the classifier from drastic accuracy losses in the presence
of random blips, as a single “outlier” component can be
overvoted when the target concept stabilizes. The performance
of AUE2 in scenarios involving different types of drifts, aswell
as no drift, will be examined in the following section.

IV. EXPERIMENTAL EVALUATION

The proposed algorithm is evaluated in several experiments
to simulate scenarios involving different types of changes. In
the following subsections, we describe all of the used datasets,
discuss experimental setup, and analyze experiment results.

A. Datasets

Most of the common benchmarks for machine learning
algorithms, e.g. gathered in the UCI repository [33], contain
too few examples to be concerned suitable for evaluating data
stream classification methods, especially in terms of algorithm
efficiency. Furthermore, datasets used to test algorithms de-
signed for static environments usually do not contain any type
of concept drift. In terms of real-world data there is still a
shortage of suitable and publicly available benchmark datasets.
Some researchers have used private data that cannot be repro-
duced by others [6], [10], [34], [35]. For this reason, data
stream classification algorithms are tested mostly on synthetic
datasets in which concept drift is introduced. Following this
common approach, the proposed algorithm is compared with
other classifiers on 11 synthetic and 4 real datasets. Artificial
datasets were generated using the MOA framework and the
real datasets are publicly available. A brief description of each
dataset is provided below.2

Hyp: Hyperplane is a popular dataset generator utilized in
many stream classification experiments [10], [35], [36]. Itis
mainly used to generate streams with incremental concept

2Scripts available at: http://www.cs.put.poznan.pl/dbrzezinski/software.php

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.cs.put.poznan.pl/dbrzezinski/software.php

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, MONTH YEAR

drift by slightly rotating the decision boundary with each
consecutive example. We set the hyperplane generator to create
two datasets each containing 1,000,000 instances described by
10 features. The first dataset (HypS) contains incremental drift
with the modification weightwi changing by 0.001 with each
example. The second dataset (HypF) is similar to the first
one but the change is more rapid with the weight changing
by 0.1 with each example. Additionally, both datasets contain
5% of noise added to the concepts to randomly differentiate
the instances. In this paper, by noise we shall refer to class
noise, i.e., errors artificially introduced to class labels.
RBF: The Radial Basis Function generator creates a user

specified number of drifting centroids, each defined by a class
label, position, weight, and standard deviation. We use this
generator to create three datasets, 1,000,000 examples each.
The RBFND dataset has two decision classes and no drift.
The RBFB dataset contains 4 decision classes and 4 very
short, sudden drifts (2 blips), which should be ignored by
the tested classifier. The last dataset from this group,RBFGR,
is designed to contain 4 gradual recurring drifts with each
concept containing 4 decision classes.
SEA: The SEA generator [3] is used to create two datasets

with sudden concept drifts. Each concept is defined by a
sum of two functions, both dependent on a single attribute,
which outputs a point belonging to one of four possible
decision classes. For our tests, we generate 1,000,000 in-
stances with drifts occurring every 250,000 examples (SEAS)
and 2,000,000 instances with drifts occurring every 200,000
examples (SEAF), with 10% noise introduced.
Tree: We use the Random Tree Generator to create two

drifting datasets, each described by 5 nominal and 5 numerical
attributes. TheTreeS dataset contains 4 sudden recurring
drifts evenly distributed over 1,000,000 examples. TheTreeF

dataset contains only 100,000 instances but is the fastest
changing dataset with 15 sudden drifts. In both cases, drift
is introduced by abruptly changing the concept (randomly
generated tree) after a given number of examples.
LED: LED [37] is a popular artificial dataset, which consists

of a stream of 24 binary attributes that define the digit dis-
played on a seven-segment LED display. We use this generator
to acquire two datasets. The first dataset, calledLEDM , con-
tains 1,000,000 instances with two gradually drifting concepts
suddenly switching after 500,000 examples. Such a mixed type
of drift is particularly difficult to learn. The second dataset
(LEDND) contains no drift but instead it is the largest and
noisiest dataset with 10,000,000 examples and 20% of noise.
Elec, Cov, Poker, Airlines: The first of four utilized

real datasets, called Electricity (Elec) [38], is one of the
most widely used in data stream classification. It consists of
energy prices from the electricity market, which were affected
by market demand, supply, season, weather and time of day.
Elec contains 45,312 instances each described by 7 features.
The second real dataset, Covertype (Cov), contains cover type
information about four wilderness areas. Examples are defined
by 53 cartographic variables that describe one of 7 possible
forest cover types. The whole dataset consists of 581,012
instances and has been used in several papers on data stream
classification [25], [39]. The third real benchmark data is the

Poker dataset [39], which consists of 1,000,000 examples
describing the suits and ranks of a hand of five playing cards.
This gives a total of 10 predictive attributes per instance (5
cards× 2 attributes — suit and rank) with an additional
class attribute that describes 1 of 10 poker hands. Finally,
Airlines is a real dataset containing 539,383 examples
described by 7 attributes.Airlines encapsulates the task
of predicting whether a given flight will be delayed, given the
information of the scheduled departure.

TABLE I
CHARACTERISTIC OF DATASETS

Dataset #Inst #Attrs #Cls Noise #Drifts Drift type

HypS 1M 10 2 5% 1 incremental
HypF 1M 10 2 5% 1 incremental
RBFB 1M 20 4 0% 2 blips
RBFGR 1M 20 4 0% 4 gradual
RBFND 1M 20 2 0% 0 none
SEAS 1M 3 4 10% 3 sudden
SEAF 2M 3 4 10% 9 sudden
TreeS 1M 10 4 0% 4 s. recurring
TreeF 100k 10 6 0% 15 s. recurring
LEDM 1M 24 10 10% 3 mixed
LEDND 10M 24 10 20% 0 none
Elec 45k 7 2 - - unknown
Cov 581k 53 7 - - unknown
Poker 1M 10 10 - - unknown
Airlines 539k 7 2 - - unknown

The described synthetic datasets were chosen to evaluate
all of the analyzed algorithms in different scenarios. As for
the real datasets, we share the common assumption that we
cannot unequivocally state when drifts occur or if there is any
drift. The real datasets serve to compare the algorithms in a
real-life scenario rather than a concrete drift situation.Table I
summarizes the characteristics of each dataset.

