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Reacting to Different Types of Concept Drift:
The Accuracy Updated Ensemble Algorithm

Dariusz Brzezinski, Jerzy Stefanowski

Abstract—Data stream mining has been receiving increasing change over time in an event calledncept drift Concept drift
attention due to its presence in a wide range of applications occurs when the concept about which data is being collected
such as sensor networks, banking, and telecommunication. One shifts from time to time after a minimum stability peridﬂ 1]

of the most important challenges in learning from data streams is Such ch flected in i ina inst d det
reacting to concept drift, i.e., unforeseen changes of the staen’s uch changes are refiected in incoming instances and dete-

underlying data distribution. Several classification algorithms iorate the accuracy of classifiers learned from past mgini
that cope with concept drift have been put forward, however, tuples. Examples of real life concept drifts include spate-ca
most of them specialize in one type of change. In this paper, we gorization, weather predictions, monitoring systems, rfil
propose a new data stream classifier, called the Accuracy Updated fraud detection, and evolving customer preferenges [5].

Ensemble (AUEZ2), which aims at reacting equally well to different ch ft t t t ized int dd
types of drift. AUE2 combines accuracy-based weighting mecha- anges of target concepts are categorized Iinto sudaen,

nisms known from block-based ensembles with the incremental gradual, or recurring drifts. A good classifier should beeabl
nature of Hoeffding Trees. The proposed algorithm was exper- to learn incrementally and adapt to such changes. Standard
imentally compared with 11 state-of-the-art stream methods, static classifiers are not capable of fulfilling these cdodi,
including single classifiers, block-based and online ensembles,a|th0ugh the issue of incremental learning has already been

and hybrid approaches in different drift scenarios. Out of all the tudied. F | | network B . |asssifi
compared algorithms, AUE2 provided best average classification studied. For exampie, neural networks or bayesian classiie

accuracy while proving to be less memory consuming than other €an naturally incorporate incoming examples, while other
ensemble approaches. Experimental results show that AUE2 can approaches, such as decision trees, have been adaptedkto wor

be considered suitable for scenarios involving many types of drift online (see, e.g., VFDT[[6]). However, simple incremental

as well as static environments. learning is not sufficient for dealing with concept drifts as
Index Terms—concept drift, data stream mining, ensemble forgetting outdated data and quick adaptation to most tecen
classifier, nonstationary environments states are a necessity in nonstationary environmghts [1].
In recent years, several approaches that cope with concept
|. INTRODUCTION drift have been proposed, including mainly: sliding window

EARNING classifiers from data is one of the main taskapproaches, new online algorithms, special detection-tech

in machine learning, data mining, and pattern recognitioniques, and adaptive ensembles; for their systematicwsvie
Most of the previous and current research in this field gee[[1], [7]. Ensembles are popular approaches for impgovin
devoted to static environments, where a complete datasetlassification accuracy in static learning problems [8lwho
presented to the learning algorithm. These data are usualer, they need to be generalized for changing environments
electronically stored and, if needed, can be accessed $ych a generalization could concern either modifying the
algorithms several times. Moreover, the target concepistwh structure of the ensemble (weaker components are replaced
should be learned are fixed. Over the years, many solutionsto base classifiers trained on the most recent data), ugdatin
this static classification task have been developed andaevéhe aggregation technique (e.g. updating weights in thimgot
quite accurate classifiers are now available. formula), or introducing direct online learning from siegl

However, in some of the newest applications, learnirigcoming examples (e.g. online bagging [9]).
algorithms work in dynamic environments, where data areIn this paper, we focus on the topic of adaptive ensembles
continuously generated. Sensor networks, monitorindfidra which generate component classifiers sequentially frondfixe
management, telecommunication, or web log analysis ai2e blocks of training examples calleldta chunksin such
examples of such applications! [1]. In these dynamic enwnsembles, when a new block arrives, existing component
ronments, incoming data form data streamcharacterized classifiers are evaluated and their combination weights are
by huge volumes of instances and rapid arrival-rate whiehpdated. A new classifier learned from the recent block is
often requires quick, real-time response. Compared tacstaadded to the ensemble and the weakest classifiers are removed
environments, the processing of data streams implies neacording to the result of the evaluation. Moreover, stashda
requirements for algorithms, such as constraints on mematgatic learning algorithms, such as C4.5, are applied teigea
usage, restricted learning and testing time, and one scanclafssifiers from a given block. The SEA algorithim [3] was the
incoming instances[[2]=[4]. Furthermore, due to the nofirst of such adaptive ensembles and was soon followed by
stationary nature of data streams, the target conceptsttendhe Accuracy Weighted Ensemble [10], which is presently the
) . . . ~ most representative method of this type.
The authors are with the Institute of Computing Science, Roziniversity

of Technology, 60-965 Poznan, Poland [e-mail: dbrzezinglsi@ut.poznan.pl, _H_Owever'_ depe_nding on the occurrence_ of concept drifts
jstefanowski@cs.put.poznan.pl]. within the fixed-size data chunk, the mentioned block-based

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee



This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is availablehétp://dx.doi.org/10.1109/TNNLS.2013.2251352

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VQLX, NO. X, MONTH YEAR

ensembles may not react sufficiently to changes. In paaticulalgorithm is later analyzed and experimentally evaluatad o
for sudden drifts they may react too slowly as classifiereal and synthetic datasets in Secfiah IV. Finally, in Sedi#l
generated from outdated blocks still remain valid comptsierwe draw conclusions and discuss lines of future research.
even though they have inaccurate weights. This situation is

connected with the problem of proper tuning of the data block Il. RELATED WORK

size. Using small size ghunks can partly help in reacting 0 gasic concepts and notation

sudden changes, but doing so will damage the performance of . I .

the ensemble in periods of stability and increase computati In gtatlc c_Iassmcatlon probl_ems, a set of Iear_nlng exasiple
costs. An unsatisfactory reaction of block-based ensesrible €ONtaINS pairs(x, 5}, wherex is a vector of attribute values

other types of drifts has already been notice . andy is a class labely € {Ky,..., K}). Classesk;; are
P y din (1L [0 own a priori. The learning algorithm constructs a classifi

the other hand, online incremental ensembles, such aseonﬂ. h | diction f . |
or Leveraging Bagging, react faster to sudden drifts but Ict outputs a class pre Iction for a given example.
In incremental learning, examples arrive continuouslyhia t

not take advantage of periodical weighting mechanismsghvhi _ i .
could offer suffit?ient rpeactions to ggradugl changes. thgo_rm of a data strean$. A learning algorithm is presented
more, incremental ensembles are also often characteryedv‘ﬂth a sequence of Iab(_aled examples = {x;,y,} for
higher computational costs than block-based methods. Stch 1.’2’ o T AL e"’!c.h time steg, a learner can analyze
observations suggest that it could be profitable to combi éstorlpal 'Iabeled tralnlng egamplesl(s%...,st.) and an
characteristic features from both groups of approachesdero Incoming |_n_stancet_+1, Wh'Ch IS trea:[ed asa testing example.
to sufficiently adapt to both gradual and sudden changes. The classmgr predicts its class IanL}. Itis _assumed_that
Following these critical motivations, we have decided t fter some time the frue class lahgl., is prowdeﬂ. Having

propose a new hybrid algorithm, callediccuracy Updated oth 5,11 and g4, the leaming algorithm can update its
Igypothesis about a classifier if necessary. Then, example

drift much better than related adaptive ensembles. Our gef\éuh its classy, 1 becomes a part of the training data and the

is to retain the simple schema of learning component Clasg[%cess 'S” reze?tedt when the nsxt mstancedls <_)tkr)]seryed.
fiers and weighting their predictions, characteristic ftock- I ebner_a yl’ ata s rleams an e_bprgcebsse €l her mcre(;pen-
based algorithms, while adding elements known from onlif@"y by single examples, (as described above) or they are di-

methods. Our main novel contribution is the introduction o\f'ded Into equa]ly sized bIO.CkS (data chynl&;),Bz, - Bn
incremental updating of component classifiers, which sdhou‘?md the evaluation or updating of classifiers is performéer af

improve the ensemble’s reactions to different types of ephc processing all examples from a block. That second persgecti

