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Abstract

Most stream classifiers are designed to process data incrementally, run in resource-aware environments, and
react to concept drifts, i.e., unforeseen changes of the stream’s underlying data distribution. Ensemble
classifiers have become an established research line in this field, mainly due to their modularity which
offers a natural way of adapting to changes. However, in environments where class labels are available
after each example, ensembles which process instances in blocks do not react to sudden changes sufficiently
quickly. On the other hand, ensembles which process streams incrementally, do not take advantage of
periodical adaptation mechanisms known from block-based ensembles, which offer accurate reactions to
gradual and incremental changes. In this paper, we analyze if and how the characteristics of block and
incremental processing can be combined to produce new types of ensemble classifiers. We consider and
experimentally evaluate three general strategies for transforming a block ensemble into an incremental
learner: online component evaluation, the introduction of an incremental learner, and the use of a drift
detector. Based on the results of this analysis, we put forward a new incremental ensemble classifier,
called Online Accuracy Updated Ensemble, which weights component classifiers based on their error in
constant time and memory. The proposed algorithm was experimentally compared with four state-of-the-art
online ensembles and provided best average classification accuracy on real and synthetic datasets simulating
different drift scenarios.
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1. Introduction

For the last decades, several machine learning and data mining algorithms have been proposed to discover
knowledge from data [26, 18, 17]. However, such algorithms are usually applied to static, complete datasets,
while in many new applications one faces the problem of processing massive data volumes in the form of
transient data streams. Example applications involving processing data generated at very high rates include
sensor networks, telecommunication, GPS systems, network traffic management, and customer click logs.
The processing of streaming data implies new requirements concerning limited amount of memory, small
processing time, and one scan of incoming examples [10, 33, 22], none of which are sufficiently handled by
traditional learning algorithms and, therefore, require the development of new solutions.

However, the greatest challenge in learning classifiers from data streams is reacting to concept drifts,
i.e., changes in distributions and definitions of target classes over time. Such changes are reflected in the
incoming learning instances and deteriorate the accuracy of classifiers trained from past examples. Therefore,
classifiers that deal with concept drifts are forced to implement forgetting, adaptation, or drift detection
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mechanisms in order to adjust to changing environments. Moreover, depending on the rate of these changes,
concept drifts are usually divided into sudden or gradual ones, both of which require different reactions [34].

As standard data mining algorithms are not capable of dealing with concept drifts and rigorous processing
requirements posed by data streams, several new techniques have been proposed [14, 24]. Out of many
algorithms proposed to tackle evolving data streams, ensemble methods play an important role. Due to
their modularity, they provide a natural way of adapting to change by modifying their structure, either
by retraining ensemble members, replacing old component classifiers with new ones, or updating rules for
aggregating component predictions [23]. Current adaptive ensembles can be further divided into block-based
and online approaches [14].

Block-based approaches are designed to work in environments were examples arrive in portions, called
blocks or chunks. Most block ensembles periodically evaluate their components and substitute the weakest
ensemble member with a new (candidate) classifier after each block of examples [33, 35]. Such approaches
are designed to cope mainly with gradual concept drifts. Furthermore, when training their components
block-based methods often take advantage of batch algorithms known from static classification. The main
drawback of block-based ensembles is the difficulty of tuning the block size to offer a compromise between
fast reactions to drifts and high accuracy in periods of concept stability.

In contrast to block-based approaches, online ensembles are designed to learn in environments where
labels are available after each incoming example. With class labels arriving online, algorithms have the
possibility of reacting to concept drift much faster than in environments where processing is performed in
larger blocks of data. Many researchers tackle this problem by designing new online ensemble methods,
which are incrementally trained after each instance and try to actively react to concept changes [2, 31].
Some of these newly proposed ensembles are usually characterized by higher computational costs than
block-based methods and the used drift detection mechanisms often require problem-specific parameter
tuning. Furthermore, online ensembles ignore weighting mechanisms known from block-based algorithms
and do not introduce new components periodically, thus, they require specific strategies for frequent updates
of incrementally trained components.