B. Experimental setup

All of the tested algorithms were implemented in Java as
part of the MOA framework [13]. In particular, AUE2 was
implemented for this study, the source codes of the Adaptive
Classifier Ensemble and Learn++.NSE were provided courtesy
of Dr. Nishida and Dr. Gonçalves respectively, while all
the remaining classifiers were already a part of MOA. The
experiments were conducted on a machine equipped with two
12-core AMD Opteron 6172, 2.1Ghz processors and 64 GB of
RAM. To make the comparison more meaningful, we set the
same parameter values for all the algorithms. For ensemble
methods we set the number of component classifiers to 10:
AUE2, AUE1, AWE, DWM, ACE, Online Bagging, Leverag-
ing Bagging have 10 Hoeffding Trees, HOT has 10 options.
We decided to use 10 component classifiers as, according to
our preliminary study, using more classifiers linearly increased
processing time and memory, but did not notably improve
classification accuracy of the analyzed ensemble methods. The
data block size used for chunk ensembles was equald = 500
for all the datasets. Although AUE2 can remain accurate
using smaller chunks, we chose to use blocks containing 500
examples as this size was considered the minimal suitable
for block-based ensembles such as AWE [3], [10], and lower

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

BRZEZINSKI AND STEFANOWSKI: REACTING TO DIFFERENT TYPES OF CONCEPT DRIFT 7

values would drastically decrease AWE’s accuracy. We set the
static window size of Win to10 × d to make the number
of examples seen by the windowed classifier similar to that
seen by ensemble methods. The parameters of the Hoeffding
Tree used with the static window were the same as those of
the option tree and the component classifiers (also Hoeffding
Trees) of all the ensemble methods. More precisely, we used
Hoeffding Trees enhanced with adaptive Naive Bayes leaf
predictions with a grace periodnmin = 100, split confidence
δ = 0.01, and tie-thresholdτ = 0.05 [6]. Due to the fact that
the only available implementation of ACE could not be fully
adjusted to use classifiers from the MOA framework, we used
ACE (as originally proposed by Nishida [11]) with 10 C4.5
trees as batch learners and Naive Bayes as an online learner.
As suggested in [31], Learn++.NSE does not use any pruning
mechanism and has the sigmoid slopea = 0.5 and the sigmoid
crossing pointb = 10.

According to the main characteristics of data streams [2],
[3], [13], we evaluate the performance of algorithms with
respect to time efficiency, memory usage, and classification
accuracy. All the performance measures were calculated using
the data chunk evaluation method, which works similarly to
the test-then-train paradigm with the difference that it uses data
chunks instead of single examples [32]. This method reads
incoming examples without processing them, until they form
a data chunk of sized. Each new data chunk is first used to
evaluate the existing classifier, then it updates the classifier,
and finally it is disposed to preserve memory. Such an ap-
proach allows to measure average chunk training and testing
times and is less pessimistic than the test-then-train method.
It is suitable for static and evolving streams and provides a
natural method of reducing result storage requirements.

C. Analysis of the components of the proposed algorithm

While constructing the AUE2 algorithm we decided to use
the experience gathered from our previous comparative study
between AUE1 and AWE [12] and verify the properties of
AUE1 in search of improvements. One of the first analyzed
properties was the use of the classifier buffer. With each chunk,
after evaluating its components AUE1 usesk best classifiers
to form an ensemble. To reduce memory usage, onlyn of
all the constructed component classifiers are stored until the
next chunk is processed. During our previous experiments with
AUE1 [12] we used a buffer ofn = 30 classifiers out of which
k = 15 were selected to form an ensemble. The assumption
behind such an approach was that a buffer of additional, out-
of-ensemble, classifiers could prove profitable in the presence
of recurring drifts. In the design phase of AUE2, we decided
to verify this assumption by analyzing the pros and cons of
maintaining a buffer. Table II presents the results of comparing
AUE2 with a buffer (k = 10 andn = 30) and AUE2 without
one (k = n = 10).

As Table II shows, in terms of accuracy, AUE2 with a
buffer seems to perform slightly better than AUE2 without
one. Nevertheless, the gain in accuracy is quite minor or even
neglectable compared to the training time and memory cost.
In the analyzed scenarios, using a buffer of 20 additional

TABLE II
COMPARISON OFAUE2 WITH AND WITHOUT A BUFFER IN TERMS OF

AVERAGE ACCURACY [%], AVERAGE MEMORY USAGE [MB], AVERAGE

CHUNK TRAINING AND TESTING TIME [S]

AUE2 with a buffer AUE2 without a buffer

Acc. Mem. Train. Test. Acc. Mem. Train. Test.

HypS 88.59 1.86 0.23 0.02 88.64 0.58 0.07 0.02
RBFB 94.07 2.73 0.66 0.06 94.06 2.15 0.19 0.06
RBFGR 93.37 4.30 0.82 0.06 93.30 3.91 0.19 0.06
RBFND 92.42 121.51 1.33 0.02 92.41 11.91 0.07 0.02
SEAS 89.00 1.46 0.16 0.01 89.02 0.88 0.03 0.01
Elec 70.86 0.39 0.05 0.01 70.76 0.09 0.03 0.01
Cov 81.24 1.56 0.78 0.12 81.19 0.78 0.30 0.11
Poker 60.57 0.29 0.13 0.03 59.86 0.09 0.06 0.02

classifiers requires on an average over five times more training
time and twice as much memory as not using any buffer. For
this reason, the buffer was excluded from AUE2.

These results led to an additional conclusion. Although
AUE2 does not require any pruning to restrict memory usage
on datasets with drift [12], [32], by testing the algorithm on a
dataset without any drift (RBFND) we noticed that it requires
such a mechanism in static environments. That is why, in con-
trast to AUE1, AUE2 comes with a pruning mechanism that
removes the least used leaves of each component Hoeffding
tree to fit a user specified memory limit.