drift as well as reduce the impact of the chunk size. OnIiH’(\;’\'I{Izgshﬂig;ﬁirng'sg)?:;%?e'nisozéﬁgfaig d by a sousgewith
updates allow all ensemble members to adapt to the most" SO ; ’
repcent concept simultaneously and, therefore cﬂangeeme pa Stationary distribution?;. If all the data in the stream are
. : L L ' enerated by the same distribution, we say that the concepts
idea behind existing block-based algorithms.[Inl [12] weehay resentedyin incoming data are stable ):)therwise concg
already considered a preliminary version of the Accurad F;t ddg b drif ' h ’ P
Updated Ensemble (AUE1). However, now we significantl fit occurs I.D]' A sudden(a rupt)_ r|_t occurs when at a
extend its concept and that is why in this paper we sh oment in timet the source distribution ir5; is suddenly
refer to the proposed algorithm as AUE2. Compared to AUE placed by a different distribution if§;..1. Abrupt drifts
we put forward a new weighting and updating mechanis jrectly deteriorate the classification abilities of a siéier,
as well as modify many other construction details to redu@? a once generated classifier has been trained on a different
computational costs and improve classification accurasy. /%1; aesiodr:f\téggzocv%agu;:;?ﬂﬁ::: onfOtcr?;)n;aedslcaTlhaen:‘jirgt]eg/pe
a result, the analysis of different possible weighting an ) . '
updating schemes has led to interesting findings concern&ggr?duald%”ﬂ rifzrstt.cl; ?. trir;smoré E)Dhase Wher.e Zprles
incremental training of adaptive ensembles. rom fwo di eretr;1 'S ”bub'.?.? jfanb i+l are m|xe| ' fs
- : e goes on, the probability of observing examples from

We experimentally evaluate the proposed AUE2 algorithi) de%:reases whilepthat of )(/axam les fr g incr?eases
with respect to classification accuracy, processing tinmel, a jother type,of gradual drift wh?ch wg?\%lll refer to 6'15
memory costs. _Furthermc_)re, we extend our experiments t??\%rementa,l includes more th:;m two sources, however the
wider comparative study including 11 additional statetud- ifference between them is small and the chém e is noticed
art methods, all implemented and tested through the Md}ia longer period of time]5]/T16] 9
framework [13]. To capture the differences in performante g Vet agothzr wpe of drift céncerm;ecurrent conceptsi.e
the algorithms, we collect several real world and Syntheticreviously activ)e/pconcepts that may reappear afterpsor.m;a, im
dqtasets representlpg gradual, sudden, and recurrenefsion oreover, some authors distinguidhlips which represent
drifts occurring at different speeds. To the best of our Krow, o EVEIiltS" (outliers) in a stable distribution. This ist @n
edge, no previous research has included such a compreeeng&(ﬁi '

experimental study comparing so many types of online aL? austive discussion 0: drift typ_esf - tT_e readelr IS rleuﬁlli\rre
block-based classifiers in such diverse scenarios. o [l [=]. [7]. [7), [18] for more information on class &

The remainder of the paper is organized as follows. Segvaps or changes in underlying data distributions.

tion_l]I! pre_s_ents re_lated work. In Sectinllll, We_ explai_n the 1, this paper, we do not consider learning in a semi-supesvisanework
basic intuition behind our approach and present its defBiile  where labels are not available for all incoming examples; sep,[14], [15]
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Discussing the nature of concept drifts, several reseesche In the category of drift detectors, first approaches used
refer to a probabilistic view on changes either in attribtglie  statistical tests to verify if the class distribution remsi
incoming distribution or class conditional probabilitipgg/|x) constant over time and rebuilt the base learner otherwi2k [2
[7], [17]. In this study we consider the second case. Finallfhe most popular algorithm, called Drift Detection Method
a key issue while handling concept drift is not responding {®DM) [23], relies on the fact that in each iteration an oalin
minor fluctuations which can be perceived as noise. A goathssifier predicts the class of an example. The prediction
algorithm should be capable to combine robustness to noeeors are modeled according to a binomial distributionthwi

with sensitiveness to drifts. such a model, one can track the error rate and verify whether i
- _ _ falls into the expected bounds or a warning or alarm leve].[23
B. Classifiers for data streams with concept drift If the alarm level is reached, the classifier is dropped aneia n

Different categorizations of methods for handling concepmne is created but only from examples stored in the separate
drift in data streams have been proposed; see Elg.[[1], [B}arning” window. DDM works best on data streams with
[7], [A7]. For the purposes of this paper, we discuss thregidden drift as gradually changing concepts can pass viithou
categories most related to our reseamimdowing techniques triggering the alarm level. Baena-Gacet al. [24] proposed a
drift detectors andensemble methodgVindowing techniques modification of DDM, called EDDM, which works better than
provide a simple forgetting mechanism by selecting exampl®DM for slow gradual drift but is more sensitive to noise.
introduced to the learning algorithm, thus eliminatingsho  Aside from drift detectors and windowing techniques, many
examples that come from an old concept distribution. Pesearchers propose to use classifier ensembles to mine evol
different idea stands behind trigger approaches, which ang data streams [2][[7]. Two general types of ensembles
based on drift detectors that react to concept changes aladlicated for evolving data are considered: online ensesnbl
alarm when the classifier should be rebuilt or updated. yastwhich learn incrementally after processing single exasiple
classifier ensembles, due to their modularity, provide anaht and ensembles based on processing blocks of data. Within the
way of adapting to change by modifying ensemble componefiisst group of approaches, generalizations of static smhsti
or their aggregation. Below, we discuss the most relatede often considered, e.g., Oza introduced an online wersio
algorithms falling into all three categories. of bagging [25]. In Online Bagging, component classifiers

The most common strategy within the category of windoware incremental learners that combine their decisionsgusin
ing techniques involves using sliding windows, which limisimple majority vote. The sampling, crucial to batch baggin
the number of classifier training examples to the most recest performed incrementally by presenting each example to
ones. Sliding windows combined with traditional batch algea componentt times, wherek is defined by the Poisson
rithms, known from static environments, can produce streatistribution. Recently, Bifet et al. introduced a modifiocat
classifiers. Unfortunately, when using windows of fixed sizef Oza’s algorithm called Leveraging Bagging [26], which
the user is caught in a trade-off. A classifier built on a smadims at adding more randomization to the input and output
window of examples will react quickly to changes but magf the base classifiers. The analysis of levels of diversity o
lose on accuracy in periods of stability. On the other hand,emsembles was also considered in the DDD algorithm, a meta-
classifier built on a large window of examples will fail to ala system combining four diversified ensembles| [27].
to rapidly changing concepts. For this reason, more dynamicAnother incremental ensemble was presented in an algo-
ways of modeling the forgetting process, such as heuristithm called Dynamic Weighted Majority (DWM)[28]. In
adjusting of the window size [19] or decay functions1[20][PWM, a set of incremental classifiers is weighted accord-
have been proposed. A windowing technique was also usedrtg to their accuracy after each incoming example. With
adapt one of the most popular data stream classifiers, caleth mistake made by one of DWM’'s component classifiers,
the Very Fast Decision Tree, to evolving environments. its weight is decreased by a user-specified factor. Although

Very Fast Decision Tree (VFDT or Hoeffding Tree) is amweighting based on component predictions is the most popula
incremental classifier for massive data streams proposed dggregation technique, it is worth mentioning that special
Domingos and Hulten [6]. The algorithm induces a decisidBayesian combinations of local expert classifiers have also
tree from a data stream incrementally by modifying the trebeen studied[[29]. A different approach was proposed by
without the need for storing examples after they have be&irkby in an algorithm called the Hoeffding Option Tree
used to update the tree. It works similarly to the class{¢&iOT) [30]. This generalization of the Hoeffding tree indks
tree induction algorithm and differs mainly in the seleatiooption nodes where instead of selecting only the best tgstt-
of the split attribute. Instead of selecting the best aitgb attribute all promising attributes are kept. Later, for lead
(in terms of a given split evaluation function) after viegin those attributes a decision subtree is constructed. Ma&ing
all the examples, it uses the Hoeffding bound to calculatmal decision with an option tree involves weighted comibini
the number of examples necessary to select the right sptif-the predictions of all applicable subtrees.
node with a user-specified probability. The originally prepd An alternative approach to learning ensembles involves re-
VFDT algorithm was designed for static data streams amdaluating ensemble components with fixed-size blocks-of in
provided no forgetting mechanism. Hulten etall[21] adseels coming examples, calledata chunksand replacing the worst
this issue by introducing a new algorithm called CVFDT¢omponent with a classifier trained on the most recent exam-
which used a fixed-size window to determine which nodgdes. The most representative ensemble following thisreehe
are aging and may need updating. was proposed by Wang et al.[10]. In their algorithm, called
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Accuracy Weighted Ensemble (AWE), the authors propose ¢tassifier is evaluated by estimating its expected preamicti
train a new classifier on each incoming data chunk by a typicairor on the examples from the most recent data chunk. After
static learning algorithm such as C4.5, RIPPER, or Naiwubstituting the poorest performing component, the reimgin
Bayes. After the new classifier is trained, all previousbrieed ensemble members are updated, i.e. incrementally trained,
component classifiers, already existing in the ensembke, and their weights are adjusted according to their accuracy.
evaluated on the most recent chunk. These evaluations We propose to use Hoeffding trees as component classifiers,
done with a special version of the mean square error (de#t the presented algorithm can be considered as a general
Sectior1ll for the precise formula), which allows the alijom method, and in principle, one could use other online legnin
to select thek best classifiers to create a new ensemblalgorithms as base learners.

Usually the newest classifier replaces the worst performingLet S be a data stream partitioned into evenly sized chunks

from the existing ones. Moreover, the structure of the etdem B4, Bs, ..., B,, each containing examples. For every incom-
is pruned if errors of component classifiers are worse than ting chunkB;, the weightsw;; of component classifierS; € £
error of a random classifier. Similar chunk-based appraachg = 1,2,..., k) are calculated by estimating the error rate on

include the Streaming Ensemble Algorithm (SEA) [3] andata chunkB; as shown in Equatiorid[1-3.
more recently Learn™ .NSE [31]. It is important to notice that
the similarity of distributions in data chunks depends ddyg MSE;; = 1 Z (1- f?j(x))Q’ 1)
on the size of the chunks. Thus, bigger chunks will build more | Bi (x.y}€B:
accurate classifiers but may contain more than one change. On
the other hand, smaller chunks are better at separatinggeban MSE, = Zp(y)(l —p(y))?, (2)
but usually lead to poorer classifiers. In particular, erdem y
built on large data chunks may react too slowly to sudden 1
drifts occurring inside the chunks[12]. Wi =

To overcome AWE'’s slow drift reactions, Nishida proposed MSEy + MSE; +e
a hybrid approach in which a data chunk ensemble is aidedFunction fJ(x) denotes the probability given by classifier
by a drift detector [[1l1]. This solution, implemented in an’; that x is an instance of clasg. Following inspirations
algorithm called Adaptive Classifier Ensemble (ACE), aimom the AWE algorithm[[ID], instead of single class predic-
at reacting to sudden drifts by tracking the classifiererrtions, probabilities of all classes are considered. Theieval
rate with each incoming example, while slowly reconstngti of M SE;; estimates the prediction error of classifi€f on
a classifier ensemble with large chunks of examples. ThibunkB;, while M SE,. is the mean square error of a randomly
proposal could be also seen as a hybridization of the damaedicting classifier and is used as a reference point to the
chunk scheme with an incremental element. With a similaurrent class distribution. Additionally a very small pos
intention of tackling sudden and gradual drifts, Brzezirmsid value ¢ is added to the equation to avoid division by zero
Stefanowski put forward the Accuracy Updated Ensemble, amoblems. The weighting formula presented in Equdfion 3aim
algorithm that combines the principles of chunk-based mnseat combining information about the classifier's accuracyg an
bles with incremental base componerits] [12]. The algoriththhe current class distribution. Furthermore, by using a-non
presented in this paper builds on that last solution and®ffdinear function, compared to a linear one used in AWE, we
a mechanism capable of achieving accurate predictionsein thighly differentiate component classifiers. The final vensof
presence of different types of drift at relatively low congpu the component weighting function (as well as the candidate
tional costs. In the following section, we discuss the detafi weighting function discussed further in this section) whs-c
the proposed algorithm and highlight its characteristatdees. sen after performing a comparative study of several altea

weighting approaches discussed in Secfion JV-C.
IIl. THE ACCURACY UPDATED ENSEMBLE Apart from assigning new weights to ensemble members,

Most data stream classification algorithms tend to speeialiwith each data chuniB; a candidate classifier, denoted@s
in one type of drift. Some classifiers are more accurate @created from examples within the most recent chunkCAs
datasets with sudden drifts while others perform bettehén tis trained on the most recent data, it is treated as a “pérfect
presence of gradual changes. The aim of our research is to glassifier and assigned a weight according to Equdfion 4.
forward a data stream classifier that will react equally well
to different types of drift. To achieve this goal, we propose wer = ——— 4)
to combine accuracy-based weighting mechanisms known MSE, + ¢
from block-based ensembles with the incremental nature ofCompared to the function used to weight existing ensemble
Hoeffding Trees, in an algorithm called the Accuracy Updatenembers, the weight of the candidate classifier does not
Ensemble (AUE2). take into account the prediction error 6f on B;. Such an

The Accuracy Updated Ensemble maintains a weighted pagproach is based on the assumption that the most recent
of component classifiers and predicts the class of incoming e&hunk provides the best representation of the current aad ne
amples by aggregating the predictions of components usinduéure data distribution. Sinc€” is trained on the most recent
weighted voting rule. After each data chunk of examples a nalata it should be treated as the best possible classifier.
classifier is created, which substitutes the weakest parfor If the ensemble contains less thartcomponents the candi-
ing ensemble member. The performance of each compondate classifier is simply added to the ensemble. Otherwise,

3)

1
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out of the k£ existing ensemble memberS; < €&, the The Accuracy Updated Ensemble also differs from other
poorest performing classifier, i.e., the component with ttdata stream ensemble approaches. Ensemble members of
lowest weight, is substituted with the candidate classifid@UE2 are weighted and can be removed, unlike in online
C'. After the substitution, remaining ensemble members abagging. Compared to VFDT-based ensembles like ASHT
incrementally trained by presenting examples from the mamtd HOT, we do not limit base classifier size and do not
recent data chunkB;. Our experiments (discussed in moraise any windows. Compared to LearnNSE, the proposed
detail in Sectioh IV-C) have shown that for datasets which dadgorithm incrementally trains existing component clfisss,

not contain any drift the incremental training of componemetains only & of all the created components, and uses a
classifiers in AUE2 can cause non-constant memory usage. Bisferent weighting function which ensures that comporent
this reason, after each data chunk the size of the ensemblwilt have non-zero weights. In contrast to DWM, AUE2
compared with a user-specified memory limit. If the memongrocesses the stream in chunks, weights components aggordi
limit is exceeded, then the least active leaves of compondattheir prediction error, treats the candidate classifieraa
Hoeffding trees are pruned to match the memory restrictioperfect learner, and its weighting function does not regjuir
After pruning, the ensembile is ready to classify examplesifr any user-specified parameters.

the next incoming data chunk. The pseudocode of AUEZ2 isIn a way, AUE2 can be considered as a hybrid approach —

presented in Algorithri]1. it can react to sudden drifts and it can gradually evolve with
slow changing concepts. The rapid adaptation after sudden
Algorithm 1 Accuracy Updated Ensemble (AUE2) drifts is achieved by weighting classifiers according toirthe
Input: S: data stream of examples partitioned into chunkgrediction error and giving the highest possible weighth® t
k: number of ensemble members; memory limit newest classifier. On the other hand, because components are

Output: &: ensemble ofc weighted incremental classifiers updated after every chunk, they can react to gradual drifts.
Additionally, the modular structure of AUE2 should protect

L& the classifier from drastic accuracy losses in the presence
2: for all data chunks3; € Sdo . of random blips, as a single “outlier” component can be
3 ('« new fomponent classifier built of;; overvoted when the target concept stabilizes. The perfocma

4 Wer = FEE Te @); of AUEZ in scenarios involving different types of drifts, asl|

5. for all classifiersC; € £ do as no drift, will be examined in the following section.