Another costly property of AUE1 was the weighting of each
newly created component classifier. AUE1, as well as AWE,
uses expensive 10-fold cross-validation (10cv) to weight the
candidate classifier on the most recent data chunk [10], [12].
We analyzed the impact of using other weighting schemes
starting with other cross-validations, such as 4-fold (4cv)
and 2-fold (2cv) cross-validation. We also considered the
candidate’s weight as a function of the remaining classifiers’
weights. We investigated the performance of the candidate
classifier with a weight equal to the maximum (Max), average
(Mean), and minimum (Min) weight of the remaining classi-
fiers, half of the sum of remaining classifier weights (Half),
and half of the sum of remaining classifier weights minus
a very small valueǫ (Halfǫ). Additionally, we experimented
not only with the candidate weight but with the overall
weight definition itself. We analyzed linear and non-linear
functions, such aswL = max (MSEr −MSEi, 0) + ǫ and
wN = 1

MSEr+MSEi+ǫ
. By using MSEi and MSEr we

associate the component classifier’s weight with its accuracy
and the current class distribution. Theǫ in these functions is a
very small value used to ensure that the ensemble will always
be able to give a non-zero prediction. In reference to functions
wL and wN , we decided to treat the candidate classifier as
a “perfect classifier”, i.e., one for whichMSEi = 0. Such
an approach is based on the implicit assumption that the
most recent data chunk provides the best representation of the
near-future data distribution. The resulting candidate weight
functions for these methods arewCL = MSEr + ǫ and
wCN = 1

MSEr+ǫ
. It is worth noticing that the calculation of

wCL andwCN does not require any cross-validation nor the
analysis of remaining classifier weights and can be performed
in constant time.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, MONTH YEAR

TABLE III
AVERAGE ACCURACIES OFAUE2 WITH DIFFERENT CANDIDATE WEIGHTING FUNCTIONS[%]

10cv 4cv 2cv Max Mean Min Half Halfǫ wCL wCN

HypS 88.64 88.70 88.44 88.36 88.30 84.99 88.58 88.49 88.52 88.43
RBFB 94.06 94.64 94.81 94.82 94.84 95.87 92.61 93.09 94.78 94.77
RBFGR 93.30 93.98 94.10 94.21 94.23 74.73 63.38 63.64 94.1594.43
RBFND 92.41 93.08 92.58 93.22 93.27 93.40 91.33 91.65 93.12 93.33
SEAS 89.02 89.20 89.21 89.20 89.20 87.65 89.03 89.02 89.21 89.19
Elec 70.76 71.16 71.83 62.66 61.88 43.99 51.10 49.69 69.3577.32
Cov 81.19 84.03 84.79 84.70 84.72 75.03 81.10 81.50 84.4685.20
Poker 59.86 60.39 60.77 60.20 60.54 46.55 46.53 46.52 59.6766.23

As Table III shows, treating the candidate classifier as a
“perfect” classifier substantially increases accuracy, especially
when combined with a non-linear weighting function. The
most interesting results are achieved bywCN , which proves
best on most datasets and close to best on the remaining ones.
The difference is especially visible on real datasets (Elec,
Cov, Poker) wherewCN improves accuracy by a few percent
compared to other solutions. What is worth noticing is that,
compared to using a linear function, by using a non-linear
weighting function more voting power is given to the candidate
classifier. This is especially important in the presence of
concept drift when the candidate is the only component of the
ensemble with information about the incoming new concept.
Giving so much power to the candidate can prove inconvenient
in the presence of sudden noise when the incoming concept
should be treated as an outlier or when no drift occurs and the
more experienced components should be more important. The
obtained results seem to support that hypothesis as for data
with no drift (RBFND and RBFB) best results are achieved
by the weighting mechanism that gives the most voting power
to older components, i.e., the Min approach. Being the most
accurate in different scenarios and much more computationally
effective than cross-validation, we chose thewCN function as
the candidate classifier weighting mechanism for AUE2.

In an attempt to further decrease memory usage and possibly
improve classification accuracy, we proposed and analyzed two
alternative component updating mechanisms. The first mech-
anism selects only theb < k best weighted components for
updating. We experimentally evaluated the effect of updating
b ∈ [4; 9] highest weighted components of an ensemble of
10 classifiers. In the second mechanism, we proposed to stop
updating a component classifier if the difference between the
mean square error of that component obtained on the most
recent data chunk (MSEi,t) and the error obtained on the
previous chunk (MSEi,t−1) is greater than 0 and less than a
user-defined thresholdθ, i.e., componentCi is not updated if
0 < MSEi,t −MSEi,t−1 < θ. We experimentally tested this
approach forθ ∈ [0.005; 0.05].

The obtained results, omitted due to space limitations, have
shown that refraining from updating component classifiers is
not the best strategy in a stream with drifts. Not only does
updating all components give best average accuracy, but the
less refraining was performed the better the results were. On
the other hand, substantial savings in terms of memory can
be achieved by not updating all of the component classifiers.
Refraining from updating whenMSEi settles atθ = 0.5% of
what it was on the previous chunk requires, on an average,

14% less memory than always updating all components.
Nevertheless, the proposed refraining techniques allowedto
reduce memory requirements but did not increase accuracy.
Such an outcome may suggest that the incremental creation
of strong classifiers as ensemble members is of more value to
the prediction of the ensemble. These results may thereforebe
considered concordant with the standpoint presented in [31],
suggesting that drifting environments provide natural diversity
and the premise of weaklearnability does not apply to them. As
the main aim of the proposed algorithm is to react accurately
to different types of drift we decided not to use any refraining
technique in AUE2.

D. Comparative study of classifiers

After establishing the properties of AUE2, a set of ex-
periments was conducted to compare the newly proposed
algorithm against 11 classifiers: the Hoeffding Option Tree
(HOT), Adaptive Classifier Ensemble (ACE), the previous
version of the Accuracy Updated Ensemble (AUE1), the
Accuracy Weighted Ensemble (AWE), Leveraging Bagging
(Lev), Online Bagging (Oza), Dynamic Weighted Majority
(DWM), Learn++.NSE (NSE), Drift Detection Method with
a Hoeffding Tree (DDM), a single Hoeffding Tree with a
static window (Win), and the Naive Bayes algorithm (NB).
We chose AWE and AUE1 as those are the classifiers we
tried to improve upon. HOT and ACE were selected as they
can be considered as hybrid ensemble algorithms combining
elements of incremental learning. Oza, Lev, NSE, and DWM
were chosen as strong representatives of online ensembles.
The DDM algorithm and the windowed Hoeffding Tree were
chosen as representatives of single classifiers. Additionally,
the Naive Bayes algorithm is added to the comparison as a
reference for using an algorithm without any drift reaction
mechanism. All the studied algorithms were evaluated in terms
of classification accuracy, memory usage, chunk training time
and testing time. Average values of the analyzed performance
measures are given in Tables IV-VII.