6: apply C; on B; to derive M SE;;;

7 compute weighty;; based onl(3); IV. EXPERIMENTAL EVALUATION

8 if || <k then

o £+« Eu{Cy; The proposed algorithm is evaluated in several experiments
100 else to simulate scenarios involving different types of chandes

11: substitute least accurate classifierdirwith ¢’ the following subsections, we describe all of the used @#sas

12:  for all classifiersC; € £\ {C'} do discuss experimental setup, and analyze experiment sesult
13: incrementally train classifie€’; with B;;

14:  if memory_usage(E) > m then A. Datasets

15: prune (decrease size of) component classifiers;

Most of the common benchmarks for machine learning
) algorithms, e.g. gathered in the UCI repositdry|[33], conta

In contrast to earlier proposed block-based ensembleb, Siso few examples to be concerned suitable for evaluating dat
as AWE or SEA, the AUE2 algorithm is not designed tQtream classification methods, especially in terms of éfyor
use batch static learners but, instead, incrementally tepdagiciency. Furthermore, datasets used to test algoritheas d
component classifiers. In our opinion, this should lead ttebe signed for static environments usually do not contain apety
classification accuracy in the presence of slow graduatsdribf concept drift. In terms of real-world data there is still a
and periods of stability. Additionally, since the compotsen shortage of suitable and publicly available benchmarksdsa
can be retrained, the algorithm should be less dependehtongsme researchers have used private data that cannot be repro
chunk size and can use smaller chunks without deterioréngq,ced by others[]6],[[10],[[34],[135]. For this reason, data
accuracy([12],[[32]. The first version of the proposed aloni  stream classification algorithms are tested mostly on sicth
(AUE1) inherited several mechanisms from its predecesS@itasets in which concept drift is introduced. Followings th
AWE, such as .candldate cross-validation and a classifiggmmon approach, the proposed algorithm is compared with
buffer, but also improved upon many elements, e.g., AUEgner classifiers on 11 synthetic and 4 real datasets. Aatific
conditionally updates component classifiers. However, ogiiasets were generated using the MOA framework and the
experiments, discussed in Section [V-C, have shown thaé theeg| datasets are publicly available. A brief descriptibeach
is significant room for improvement in terms of memory usaggstaset is provided belé\/.
and clgssification accuracy._Thgt is why., compared to AUI_El,Hyp: Hyperplane is a popular dataset generator utilized in
AUE2 introduces a new weighting function, does not requitany stream classification experimerits] [10].] [35].] [36]islt

cross-validation of the candidate classifier, does not k&emnainly used to generate streams with incremental concept
classifier buffer, prunes its base learners, and alwaystepda

its components. 2Scripts available at: http://www.cs.put.poznan.pl/ézinski/software.php
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drift by slightly rotating the decision boundary with eactPoker dataset[[39], which consists of 1,000,000 examples
consecutive example. We set the hyperplane generatordtecralescribing the suits and ranks of a hand of five playing cards.
two datasets each containing 1,000,000 instances degdnbe This gives a total of 10 predictive attributes per instange (
10 features. The first dataséty(ps) contains incremental drift cards x 2 attributes — suit and rank) with an additional
with the modification weightv; changing by 0.001 with eachclass attribute that describes 1 of 10 poker hands. Finally,
example. The second datasélypr) is similar to the first Airlines is a real dataset containing 539,383 examples
one but the change is more rapid with the weight changimtgscribed by 7 attributedi r | i nes encapsulates the task
by 0.1 with each example. Additionally, both datasets danteof predicting whether a given flight will be delayed, giver th
5% of noise added to the concepts to randomly differentiatgformation of the scheduled departure.
the instances. In this paper, by noise we shall refer to class
noise, i.e., errors artificially introduced to class labels

RBF: The Radial Basis Function generator creates a user
specified number of drifting centroids, each defined by asclaSp st #inst  #Awrs  #Cls  Noise #Drifts  Drift type
label, position, weight, and standard deviation. We use thi

TABLE |
CHARACTERISTIC OF DATASETS

M 10 2 5% 1 incremental
generator to create three datasets, 1,000,000 examplas eaggi M 10 2 S0t 1 incremental
The RBFp dataset has two decision classes and no driftRBFp 1Y 20 4 0% 2 blips
The RBF dataset contains 4 decision classes and 4 verferer 1M 20 4 0% 4 gradual

. . . . ND M 20 2 0% 0 none
short, sudden c.ir.lfts (2 blips), which shoulq be ignored bysga, M 3 4 10% 3 sudden
the tested classifier. The last dataset from this gré8%cz,  SEAr 2m 3 4 10% 9 sudden
i i i ; ; i Treeg iM 10 4 0% 4 S. recurring
is designed tQ f:ontaln 4_ gradual recurring drifts with eachTr cor 100k 10 5 0% 15 . recurring
concept containing 4 decision glasses. LEDy, M 24 10 10% 3 mixed

SEA: The SEA generatof [3] is used to create two datasetSEDy p 10M 24 10 20% 0 none
with sudden concept drifts. Each concept is defined by 'SC 5485]|.(k 573 27 - - trr‘]kkrr‘]%"v‘\’;
sum of two functions, both dependent on a single attributepgyer M 10 10 unknown
which outputs a point belonging to one of four possibleAir!ines 539 7 2 unknown

decision classes. For our tests, we generate 1,000,000 In-

stances with drifts occurring every 250,000 examp&iEAis) The described synthetic datasets were chosen to evaluate
and 2,000,000 instances with drifts occurring every 200,0Q| of the analyzed algorithms in different scenarios. As fo
examples $EAr), with 10% noise introduced. the real datasets, we share the common assumption that we
Tree: We use the Random Tree Generator to create tWannot unequivocally state when drifts occur or if thereng a
drifting datasets, each described by 5 nominal and 5 nualerigyift. The real datasets serve to compare the algorithms in a

attributes. TheTr ees dataset contains 4 sudden recurringea|.life scenario rather than a concrete drift situatitable[]

dataset contains only 100,000 instances but is the fastest
changing dataset with 15 sudden drifts. In both cases, drift .
is introduced by abruptly changing the concept (randomfy: EXPerimental setup
generated tree) after a given number of examples. All of the tested algorithms were implemented in Java as
LED: LED [37] is a popular artificial dataset, which consistpart of the MOA framework[[13]. In particular, AUE2 was
of a stream of 24 binary attributes that define the digit digsmplemented for this study, the source codes of the Adaptive
played on a seven-segment LED display. We use this generabtaissifier Ensemble and Learn++.NSE were provided courtesy
to acquire two datasets. The first dataset, calle®,,, con- of Dr. Nishida and Dr. Goncgalves respectively, while all
tains 1,000,000 instances with two gradually drifting cgpis the remaining classifiers were already a part of MOA. The
suddenly switching after 500,000 examples. Such a mixeel typxperiments were conducted on a machine equipped with two
of drift is particularly difficult to learn. The second datas 12-core AMD Opteron 6172, 2.1Ghz processors and 64 GB of
(LEDNp) contains no drift but instead it is the largest an@RAM. To make the comparison more meaningful, we set the
noisiest dataset with 10,000,000 examples and 20% of noisame parameter values for all the algorithms. For ensemble
El ec, Cov, Poker, Ai rl i nes: The first of four utilized methods we set the number of component classifiers to 10:
real datasets, called ElectricityEl(ec) [38], is one of the AUE2, AUE1, AWE, DWM, ACE, Online Bagging, Leverag-
most widely used in data stream classification. It consiéts ing Bagging have 10 Hoeffding Trees, HOT has 10 options.
energy prices from the electricity market, which were affdc We decided to use 10 component classifiers as, according to
by market demand, supply, season, weather and time of dayr preliminary study, using more classifiers linearly eased
El ec contains 45,312 instances each described by 7 featung®cessing time and memory, but did not notably improve
The second real dataset, Coverty@e\(), contains cover type classification accuracy of the analyzed ensemble methdus. T
information about four wilderness areas. Examples are eléfirdata block size used for chunk ensembles was equab00
by 53 cartographic variables that describe one of 7 possilite all the datasets. Although AUE2 can remain accurate
forest cover types. The whole dataset consists of 581,0d&ng smaller chunks, we chose to use blocks containing 500
instances and has been used in several papers on data steamples as this size was considered the minimal suitable
classification[[2b],[[39]. The third real benchmark datahs t for block-based ensembles such as AWE [3]J[10], and lower
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. , TABLE Il
values would drastically decrease AWE's accuracy. We set thecoyparison o0FAUE2 wiTH AND WITHOUT A BUFFER IN TERMS OF

static window size of Win tol0 x d to make the number AVERAGE ACCURACY [%], AVERAGE MEMORY USAGE[MB], AVERAGE
of examples seen by the windowed classifier similar to that CHUNK TRAINING AND TESTING TIME [5]

seen by ensemble methods. The parameters of the Hoeffding
Tree used with the static window were the same as those_of
the option tree and the component classifiers (also Hoeffdin Acc. Mem. Train. Test. Acc. Mem. Train. Test.
Trees) of all the ensemble methods. More precisely, we used/ps 8859 186 0.23 0.02 8864 058 007 0.02

Hoeffding Trees enhanced with adaptive Naive Bayes leafBFs ~ 94.07 273 066 0.06 9406 215 019 0.06
RBFGr 9337 430 082 006 9330 391 019 006

predictions with a grace period,,;, = 100, split confidence  pgr " 9242 12151 133 002 9241 1191 007 0.02
§ = 0.01, and tie-threshold- = 0.05 [6]. Due to the fact that SEAgs  89.00 1.46 0.16 0.01 89.02 0.88 0.03 0.01

the only available implementation of ACE could not be fully E'ec 7086 039 0.05 001 7076 009 0.03 0.01
: - v 81.24 156 078 012 81.19 0.78 0.30 0.11
adjusted to use classifiers from the MOA framework, we UseGhoer 6057 029 013 003 59.86 0.09 006 002
ACE (as originally proposed by Nishida[11]) with 10 C4.5
trees as batch learners and Naive Bayes as an online learner.
As suggested i [31], Learn++.NSE does not use any pruning ) o o
mechanism and has the sigmoid slape 0.5 and the sigmoid Classifiers requires on an average over five times more figini
crossing point = 10. time and twice as much memory as not using any buffer. For
According to the main characteristics of data streams [3{liS reason, the buffer was excluded from AUE2.
[B], [L3], we evaluate the performance of algorithms with These results led to an additional conclusion. Although
respect to time efficiency, memory usage, and classificati9h/E2 does not require any pruning to restrict memory usage
accuracy. All the performance measures were calculateduspn datasets with drifl [12][[32], by testing the algorithm a
the data chunk evaluation methpdhich works similarly to dataset without any driftRBFxp) we noticed that it requires
the test-then-train paradigm with the difference thatéwudata Such a mechanism in static environments. That is why, in con-
chunks instead of single examplés|[32]. This method reatigst to AUE1, AUE2 comes with a pruning mechanism that
incoming examples without processing them, until they forfi@moves the least used leaves of each component Hoeffding
a data chunk of sizé. Each new data chunk is first used tdree to fit a user specified memory limit.
evaluate the existing classifier, then it updates the dlagsi  Another costly property of AUE1 was the weighting of each
and finally it is disposed to preserve memory. Such an apewly created component classifier. AUE1, as well as AWE,
proach allows to measure average chunk training and testimges expensive 10-fold cross-validation (10cv) to weidet t
times and is less pessimistic than the test-then-train euethcandidate classifier on the most recent data chlnk [L0], [12]
It is suitable for static and evolving streams and providesVsle analyzed the impact of using other weighting schemes
natural method of reducing result storage requirements.  starting with other cross-validations, such as 4-fold §4cv
and 2-fold (2cv) cross-validation. We also considered the
candidate’'s weight as a function of the remaining classifier
weights. We investigated the performance of the candidate
While constructing the AUE2 algorithm we decided to uselassifier with a weight equal to the maximum (Max), average
the experience gathered from our previous comparativeystuéiean), and minimum (Min) weight of the remaining classi-
between AUE1 and AWE[[12] and verify the properties ofiers, half of the sum of remaining classifier weights (Half),
AUEL1 in search of improvements. One of the first analyzeghd half of the sum of remaining classifier weights minus
properties was the use of the classifier buffer. With eacimkhu a very small value: (Half.). Additionally, we experimented
after evaluating its components AUE1 usedest classifiers not only with the candidate weight but with the overall
to form an ensemble. To reduce memory usage, onlgf weight definition itself. We analyzed linear and non-linear
all the constructed component classifiers are stored ureil tfunctions, such as; = max (MSE, — MSE;,0) + ¢ and
next chunk is processed. During our previp_us experimert_h; Wivy = m By using MSE; and MSE, we
AUEL1 [12] we used a buffer of = 30 classifiers out of which associate the component classifier's weight with its aayura
k = 15 were selected to form an ensemble. The assumptiand the current class distribution. Thén these functions is a
behind such an approach was that a buffer of additional, owery small value used to ensure that the ensemble will always
of-ensemble, classifiers could prove profitable in the prese be able to give a non-zero prediction. In reference to fonsti
of recurring drifts. In the design phase of AUE2, we decided; and wy, we decided to treat the candidate classifier as
to verify this assumption by analyzing the pros and cons af “perfect classifier”, i.e., one for which/SE; = 0. Such
maintaining a buffer. Tablelll presents the results of catimga an approach is based on the implicit assumption that the
AUE2 with a buffer ¢ = 10 andn = 30) and AUE2 without most recent data chunk provides the best representatidreof t
one ¢ =n = 10). near-future data distribution. The resulting candidateégite
As Table[Il shows, in terms of accuracy, AUE2 with dunctions for these methods arec;, = MSE, + ¢ and
buffer seems to perform slightly better than AUE2 withoutvcy = m It is worth noticing that the calculation of
one. Nevertheless, the gain in accuracy is quite minor on evec;, andwc does not require any cross-validation nor the
neglectable compared to the training time and memory coanalysis of remaining classifier weights and can be perfdrme
In the analyzed scenarios, using a buffer of 20 additionial constant time.

AUE2 with a buffer AUE2 without a buffer

C. Analysis of the components of the proposed algorithm
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TABLE Il
AVERAGE ACCURACIES OFAUE2 WITH DIFFERENT CANDIDATE WEIGHTING FUNCTIONS[%)]

10cv 4cv 2cv Max Mean Min Half Half wer  wen

Hyps 88.64 88.70 88.44 88.36 88.30 8499 8858 8849 8852 88.43
RBF g 94.06 94.64 94.81 9482 94.849587 92.61 93.09 94.78 94.77
RBFGr 93.30 93.98 9410 94.21 94.23 7473 63.38 63.64 94.1%4.43
RBFyp 9241 93.08 9258 93.22 93.2793.40 91.33 91.65 93.12 93.33
SEAgs 89.02 89.20 89.21 89.20 89.20 87.65 89.03 89.02 89.21 89.19
El ec 70.76 71.16 71.83 62.66 61.88 43.99 51.10 49.69 69.367.32
Cov 81.19 84.03 84.79 8470 84.72 75.03 81.10 8150 84.48.20
Poker 59.86 60.39 60.77 60.20 60.54 46,55 46.53 46.52 59.696.23

As Table[Ill shows, treating the candidate classifier as1#% less memory than always updating all components.
“perfect” classifier substantially increases accuracgeemlly Nevertheless, the proposed refraining techniques alloiwed
when combined with a non-linear weighting function. Theeduce memory requirements but did not increase accuracy.
most interesting results are achieved Py, which proves Such an outcome may suggest that the incremental creation
best on most datasets and close to best on the remaining onéstrong classifiers as ensemble members is of more value to
The difference is especially visible on real dataséikselc, the prediction of the ensemble. These results may theréfre
Cov, Poker ) wherewc y improves accuracy by a few percentonsidered concordant with the standpoint presented_ij [31
compared to other solutions. What is worth noticing is thasuggesting that drifting environments provide naturaédsity
compared to using a linear function, by using a non-lineand the premise of weaklearnability does not apply to thesn. A
weighting function more voting power is given to the cantdathe main aim of the proposed algorithm is to react accurately
classifier. This is especially important in the presence uf different types of drift we decided not to use any refnagni
concept drift when the candidate is the only component of tihechnique in AUE2.
ensemble with information about the incoming new concept.