Apart from analyzing the average performance of the al-
gorithms, we generated four graphical plots for each dataset
depicting the algorithms’ functioning in terms of trainingtime,
testing time, memory usage, and classification accuracy. By
presenting the performance measure calculated after each data
chunk on the y-axis and the number of processed training
examples on the x-axis, one can examine the dynamics of
a given classifier, in particular, its reactions to concept drift.
Such graphical plots are the most common way of displaying

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

BRZEZINSKI AND STEFANOWSKI: REACTING TO DIFFERENT TYPES OF CONCEPT DRIFT 9

TABLE IV
AVERAGE CLASSIFICATION ACCURACIES IN PERCENTAGE[%]

ACE AUE1 AWE AUE2 HOT DDM Win Lev NB Oza DWM NSE

HypS 80.65 88.59 90.43 88.43 83.23 87.92 87.56 85.36 81.00 89.89 71.20 86.83
HypF 84.56 88.58 89.21 89.46 83.32 86.86 86.92 87.21 78.05 89.32 76.69 85.39
RBFB 87.34 94.07 78.82 94.77 93.79 88.30 73.0795.28 66.97 93.08 78.11 73.02
RBFGR 87.54 93.37 79.74 94.43 93.24 87.99 74.67 94.74 62.01 92.56 77.80 74.49
RBFND 84.74 92.42 72.63 93.33 91.20 87.62 71.12 92.24 72.00 91.37 76.06 71.07
SEAS 86.39 89.00 87.73 89.19 87.07 88.37 86.85 87.09 86.18 88.80 78.30 86.23
SEAF 86.22 88.36 86.40 88.72 86.25 87.80 85.55 86.68 84.98 88.37 79.33 85.07
TreeS 65.77 84.35 63.74 84.94 69.68 80.58 50.15 81.69 47.88 81.67 51.19 49.37
TreeF 45.97 52.87 45.35 45.32 40.34 42.74 41.54 33.42 35.02 43.40 29.30 33.90
LEDM 64.70 67.29 67.11 67.58 66.92 67.17 65.52 66.74 67.1567.62 44.43 62.86
LEDND 46.33 50.68 51.27 51.26 51.17 51.05 47.07 50.6451.27 51.23 26.86 47.16
Elec 75.83 70.86 69.33 77.32 78.21 64.45 70.35 76.08 73.08 77.34 72.43 73.34
Cov 67.05 81.24 79.34 85.20 86.48 58.11 77.19 81.04 66.02 80.40 80.84 77.16
Poker 67.38 60.57 59.99 66.10 74.77 60.23 58.2682.62 58.09 61.13 74.49 59.56
Airlines 66.75 63.92 63.31 67.37 66.18 65.79 64.93 63.10 66.84 66.39 61.00 63.83

TABLE V
AVERAGE CHUNK TRAINING TIME IN CENTISECONDS[CS]

ACE AUE1 AWE AUE2 HOT DDM Win Lev NB Oza DWM NSE

HypS 26.83 14.82 12.15 4.41 0.69 0.33 0.17 6.040.03 3.94 7.26 116.20
HypF 25.78 14.13 12.11 4.57 2.39 0.38 0.20 5.620.03 3.97 7.77 173.73
RBFB 72.27 47.93 42.46 13.88 2.72 0.87 0.29 13.340.05 9.63 14.22 628.33
RBFGR 72.72 54.51 42.63 14.08 3.45 0.88 0.29 13.830.04 9.96 14.57 679.69
RBFND 19.94 44.58 11.80 4.67 1.40 0.27 0.17 6.690.03 4.74 8.35 186.12
SEAS 4.95 7.64 4.36 1.63 0.37 0.15 0.13 2.650.01 2.59 2.58 66.53
SEAF 5.06 5.49 4.24 1.60 0.28 0.13 0.13 2.580.01 2.31 2.76 64.74
TreeS 20.63 26.99 15.07 5.24 0.78 0.37 0.19 7.000.02 4.79 7.41 196.91
TreeF 27.98 20.55 18.20 7.90 1.73 0.73 0.51 8.810.02 5.36 9.19 32.85
LEDM 7.75 31.47 25.48 8.81 4.44 0.62 0.26 9.490.03 7.98 8.21 402.41
LEDND 7.73 27.72 25.30 8.99 10.11 1.28 0.22 10.140.03 11.60 7.98 932.29
Elec 4.47 5.00 5.57 3.26 1.89 1.00 1.00 3.750.07 2.70 5.90 6.74
Cov 23.35 40.87 41.29 14.83 6.64 1.23 0.38 10.210.09 9.66 18.24 425.72
Poker 2.78 9.57 6.56 4.20 1.91 0.39 0.18 3.070.02 2.83 7.69 108.00
Airlines 4.37 10.45 14.15 6.79 1.62 0.58 0.76 7.010.02 4.78 32.23 69.05

TABLE VI
AVERAGE CHUNK TESTING TIME IN CENTISECONDS[CS]

ACE AUE1 AWE AUE2 HOT DDM Win Lev NB Oza DWM NSE

HypS 0.60 1.82 1.72 1.75 0.33 0.19 0.18 2.290.18 1.97 0.80 7.48
HypF 0.59 1.82 1.74 1.73 1.04 0.20 0.21 1.990.18 1.99 0.78 7.40
RBFB 1.10 6.15 6.58 6.06 1.35 0.66 0.68 6.450.66 6.78 2.51 31.80
RBFGR 1.11 6.44 6.53 6.29 1.69 0.70 0.71 6.810.65 7.11 2.68 20.10
RBFND 0.58 2.47 1.67 2.23 0.60 0.20 0.20 3.220.19 2.57 0.79 3.44
SEAS 0.47 0.76 0.61 0.67 0.09 0.07 0.08 0.730.07 0.82 0.28 3.70
SEAF 0.47 0.66 0.59 0.65 0.09 0.07 0.08 0.71 0.08 0.73 0.29 2.87
TreeS 0.82 2.54 2.32 2.52 0.36 0.22 0.22 3.32 0.23 2.96 0.73 1.88
TreeF 0.97 2.93 2.46 3.31 0.27 0.36 0.39 3.70 0.48 3.43 0.95 1.25
LEDM 2.10 4.92 4.05 3.83 0.29 0.48 0.41 4.58 0.39 5.62 2.02 4.49
LEDND 2.05 4.15 4.01 3.90 0.27 0.97 0.42 4.95 0.40 9.28 2.03 4.08
Elec 0.62 0.85 0.40 1.18 0.73 0.21 0.27 1.29 0.35 1.30 0.46 2.05
CovType 0.84 6.17 6.34 6.74 4.33 0.55 0.71 5.22 1.26 7.45 2.29 15.36
Poker 0.57 1.79 0.37 1.92 1.31 0.22 0.20 1.09 0.47 1.68 0.48 2.69
Airlines 0.30 0.44 0.22 2.22 0.36 0.23 0.21 1.78 0.19 2.04 0.35 1.78

TABLE VII
AVERAGE CLASSIFIER MEMORY USAGE IN MEGABYTES[MB]

ACE AUE1 AWE AUE2 HOT DDM Win Lev NB Oza DWM NSE

HypS 0.14 1.97 0.28 0.63 2.94 0.24 0.00 4.30 0.01 0.71 0.15 16.85
HypF 0.13 1.23 0.31 0.57 9.57 0.55 0.00 1.70 0.01 0.87 0.20 36.98
RBFB 0.18 2.99 0.45 2.40 5.38 0.33 0.01 5.32 0.01 1.16 0.35 36.99
RBFGR 0.19 4.67 0.43 4.65 5.94 0.30 0.01 6.84 0.01 1.94 0.33 36.99
RBFND 0.14 13.07 0.25 12.74 5.88 0.59 0.00 38.49 0.01 5.83 0.22 36.97
SEAS 0.10 1.56 0.20 0.92 0.71 0.15 0.00 0.80 0.00 1.12 0.07 36.97
SEAF 0.10 1.02 0.20 0.57 0.71 0.08 0.00 0.52 0.00 0.65 0.08 36.97
TreeS 0.22 5.22 0.49 4.95 4.34 0.59 0.00 17.28 0.01 5.75 0.15 36.98
TreeF 0.22 1.68 0.35 0.88 0.52 0.12 0.01 0.55 0.01 0.28 0.07 0.41
LEDM 0.27 0.62 0.61 0.22 2.06 0.17 0.01 0.62 0.03 1.50 0.04 36.99
LEDND 0.27 0.62 0.61 0.22 15.74 4.73 0.01 0.29 0.03 6.16 0.03 180.68
Elec 0.10 0.39 0.27 0.46 0.75 0.03 0.00 0.34 0.01 0.14 0.11 0.10
Cov 0.20 1.57 0.68 0.85 17.17 0.08 0.02 0.82 0.05 0.32 0.48 12.59
Poker 0.14 0.33 0.27 0.20 8.05 0.14 0.00 1.23 0.01 0.12 0.31 25.47
Airlines 0.11 2.35 5.71 62.34 65.65 13.47 0.05 38.95 0.06 30.80 1.14 11.10

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, MONTH YEAR

results in data stream mining papers [26], [31]. Due to
space limitations we will only analyze the most interesting
plots, which highlight characteristic features of the studied
algorithms.

60 %

A
c
c
u
ra

c
y

NSE

Fig. 1. Classification accuracy on theRBFGR dataset

Fig. 1 reports accuracies of the analyzed algorithms on
the RBFGR dataset, which contains gradual recurring drifts.
Looking at the plot one can see drops in accuracy around
examples number 125k, 250k, 375k, and 500k. The most
severely malfunctioning algorithm in the presence of gradual
recurring drifts is NB, followed by Win, NSE, DWM and
AWE. The subsequent drops in accuracy of the Naive Bayes
algorithm suggest that classifiers without any drift reaction
mechanism fail to successfully learn from data with gradual
recurrent drifts. On the other hand, Win, NSE, DWM and
AWE appear to react too slowly, possibly due to the strong
time similarity of data used for prediction. Additionally,DDM
and ACE both use drift detectors which are designed to work
best with sudden changes and for this reason the performance
of these algorithms may not be as good as the performance
of ensemble approaches. The two most accurate algorithms
on this dataset are AUE2 and Lev. Both of these algorithms
require similar training and testing time but Lev requires
almost twice as much memory as AUE2.

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

HOT
AUE

Lev

DWM
ACE
DDM

NB
Win

AUE2
AWE

Oza

30 %
0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

NSE

Fig. 2. Classification accuracy on theTreeS dataset

0 B

5 MB

10 MB

15 MB

20 MB

25 MB

30 MB

35 MB

40 MB

45 MB

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

M
e
m

o
ry

Processed instances

HOT
AUE
AWE

AUE2
Lev
Oza

DWM
ACE
DDM

NB
Win

AUE
AWE

AUE2
Lev
Oza

DWM
ACE
DDM

NB
Win

NSE

Fig. 3. Memory usage on theTreeS dataset

Figures 2 and 3 show classification accuracy and memory
usage on theTreeS dataset, which was designed to test
the algorithms’ reaction to recurring sudden drifts. The drifts
occurring every 200k examples are clearly visible both on
the accuracy and memory plot. In the presence of sudden
recurring drifts, AUE1 and AUE2 seem to perform best, with
only the first drift having a major impact on their accuracy.
Compared to recurring gradual drifts, the remaining algorithms
are further behind in terms of accuracy. This is especially
apparent with the HOT algorithm, which appears to loose
accuracy with every consecutive drift. Looking at the memory
plot in Fig. 3, we can see that AUE1 and AUE2 abruptly
reduce their memory usage when a drift occurs. The drop in
accuracy of the previously learned components is reflected in
their mean square error, which forces one of the previously
learned base classifiers to be disposed. Algorithms that seem
not to have pruned their base classifiers after a sudden drift,
such as HOT or Lev, loose accuracy. Similar behavior was
observed in figures for theSEAS andSEAF datasets, which
represent scenarios with sudden concept drifts.

It is worth noting that NSE requires much more time and
memory than the remaining algorithms. This is only due to
the fact that, following [31], no pruning was used to limit the
number of NSE’s component classifiers. On small datasets,
like Elec, we can see that when only few components are
created NSE uses less memory than other ensemble methods.

Although on theTreeS dataset AUE2 performed slightly
better than AUE1, on theTreeF dataset AUE1 is clearly the
winning algorithm. The characteristic feature of theTreeF

dataset is the speed of recurring changes. The classifier buffer
which was removed from the AUE2 algorithm is the attribute
that most probably helped AUE1 outclass other data stream
learners on this dataset.