Giving so much power to the candidate can prove inconvenient ) "

in the presence of sudden noise when the incoming conctht Comparative study of classifiers

should be treated as an outlier or when no drift occurs and theAfter establishing the properties of AUE2, a set of ex-
more experienced components should be more important. Tdge&iments was conducted to compare the newly proposed
obtained results seem to support that hypothesis as for dakgorithm against 11 classifiers: the Hoeffding Option Tree
with no drift (RBFyp and RBF) best results are achieved(HOT), Adaptive Classifier Ensemble (ACE), the previous
by the weighting mechanism that gives the most voting powegrsion of the Accuracy Updated Ensemble (AUE1L), the
to older components, i.e., the Min approach. Being the mo&tcuracy Weighted Ensemble (AWE), Leveraging Bagging
accurate in different scenarios and much more computdljongLev), Online Bagging (Oza), Dynamic Weighted Majority
effective than cross-validation, we chose they function as (DWM), Learn++.NSE (NSE), Drift Detection Method with
the candidate classifier weighting mechanism for AUE2. a Hoeffding Tree (DDM), a single Hoeffding Tree with a

In an attempt to further decrease memory usage and possiitigtic window (Win), and the Naive Bayes algorithm (NB).
improve classification accuracy, we proposed and analyzed tWe chose AWE and AUE1 as those are the classifiers we
alternative component updating mechanisms. The first medtied to improve upon. HOT and ACE were selected as they
anism selects only thé < k best weighted components forcan be considered as hybrid ensemble algorithms combining
updating. We experimentally evaluated the effect of updgati elements of incremental learning. Oza, Lev, NSE, and DWM
b € [4;9] highest weighted components of an ensemble wfere chosen as strong representatives of online ensembles.
10 classifiers. In the second mechanism, we proposed to stée DDM algorithm and the windowed Hoeffding Tree were
updating a component classifier if the difference between tbhosen as representatives of single classifiers. Additigna
mean square error of that component obtained on the mtst Naive Bayes algorithm is added to the comparison as a
recent data chunkM SE;;) and the error obtained on thereference for using an algorithm without any drift reaction
previous chunk /SE; ;_1) is greater than 0 and less than anechanism. All the studied algorithms were evaluated imser
user-defined threshol@l i.e., component’; is not updated if of classification accuracy, memory usage, chunk trainimg ti
0< MSE; s — MSE; ;1 < 6. We experimentally tested thisand testing time. Average values of the analyzed performanc
approach fom € [0.005; 0.05]. measures are given in Tables|IV-VII.

The obtained results, omitted due to space limitationse hav Apart from analyzing the average performance of the al-
shown that refraining from updating component classifisrs gorithms, we generated four graphical plots for each datase
not the best strategy in a stream with drifts. Not only doetepicting the algorithms’ functioning in terms of trainitime,
updating all components give best average accuracy, but thsting time, memory usage, and classification accuracy. By
less refraining was performed the better the results were. Presenting the performance measure calculated after edah d
the other hand, substantial savings in terms of memory cenunk on the y-axis and the number of processed training
be achieved by not updating all of the component classifieexamples on the x-axis, one can examine the dynamics of
Refraining from updating wheM SE; settles a¥) = 0.5% of a given classifier, in particular, its reactions to concerft.d
what it was on the previous chunk requires, on an averag®jch graphical plots are the most common way of displaying
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TABLE IV
AVERAGE CLASSIFICATION ACCURACIES IN PERCENTAGK%]

ACE AUE1 AWE AUE2 HOT DDM Win Lev NB Oza DWM NSE

Hyps 80.65 88.59 90.43 8843 8323 8792 8756 8536 81.00 89.89 7120 86.83
Hypr 8456 88.58 89.21 89.46 8332 86.86 86.92 87.21 78.05 89.32 76.69 85.39
RBF 5 87.34 94.07 7882 9477 93.79 8830 73.085.28 66.97 93.08 78.11 73.02
RBFG R 87.54 9337 79.74 9443 9324 87.99 74.67 9474 62.01 92.56/.807 74.49
RBF n D 84.74 9242 72,63 93.33 91.20 87.62 7112 9224 7200 9137 76.06 71.07
SEAg 86.39 89.00 87.73 89.19 87.07 8837 86.85 87.09 86.18 88.80 7830 86.23
SEAR 86.22 88.36 86.40 88.72 86.25 87.80 8555 86.68 84.98 88.37 79.33 85.07
Treeg 65.77 8435 63.74 8494 69.68 8058 50.15 8169 47.88 81.67 51.19 49.37
Treep 4597 52.87 4535 4532 40.34 4274 4154 3342 3502 4340 2930 33.90
LEDys 64.70 67.29 67.11 67.58 66.92 67.17 6552 66.74 67.165/.62 44.43 62.86
LEDn D 46.33 50.68 51.27 51.26 51.17 51.05 47.07 50.681.27 51.23 26.86 47.16

El ec 7583 70.86 69.33 77.32 78.21 64.45 7035 76.08 73.08 77.34 7243 73.34
Cov 67.05 81.24 79.34 85.20 86.48 58.11 77.19 81.04 66.02 8040 80.84 77.16
Poker 67.38 60.57 59.99 66.10 74.77 60.23 58.282.62 58.09 61.13 7449 59.56

Airlines 66.75 6392 6331 67.37 66.18 6579 6493 63.10 66.84 66.39 6100 63.83

TABLE V
AVERAGE CHUNK TRAINING TIME IN CENTISECONDS[CS]

ACE AUE1 AWE AUE2 HOT DDM Win Lev NB Oza DWM NSE

Hyps 26.83 14.82 12.15 4.41 0.69 0.33 0.17 6.00.03 3.94 7.26 116.20
Hypr 2578 1413 1211 4.57 2.39 0.38 0.20 5.60.03 3.97 777 173.73
RBF 5 72.27 4793 4246  13.88 2.72 0.87 0.29 13.39€.05 9.63 1422 628.33
RBFG R 72.72 5451 4263 14.08 3.45 0.88 0.29 13.88®.04 996 1457 679.69
RBF D 19.94 4458 11.80 4.67 1.40 0.27 0.17 6.69.03 4.74 8.35 186.12
SEAg 4.95 7.64 4.36 1.63 0.37 0.15 0.13 2.650.01 2.59 2.58 66.53
SEAR 5.06 5.49 4.24 1.60 0.28 0.13 0.18 2.580.01 231 2.76 64.74
Treeg 20.63 26.99 15.07 5.24 0.78 0.37 0.19 7.00.02 4.79 7.41  196.91
Treer 27.98 20.55 18.20 7.90 1.73 0.73 0.51 8.810.02  5.36 9.19 32.85
LEDns 7.75 3147 25.48 8.81 4.44 0.62 0.26 9.490.03 7.98 8.21 40241
LEDN D 7.73 27.72 25.30 8.99 10.11 128 0.22 10.14€.03 11.60 7.98 932.29
El ec 4.47 5.00 5.57 3.26 1.89 1.00 1.00 3.750.07 2.70 5.90 6.74
Cov 23.35 40.87 4129 14.83 6.64 1.23 038 10.2D.09 9.66 18.24 425.72
Poker 2.78 9.57 6.56 4.20 1.91 0.39 0.18 3.070.02 2.83 7.69 108.00

Airlines 4.37 10.45 14.15 6.79 1.62 0.58 0.76 7.010.02 478  32.23 69.05

TABLE VI
AVERAGE CHUNK TESTING TIME IN CENTISECONDYCS]