A different experiment used theRBFB dataset, which in-
corporates very short, sudden concept changes (blips). Blips
should be treated as outliers and should not have any long-
term impact on the classifier’s functioning. As Fig. 4 shows,
apart from NB, Win, NSE, DWM, and AWE all the classifiers
maintain stable accuracy throughout the entire dataset. Ana-
lyzing the memory plot in Fig. 5, one can see that AUE1 and
AUE2 react to blips just like they reacted to sudden changes.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

BRZEZINSKI AND STEFANOWSKI: REACTING TO DIFFERENT TYPES OF CONCEPT DRIFT 11

NSE

50 %

55 %

60 %

65 %

70 %

75 %

80 %

85 %

90 %

95 %

100 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

HOT
AUE
AWE

AUE2

Oza
DWM
ACE
DDM

NB
Win

Lev

Fig. 4. Classification accuracy on theRBFB dataset

0 B

2 MB

4 MB

6 MB

8 MB

10 MB

12 MB

14 MB

16 MB

18 MB

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

M
e
m

o
ry

Processed instances

HOT
AUE
AWE

AUE2
Lev
Oza

DWM
ACE
DDM

NB
Win

AUE
AWE

AUE2
Lev
Oza

DWM
ACE
DDM

NB
Win

NSE

Fig. 5. Memory usage on theRBFB dataset

The capability of sustaining accuracy by these two algorithms
is possible due to the fact that only one ensemble component is
removed per chunk. Even when a single component is removed
in the occurrence of an outlier concept, AUE1 and AUE2
still perform well after the blip. It is also worth noticing that
the warning/alarm level mechanism used in DDM and ACE
worked well and allowed these algorithms to stay accurate
even though their classification error must have raised.

For datasets with incremental drifts, i.e.,HypS andHypF ,
the best performing algorithms are AWE, Oza, and AUE2.
AWE seems to perform particularly well on theHypS dataset.
It is also worth noting that the Win classifier, usually per-
forming rather poorly in terms of accuracy, reacts quite well
to slow changes. The algorithms that perform worst are NB,
ACE, DWM, and HOT. The Naive Bayes classifier has no
drift reaction mechanism, the drift detector in ACE is not
triggered, therefore, causing poor reaction to gradual changes,
while HOT and DWM appear to not be pruning outdated data,
with HOT additionally using too much memory.

When no drift is present, AUE2 and AUE1 are the most
accurate classifiers. On theRBFND dataset, AUE2 has the
highest accuracy followed by AUE1 and Lev, while onLEDND

AUE1, AUE2, and NB achieve almost identical results.

40 %

45 %

50 %

55 %

60 %

65 %

70 %

75 %

80 %

85 %

90 %

0 100 k 200 k 300 k 400 k 500 k 600 k

A
c
c
u
ra

c
y

Processed instances

HOT
AUE

AUE2
Lev
Oza

DWM
ACE
DDM

NB
Win

AWE

NSE

Fig. 6. Classification accuracy on theCov dataset

On real datasets (Elec, Cov, Poker, Airlines), HOT
is the best performing learning algorithm followed by AUE2.
Additionally, on thePoker dataset Lev clearly outperforms
all the other classifiers. It is worth mentioning that the accuracy
of HOT comes at the price of high memory costs. It seems that
for the analyzed real-world datasets the pruning mechanism,
present in most adaptive ensembles, is not as important as the
constant training of base classifiers, characteristic for HOT.
The accuracy plot for theCov dataset is presented in Fig. 6. By
looking at the performance of NB, DDM, and ACE, one can
see that the analyzed dataset probably contains changes. The
accuracy plots forElec, Poker, andAirlines also contain
fluctuations which were not present in the accuracy plots of
artificial datasets without drift, i.e.,RBFND andLEDND.

30 %

35 %

40 %

45 %

50 %

55 %

60 %

65 %

70 %

75 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

HOT
AUE
AWE

AUE2
Lev
Oza

DWM
ACE
DDM

NB
Win

AUE
AWE

AUE2
Lev
Oza

DWM
ACE
DDM

NB
Win

NSE

Fig. 7. Classification accuracy on theLEDM dataset

Finally, let us analyze the accuracy plot for theLEDM

dataset presented in Fig. 7. In this dataset, we incorporated
a complex change by joining two gradually drifting streams.
After 500k examples the target concept is suddenly switched
but the gradual changes in the new concept prove to be very
difficult to classify. Although Oza and AUE2 achieve best
average accuracies, all algorithms seem to fail in reactingto
the change. This shows that complex combinations of drifts
can be an interesting topic for further research.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, MONTH YEAR

E. Statistical analysis of results

To extend the analysis provided in Section IV-D, we carried
out statistical tests for comparing multiple classifiers over
multiple datasets [40]. We used the non-parametric Friedman
test, where average results of compared algorithms are ranked
on each dataset (the lower the rank the better). The null-
hypothesis for this test is that there is no difference between
the performance of all the tested algorithms. Moreover, in case
of rejecting this null-hypothesis we use the Bonferroni-Dunn
post-hoc test [40] to verify whether the performance of AUE2
is statistically different from the remaining algorithms.

TABLE VIII
AVERAGE ALGORITHM RANKS USED IN THEFRIEDMAN TESTS

ACE AUE1 AWE AUE2 HOT DDM Win Lev NB Oza DWM NSE

Acc. 7.33 4.00 6.40 2.20 5.40 6.47 8.80 5.27 9.07 3.67 9.80 9.60
Train. 8.73 10.33 9.40 6.33 4.20 2.80 2.13 7.131.00 5.73 8.13 12.00
Test. 5.13 9.07 7.07 8.53 4.53 2.27 2.33 9.932.13 10.80 5.33 10.80
Mem. 4.00 9.33 6.27 8.07 10.13 4.931.00 9.40 2.00 7.73 4.33 10.80

The average ranks of the analyzed algorithms are presented
in Table VIII, providing a comparison in terms of accuracy,
training and testing time, as well as memory usage. First, we
perform the Friedman test to verify the statistical significance
of the differences between accuracies of the algorithms. As
the test statisticFF = 12.902 and the critical value for
α = 0.05 is 1.851, the null hypothesis is rejected. Considering
accuracies, AUE2 provides the best average achieving usually
1st or 2nd rank, regardless of the existence or type of drift.
To verify whether AUE2 performs better than the remaining
algorithms, we compute the critical difference (CD) chosen by
the Bonferroni-Dunn test [40]. When the difference between
corresponding average ranks of two classifiers is greater or
equal toCD, one can state that they are significantly different.

As CD = 3.736, AUE2 performs significantly better than
NSE, DDM, DWM, AWE, ACE, Win, and NB. The difference
between AUE2 and the remaining algorithms the experimental
data is not sufficient to reach such a conclusion. Motivated by
the fact that AUE2 has an accuracy rank much higher than
AUE1, HOT, Lev, and Oza, we have decided to additionally
perform the Wilcoxon signed rank test to get a better insight
into the comparison of pairs of classifiers [40]. In contrast
to the Friedmann test, in the Wilcoxon signed rank test the
values of differences in performance of a pair of classifiers
are taken into account. The p-values resulting from this test
are: pAUE1 = 0.006, pHOT = 0.020, pLev = 0.009, pOza =
0.003 for AUE1, HOT, Lev, and Oza, respectively. All these
p-values support our observation that AUE2 is better in terms
of accuracy than any of the compared algorithms.

We perform a similar analysis concerning average classifier
training time, also presented in Table VIII. Computing the
test value we obtainFF = 133.834. The null hypothesis can
be rejected and by comparing average algorithm ranks with
CD and performing additional Wilcoxon signed rank tests
we can state that AUE2 is trained slower than Win, NB, but
significantly faster than NSE, AUE1, Lev, ACE, AWE, and
DWM (pLev = 0.023, pACE = 0.004, pAWE = 0.001,
pDWM = 0.002). Analogously, comparing average testing

time we also reject the null hypothesis (FF = 74.549) and
state that AUE2 classifies slower than DDM, HOT, Win,
and NB, but faster than Oza and NSE (pOza = 0.003,
pNSE = 0.004). Such an outcome is not surprising as Win,
NB, HOT, and DDM are single classifiers, while the rest of the
analyzed algorithms are ensembles, each with 10 base learners.

Finally, we compare average memory usage of each algo-
rithm. The test value beingFF = 60.307, we reject the null
hypothesis. By comparing average ranks we can state that
AUE2 uses more memory than Win, NB, and ACE but is more
memory efficient than NSE, AUE1, HOT, Lev (pNSE = 0.007,
pAUE1 = 0.007, pHOT = 0.015, pLev = 0.050).

V. CONCLUSIONS

In this paper, we presented and evaluated a block-based
stream ensemble classifier, called AUE2, designed to react
to different types of concept drift. The main novelty of the
proposed algorithm is the combination of an AWE inspired
ensemble weighting mechanism with incremental training of
component classifiers. This hybrid approach allows AUE2 to
react to many different types of concept changes, such as
sudden, gradual, recurring, short-term, and mixed drifts and
makes AUE2 less dependent on data block size. Additional
contributions of AUE2 include the proposal of a new compo-
nent weighting function and a cost-effective candidate weight.
By treating the candidate classifier as a “perfect” classifier
AUE2 ensures that the current concept is strongly reflected in
the ensemble’s prediction. The proposed algorithm was also
optimized for memory usage by restricting ensemble size and
incorporating a simple inner-component pruning mechanism.

As part of this study, we also investigated different strategies
concerning component classifier updates. Our experiments
have shown that, in terms of accuracy, all component clas-
sifiers in AUE2 should be updated after each incoming data
block. Such an approach promotes the incremental creation
of strong classifiers as ensemble members and provides more
accurate predictions of the ensemble. From this point of view,
our results coincide with those presented in [31], therefore,
suggesting that drifting environments provide natural diversity
and the premise of weaklearnability does not apply to them.

We have also carried out an experimental study compar-
ing AUE2 with 11 additional state-of-the-art data stream
methods, including single classifiers, ensembles, and hybrid
approaches in different scenarios. The obtained results confirm
that classifiers without any drift reaction mechanism fail to
successfully learn from data with sudden, gradual, or recurrent
drifts. They also seem to confirm that ensemble approaches
that use batch classifiers, such as AWE, may suffer accuracy
drops after sudden concept drifts [11], while drift detectors
are less accurate on gradually drifting streams [24]. Novel
findings include the reaction of algorithms to short random
abrupt changes. The obtained results show that block-based
ensemble methods are more robust to random blips than single
classifiers, as previously trained components allow them to
recover from premature reactions. Furthermore, experiments
on datasets with fast recurring drifts have showcased that
the speed of changes is crucial to the decision whether a

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

BRZEZINSKI AND STEFANOWSKI: REACTING TO DIFFERENT TYPES OF CONCEPT DRIFT 13

buffer of previously constructed component classifiers is useful
or not. If recurrent changes are very frequent a buffer can
improve accuracy but in other cases it only increases memory
requirements and algorithm processing time.

Above all, the experimental study has demonstrated that
AUE2 can offer high classification accuracy in environments
with different types of drift as well as in static environments.
AUE2 provided best average classification accuracy out of all
the tested algorithms, while proving less memory consuming
than other ensemble approaches, such as Leveraging Bagging
or Hoeffding Option Trees. As future work we plan to investi-
gate the possibility of adapting the proposed algorithm to work
in a truly incremental fashion in partially labeled streams.

ACKNOWLEDGMENT

The authors are grateful to Dr. Kyosuke Nishida and Dr.
Paulo Gonçalves for sharing their implementations of the
Adaptive Classifier Ensemble and Learn++.NSE algorithms.
This work was partly supported by the Polish National Science
Center under Grant No. DEC-2011/03/N/ST6/00360.

REFERENCES

[1] J. Gama,Knowledge Discovery from Data Streams, 1st ed. Chapman
& Hall/CRC, 2010.

[2] L. I. Kuncheva, “Classifier ensembles for detecting concept change in
streaming data: Overview and perspectives,” inProc. 2nd Workshop
SUEMA 2008 (ECAI 2008), 2008, pp. 5–10.

[3] W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA)
for large-scale classification,” inProc. 7th ACM SIGKDD Int. Conf.
Knowledge Discovery Data Mining, 2001, pp. 377–382.

[4] Y. Cao et al., “SOMKE: Kernel density estimation over data streams by
sequences of self-organizing maps,”IEEE Trans. Neural Netw. Learn.
Syst., vol. 23, no. 8, pp. 1254–1268, Aug. 2012.

[5] I. Zliobaite, “Adaptive training set formation,” Ph.D. dissertation, Vilnius
University, 2010.

[6] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proc.
6th ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, 2000,
pp. 71–80.