ACE AUE1 AWE AUE2 HOT DDM Win Lev NB Oza DWM NSE

Hyps 0.60 1.82 1.72 1.75 0.33 0.19 0.18 2.290.18 1.97 0.80 7.48
Hypr 0.59 1.82 1.74 1.73 1.04 0.20 0.21 1.990.18 1.99 0.78 7.40
RBF 5 1.10 6.15 6.58 6.06 1.35 0.66 0.68 6.450.66 6.78 251 31.80
RBFGRr 1.11 6.44 6.53 6.29  1.69 0.70 0.71 6.810.65 7.11 2.68 20.10
RBF N D 0.58 2.47 1.67 2.23  0.60 0.20 0.20 3.220.19 2.57 0.79 3.44
SEAs 0.47 0.76 0.61 0.67  0.09 0.07 0.08 0.730.07 0.82 0.28 3.70
SEAR 0.47 0.66 0.59 0.65 0.09 0.07 0.08 0.71 0.08 0.73 0.29 2.87
Treeg 0.82 2.54 2.32 252 036 022 022 332 023 296 0.73 1.88
Treer 0.97 2.93 2.46 3.31 0.27 036 039 370 048 343 0.95 1.25
LEDy, 2.10 4.92 4.05 3.83 0.29 048 041 458 039 5.62 2.02 4.49
LEDy p 2.05 4.15 4.01 3.90 0.27 097 042 495 040 9.28 2.03 4.08
El ec 0.62 0.85 0.40 1.18 0.73 0.21 0.27 129 035 1.30 0.46 2.05
CovType 0.84 6.17 6.34 6.74 433 055 0.71 522 126 7.45 229 15.36
Poker 0.57 1.79 0.37 192 131 022 020 109 047 1.68 0.48 2.69
Airlines 0.30 0.44 0.22 222 0.36 0.230.21 178 0.19 204 0.35 1.78

TABLE VII
AVERAGE CLASSIFIER MEMORY USAGE IN MEGABYTEJMB]

ACE AUE1 AWE AUE2 HOT DDM Win Lev NB Oza DWM NSE

Hyps 0.14 1.97 0.28 0.63 2.94 0.240.00 430 0.01 0.71 0.15 16.85
Hypr 0.13 1.23 0.31 0.57 9.57 0.550.00 1.70 0.01 0.87 0.20 36.98
RBF 5 0.18 2.99 0.45 2.40 5.38 0.330.01 532 0.01 1.16 0.35 36.99
RBFG R 0.19 4.67 0.43 4.65 5.94 0.300.01 6.84 0.01 1.94 0.33 36.99
RBFn D 0.14  13.07 0.25 12.74 5.88 0.590.00 3849 0.01 5.83 0.22 36.97
SEAg 0.10 1.56 0.20 0.92 0.71 0.150.00 0.80 0.00 1.12 0.07 36.97
SEAR 0.10 1.02 0.20 0.57 0.71 0.080.00 052 0.00 0.65 0.08 36.97
Treeg 0.22 5.22 0.49 4.95 4.34 0.590.00 17.28 0.01 5.75 0.15 36.98
Treep 0.22 1.68 0.35 0.88 0.52 0.120.01 055 0.01 0.28 0.07 0.41
LEDas 0.27 0.62 0.61 0.22 2.06 0.170.01 0.62 0.03 1.50 0.04 36.99
LEDnN D 0.27 0.62 0.61 0.22 15.74 4.730.01 029 0.03 6.16 0.03 180.68
El ec 0.10 0.39 0.27 0.46 0.75 0.030.00 0.34 0.01 0.14 0.11 0.10
Cov 0.20 1.57 0.68 0.85 17.17 0.080.02 0.82 0.05 0.32 0.48 12.59
Poker 0.14 0.33 0.27 0.20 8.05 0.14 0.00 123 0.01 0.12 0.31 25.47
Airlines 0.11 2.35 571 62.34 65.65 13.470.05 3895 0.06 30.80 1.14 11.10
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Processedinstances the algorithms’ reaction to recurring sudden drifts. Thitsir
Fig. 1. Classification accuracy on tRBF g dataset occurring every 200k examples are clearly visible both on
the accuracy and memory plot. In the presence of sudden
Fig. O reports accuracies of the analyzed algorithms é@curring drifts, AUE1 and AUE2 seem to perform best, with
the RBF dataset, which contains gradual recurring drift®nly the first drift having a major impact on their accuracy.
Looking at the plot one can see drops in accuracy arouk@mpared to recurring gradual drifts, the remaining atans
examples number 125k, 250k, 375k, and 500k. The ma¥e further behind in terms of accuracy. This is especially
severely malfunctioning algorithm in the presence of gedduapparent with the HOT algorithm, which appears to loose
recurring drifts is NB, followed by Win, NSE, DWM and accuracy with every consecutive drift. Looking at the meynor
AWE. The subsequent drops in accuracy of the Naive Bayp®t in Fig.[3, we can see that AUE1 and AUE2 abruptly
algorithm suggest that classifiers without any drift remcti reduce their memory usage when a drift occurs. The drop in
mechanism fail to successfully learn from data with gradu@Fcuracy of the previously learned components is reflected i
recurrent drifts. On the other hand, Win, NSE, DWM antheir mean square error, which forces one of the previously
AWE appear to react too slowly, possibly due to the strorlgarned base classifiers to be disposed. Algorithms tha see
time similarity of data used for prediction. AdditionalDM not to have pruned their base classifiers after a sudden drift
and ACE both use drift detectors which are designed to woskch as HOT or Lev, loose accuracy. Similar behavior was
best with sudden changes and for this reason the performanbgerved in figures for th8EAs and SEAr datasets, which
of these algorithms may not be as good as the performariggresent scenarios with sudden concept drifts.
of ensemble approaches. The two most accurate algorithmdt is worth noting that NSE requires much more time and
on this dataset are AUE2 and Lev. Both of these algorithmgemory than the remaining algorithms. This is only due to
require similar training and testing time but Lev requirethe fact that, following([3[], no pruning was used to limieth
almost twice as much memory as AUE2. number of NSE’s component classifiers. On small datasets,
like El ec, we can see that when only few components are

100 % created NSE uses less memory than other ensemble methods.
ough on theTr eeg datase erformed sli
. Although theT dataset AUE2 perf d slightly
w4 TTN Iy etter than , on th&r eer datase is clearly the
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w0 lf 2 e T et RS SN winning algorithm. The characteristic feature of theeer
’ [ heC ) dataset is the speed of recurring changes. The classififar buf
Cme ww\ which was removed from the AUE2 algorithm is the attribute
‘ . “A\i\éﬁ sy gt that most probably helped AUE1 outclass other data stream
< 60w - R s s = S learners on this dataset.
" o Koo X NSE ---6--- . . . .
TN, 25’; — A different experiment used thBBFp dataset, which in-
0% SR e I PPN = ey corporates very short, sudden concept changes (blipg)s Bli
SR e T L AR P y P 9 p
o \’\NW;;WMW should be treated as outliers and should not have any long-
o 5 term impact on the classifier's functioning. As Fig. 4 shows,
o Win apart from NB, Win, NSE, DWM, and AWE all the classifiers

O 100k 20k d00k 409k SOk S0k 7ok sk sk M maintain stable accuracy throughout the entire dataseda- An
lyzing the memory plot in Fid.]5, one can see that AUE1 and

Fig. 2. Classification accuracy on tfie ee s dataset AUE? react to blips just like they reacted to sudden changes.
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14w 1 o= -s-4  Additionally, on thePoker dataset Lev clearly outperforms
e s v all the other classifiers. It is worth mentioning that thelaaecy
Win of HOT comes at the price of high memory costs. It seems that
§1°MB sy for the analyzed real-world datasets the pruning mechanism
2w : present in most adaptive ensembles, is not as importaneas th
R G ,f“j i constant training of base classifiers, characteristic f@TH
ome ATl I The accuracy plot for th€ov dataset is presented in Fig. 6. By
ave F / et A ; looking at the performance of NB, DDM, and ACE, one can
¥ 5 et K ’ | see that the analyzed dataset probably contains changes. Th
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The capability of sustaining accuracy by these two algorith s %L
is possible due to the fact that only one ensemble composent i 4 |
removed per chunk. Even when a single component is removed :
in the occurrence of an outlier concept, AUE1 and AUE2§ ;
still perform well after the blip. It is also worth noticindpat £ so« |
the warning/alarm level mechanism used in DDM and ACE ol B . »
worked well and allowed these algorithms to stay accurate ., .,
even though their classification error must have raised. 0 % b
For datasets with incremental drifts, i.elyps andHyp g, 35 % e
the best performing algorithms are AWE, Oza, and AUE2. el
AWE seems to perform particularly well on thyps dataset. % % to0x 200k 300k 400k 500k 600k 700k 800k 900k 1M
It is also worth noting that the Win classifier, usually per- Frosessedinsiances
forming rather poorly in terms of accuracy, reacts quitelwetig. 7. Classification accuracy on th&D,, dataset
to slow changes. The algorithms that perform worst are NB,
ACE, DWM, and HOT. The Naive Bayes classifier has no Finally, let us analyze the accuracy plot for thé&D,,
drift reaction mechanism, the drift detector in ACE is nofiataset presented in Figl 7. In this dataset, we incorpmbrate
triggered, therefore, causing poor reaction to graduah@es, a complex change by joining two gradually drifting streams.
while HOT and DWM appear to not be pruning outdated datafter 500k examples the target concept is suddenly switched
with HOT additionally using too much memory. but the gradual changes in the new concept prove to be very
When no drift is present, AUE2 and AUE1 are the modtifficult to classify. Although Oza and AUE2 achieve best
accurate classifiers. On thHeBFyp dataset, AUE2 has the average accuracies, all algorithms seem to fail in readting
highest accuracy followed by AUE1 and Lev, whileloBDy,  the change. This shows that complex combinations of drifts
AUE1, AUE2, and NB achieve almost identical results. can be an interesting topic for further research.
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E. Statistical analysis of results time we also reject the null hypothesig’{ = 74.549) and