[7] L. I. Kuncheva, “Classifier ensembles for changing environments,” in
Proc. 5th Int. Workshop Multiple Classifier Syst., 2004, pp. 1–15.

[8] ——, Combining Pattern Classifiers: Methods and Algorithms. Hobo-
ken, NJ: Wiley-Interscience, Jul. 2004.

[9] N. C. Oza, “Online ensemble learning,” Ph.D. dissertation, The Univer-
sity of California, Berkeley, CA, Sep 2001.

[10] H. Wanget al., “Mining concept-drifting data streams using ensemble
classifiers,” inProc. 9th ACM SIGKDD Int. Conf. Knowledge Discovery
Data Mining, 2003, pp. 226–235.

[11] K. Nishida et al., “ACE: Adaptive classifiers-ensemble system for
concept-drifting environments,” inProc. 6th Int. Workshop Multiple
Classifier Syst., 2005, pp. 176–185.

[12] D. Brzezinski and J. Stefanowski, “Accuracy updated ensemble for data
streams with concept drift,” inProc. 6th HAIS Int. Conf. Hybrid Artificial
Intell. Syst., Part II, 2011, pp. 155–163.

[13] A. Bifet et al., “MOA: Massive Online Analysis,”J. Machine Learning
Research, vol. 11, pp. 1601–1604, 2010.

[14] M. M. Masud et al., “A practical approach to classify evolving data
streams: Training with limited amount of labeled data,” inProc. 8th
IEEE Int. Conf. Data Mining, Dec. 2008, pp. 929–934.

[15] M. Kmieciak and J. Stefanowski, “Handling sudden concept drift in
Enron message data streams,”Control and Cybernetics, vol. 40, no. 3,
pp. 667–695, 2011.

[16] L. L. Minku et al., “The impact of diversity on online ensemble learning
in the presence of concept drift,”IEEE Trans. Knowl. Data Eng., vol. 22,
no. 5, pp. 730–742, May 2010.

[17] A. Tsymbal, “The problem of concept drift: definitions and related
works,” Dept. Comput. Sci., Trinity College Dublin, Tech. Rep., 2004.

[18] G. Widmer and M. Kubat, “Learning in the presence of concept drift and
hidden contexts,” inMachine Learning, vol. 23, Apr. 1996, pp. 69–101.

[19] A. Bifet and R. Gavald̀a, “Learning from time-changing data with
adaptive windowing,” inProc. 7th SIAM Int. Conf. Data Mining, 2007,
pp. 443–448.

[20] E. Cohen and M. J. Strauss, “Maintaining time-decaying stream aggre-
gates,”J. Algorithms, vol. 59, no. 1, pp. 19–36, Apr. 2006.

[21] G. Hulten et al., “Mining time-changing data streams,” inProc. 7th
ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, 2001, pp.
97–106.

[22] E. S. Page, “Continuous inspection schemes,”Biometrika, vol. 41, no.
1/2, pp. 100–115, 1954.

[23] J. Gamaet al., “Learning with drift detection,” inProc. 17th SBIA
Brazilian Symp. Artificial Intell., 2004, pp. 286–295.

[24] M. Baena-Garćıa et al., “Early drift detection method,” inProc. 4th Int.
Workshop Knowledge Discovery Data Streams, ECML/PKDD, 2006.

[25] N. C. Oza and S. J. Russell, “Experimental comparisons of online and
batch versions of bagging and boosting,” inProc. 7th ACM SIGKDD
Int. Conf. Knowledge Discovery Data Mining, 2001, pp. 359–364.

[26] A. Bifet et al., “Leveraging bagging for evolving data streams,” inProc.
ECML/PKDD, Part I, 2010, pp. 135–150.

[27] L. L. Minku and X. Yao, “DDD: A new ensemble approach for dealing
with concept drift,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 4, pp.
619–633, Apr. 2012.

[28] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority:An
ensemble method for drifting concepts,”J. Machine Learning Research,
vol. 8, pp. 2755–2790, Dec. 2007.

[29] A. Kehagias and V. Petridis, “Predictive modular neuralnetworks for
time series classification,”Neural Networks, vol. 10, no. 1, pp. 31–49,
Jan. 1997.

[30] R. Kirkby, “Improving Hoeffding trees,” Ph.D. dissertation, Department
of Computer Science, University of Waikato, 2007.

[31] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,”IEEE Trans. Neural Netw., vol. 22, no. 10,
pp. 1517–1531, Oct. 2011.

[32] D. Brzezinski, “Mining data streams with concept drift,” Master’s thesis,
Poznan University of Technology, Poznan, Poland, 2010.

[33] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml

[34] W. Fan, “Systematic data selection to mine concept-drifting data
streams,” inProc. 10th ACM SIGKDD Int. Conf. Knowledge Discovery
Data Mining, 2004, pp. 128–137.

[35] W. Fanet al., “Active mining of data streams,” inProc. 4th SIAM Int.
Conf. Data Mining, 2004, pp. 457–461.

[36] I. Zliobaite, “Combining time and space similarity for small size learning
under concept drift,” inProc 18th ISMIS Int. Symp., 2009, pp. 412–421.

[37] L. Breimanet al., Classification and Regression Trees, ser. Wadsworth
Statistics/Probability. Belmont, CA: Wadsworth, 1984.

[38] M. Harries, “SPLICE-2 comparative evaluation: Electricity pricing,” The
University of South Wales, Tech. Rep., 1999.

[39] A. Bifet et al., “New ensemble methods for evolving data streams,” in
Proc. 15th ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining,
2009, pp. 139–148.

[40] J. Demsar, “Statistical comparisons of classifiers over multiple data sets,”
J. Machine Learning Research, vol. 7, pp. 1–30, 2006.

Dariusz Brzezinski received his BSc and MSc
degrees in Computer Science from Poznan Uni-
versity of Technology, Poland, in 2009 and 2010
respectively. He is currently working towards his
Ph.D. degree at this university. His research interests
include data stream mining, concept drift, online
classification algorithms, and XML document clus-
tering.

Jerzy Stefanowski is an Associate Professor in the
Institute of Computing Science, Poznan University
of Technology. He received the Ph.D. and Habilita-
tion degrees in computer science from this univer-
sity. His research interests include machine learning,
data mining and intelligent decision support — in
particular rule induction, multiple classifiers, class
imbalance, data preprocessing, and handling uncer-
tainty in data.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2251352

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://archive.ics.uci.edu/ml