To extend the analysis provided in SectionlV-D, we carriesfate that AUE2 classifies slower than DDM, HOT, Win,
out statistical tests for comparing multiple classifierssrov@nd NB, but faster than Oza and NSEo(, = 0.003,
multiple datasets [20]. We used the non-parametric Frigdm@vse = 0.004). Such an outcome is not surprising as Win,
test, where average results of compared algorithms aredank!B: HOT, and DDM are single classifiers, while the rest of the
on each dataset (the lower the rank the better). The anrJa.Iyzed algorithms are ensembles, each with 10 base tearne
hypothesis for this test is that there is no difference betwe Finally, we compare average memory usage of each algo-
the performance of all the tested algorithms. Moreoveragec Mthm. The test value being» = 60.307, we reject the null
of rejecting this null-hypothesis we use the Bonferroninbu NYPOthesis. By comparing average ranks we can state that
post-hoc test]40] to verify whether the performance of AUERUEZ uses more memory than Win, NB, and ACE but is more
is statistically different from the remaining algorithms. memory efficient than NSE, AUEL, HOT, Leyss = 0.007,

PAUE1 = 0.007, PHOT = 0.015, PLev = 0050)

TABLE VIII
AVERAGE ALGORITHM RANKS USED IN THEFRIEDMAN TESTS
V. CONCLUSIONS

ACEAUEL AWEAUE2 HOT DDM Win Lev NB 0zabWM NSE | this paper, we presented and evaluated a block-based

Tran. 673 1098 g'.i%2'2.0335'19206'2?8082?135'27?13?)575.735678.fésgz.gbeosnee_lm ensemble classifier, called AUE2, designed to react
Test. 513 9.07 7.07 853 453 227 2.33 9.931310.80 5.33 10.80 tO different types of concept drift. The main novelty of the
Mem. 4.00 9.33 6.27 8.07 10.13 4.93.00 9.40 2.00 7.73 4.33 10.80 proposed algorithm is the combination of an AWE inspired
ensemble weighting mechanism with incremental training of
The average ranks of the analyzed algorithms are presentedhponent classifiers. This hybrid approach allows AUE2 to
in Table[VI, providing a comparison in terms of accuracyteact to many different types of concept changes, such as
training and testing time, as well as memory usage. First, wadden, gradual, recurring, short-term, and mixed drifid a
perform the Friedman test to verify the statistical sigaifice makes AUE2 less dependent on data block size. Additional
of the differences between accuracies of the algorithms. Aentributions of AUE2 include the proposal of a new compo-
the test statisticFr = 12.902 and the critical value for nent weighting function and a cost-effective candidategivei
a = 0.05 is 1.851, the null hypothesis is rejected. Consideringy treating the candidate classifier as a “perfect” clagsifie
accuracies, AUE2 provides the best average achievinglysu®lUE2 ensures that the current concept is strongly reflected i
1t or 2@ rank, regardless of the existence or type of drifthe ensemble’s prediction. The proposed algorithm was also
To verify whether AUE2 performs better than the remainingptimized for memory usage by restricting ensemble size and
algorithms, we compute the critical differeneg&)) chosen by incorporating a simple inner-component pruning mechanism
the Bonferroni-Dunn tes{ [40]. When the difference between As part of this study, we also investigated different sgae
corresponding average ranks of two classifiers is greatercamcerning component classifier updates. Our experiments
equal toC' D, one can state that they are significantly differenhave shown that, in terms of accuracy, all component clas-
As CD = 3.736, AUE2 performs significantly better thansifiers in AUE2 should be updated after each incoming data
NSE, DDM, DWM, AWE, ACE, Win, and NB. The difference block. Such an approach promotes the incremental creation
between AUE2 and the remaining algorithms the experimenti#l strong classifiers as ensemble members and provides more
data is not sufficient to reach such a conclusion. Motivated laccurate predictions of the ensemble. From this point ofivie
the fact that AUE2 has an accuracy rank much higher thanr results coincide with those presented[in] [31], thersfor
AUE1, HOT, Lev, and Oza, we have decided to additionallyuggesting that drifting environments provide naturaedsity
perform the Wilcoxon signed rank test to get a better insightd the premise of weaklearnability does not apply to them.
into the comparison of pairs of classifiefs [40]. In contrast We have also carried out an experimental study compar-
to the Friedmann test, in the Wilcoxon signed rank test tlieg AUE2 with 11 additional state-of-the-art data stream
values of differences in performance of a pair of classifieraethods, including single classifiers, ensembles, andidybr
are taken into account. The p-values resulting from this tempproaches in different scenarios. The obtained resuitsroo
are:paug1 = 0.006, pgor = 0.020, pre, = 0.009, po., = that classifiers without any drift reaction mechanism fail t
0.003 for AUE1, HOT, Lev, and Oza, respectively. All thesesuccessfully learn from data with sudden, gradual, or recair
p-values support our observation that AUE2 is better in serndrifts. They also seem to confirm that ensemble approaches
of accuracy than any of the compared algorithms. that use batch classifiers, such as AWE, may suffer accuracy
We perform a similar analysis concerning average classifiémops after sudden concept driffs [11], while drift detesto
training time, also presented in Talle_VIIl. Computing thare less accurate on gradually drifting streams [24]. Novel
test value we obtaiF’» = 133.834. The null hypothesis can findings include the reaction of algorithms to short random
be rejected and by comparing average algorithm ranks wabrupt changes. The obtained results show that block-based
CD and performing additional Wilcoxon signed rank testesnsemble methods are more robust to random blips than single
we can state that AUE2 is trained slower than Win, NB, bufassifiers, as previously trained components allow them to
significantly faster than NSE, AUEL, Lev, ACE, AWE, andecover from premature reactions. Furthermore, expetignen
DWM (pre, = 0.023, pace = 0.004, pawre = 0.001, on datasets with fast recurring drifts have showcased that
ppwam = 0.002). Analogously, comparing average testinghe speed of changes is crucial to the decision whether a
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buffer of previously constructed component classifiersieful

[19]

or not. If recurrent changes are very frequent a buffer can
improve accuracy but in other cases it only increases memesy,

requirements and algorithm processing time.

Above all, the experimental study has demonstrated tH&t
AUE?2 can offer high classification accuracy in environments

with different types of drift as well as in static environnten
AUE2 provided best average classification accuracy outlof
the tested algorithms, while proving less memory consumi

[22]
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A. Bifet and R. Gavald, “Learning from time-changing data with
adaptive windowing,” inProc. 7th SIAM Int. Conf. Data Mining2007,
pp. 443-448.

E. Cohen and M. J. Strauss, “Maintaining time-decayitrgesn aggre-
gates,”J. Algorithms vol. 59, no. 1, pp. 19-36, Apr. 2006.

G. Hulten et al, “Mining time-changing data streams,” iRroc. 7th
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1/2, pp. 100-115, 1954.
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than other ensemble approaches, such as Leveraging Bagggag M. Baena-Gara et al,, “Early drift detection method,” iProc. 4th Int.

or Hoeffding Option Trees. As future work we plan to investi-

gate the possibility of adapting the proposed algorithm dokw
in a truly incremental fashion in partially labeled streams
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