However, we argue that block-based weighting mechanisms as well as periodical component evaluations
could be still of much value in online environments. We claim that the periodical introduction of new candi-
date classifiers and incremental updates of component classifiers should improve the ensemble’s reactions to
both sudden and gradual drifts in reasonable balance with computational costs. Our previous work concern-
ing data stream ensembles suggests that by modifying block-based ensembles towards incremental classifiers
one can improve classification performance [5, 6]. These motivations led us to research questions, which
should be examined prior to the construction of a new type of online ensemble: Would a modification of
block-based ensembles towards incremental learners also be beneficial in an online processing environment?
Is it profitable to retain periodic evaluations and weighting mechanisms known from block-based algorithms
while constructing on-line ensembles for concept drifting data streams? Are periodical component evalu-
ations and new classifier insertions better than incorporating an online drift detector? Additionally, can
error-based weighting proposed for block-based methods be performed after each example, without the need
of dividing data into blocks?

The first aim of our paper is to answer the presented research questions by reviewing existing block-
based ensemble methods, considering different ways of adapting them to online learning, and experimentally
evaluating the impact of proposed adaptation strategies. To the best of our knowledge, no such analysis
has been previously done. Based on the results of this experimental study, we propose and experimentally
evaluate a new online algorithm, called Online Accuracy Updated Ensemble, which tries to combine the best
elements of block-based weighting and online processing. The contributions of our paper are as follows:

• In Section 3, we put forward three general strategies for transforming block-based ensembles into
online learners. More precisely, we investigate: 1) the use of a windowing technique which updates
component weights after each example, 2) the extension of the ensemble by an incremental classifier
which is trained between component reweighting, and 3) the use of an online drift detector which
allows to shorten drift reaction times. We identify which of these approaches are the most beneficial
for creating a new online ensemble.
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• In Section 4, we introduce a new incremental error-based weighting function which evaluates component
classifiers as they classify incoming examples. Next, we put forward the Online Accuracy Updated
Ensemble (OAUE), an algorithm which uses the proposed function to incrementally train and weight
component classifiers.

• In Section 5, we experimentally compare the three proposed general transformation strategies and
verify whether block-based algorithms can be successfully transformed into incremental learners. Fur-
thermore, we perform a sensitivity analysis of the OAUE algorithm, analyze its weighting function, and
experimentally compare OAUE with popular online ensembles on several real and synthetic datasets
simulating environments containing sudden, gradual, incremental, and mixed drifts.

• In Section 6, we discuss the most important issues in transforming block-based ensembles and draw
lines of further research.

2. Background and related works

We assume that learning examples from a stream S appear incrementally as a sequence of labeled
examples {xt, yt} for t = 1, 2, . . . , T , where x is a vector of attribute values and y is a class label (y ∈
{K1, . . . ,Kl}). In this paper, we consider a completely supervised framework, where a new incoming example
xt is classified by a classifier C which predicts its class label. We assume that after some time the true class
yt of this example is available and the classifier can use it as additional learning information. This type
of supervised learning is the most often used in the related literature. In this study, we do not consider
other forms of learning as, e.g., a semi-supervised framework where labels are not available for all incoming
examples [27].

Examples from the data stream can be provided either incrementally (online) or in portions (blocks). In
the first approach, algorithms process single examples appearing one by one in consecutive moments in time,
while in the other approach, examples are available only in larger sets called data blocks (or data chunks).
Blocks B1, B2, . . . , Bn are usually of equal size and the construction, evaluation, or updating of classifiers is
done when all examples from a new block are available.

In case of evolving data streams, target concepts tend to change over time, i.e., the concept the data is
generated from shifts occasionally after a minimum stability period. Formally, concept drift can be defined
as follows [14]: In each point in time t, every example is generated by a source Sj with a distribution P j over
data; concepts in data are stable if all examples are generated by the same distribution, otherwise, concept
drift occurs. Usually two main types of concept drifts are distinguished: sudden (abrupt) and gradual [34].
The first type of drift occurs when at a moment in time t the source distribution in St is suddenly replaced by
a different distribution in St+1. Gradual drifts are not so radical and they are connected with a slower rate
of changes which can be noticed while observing a data stream for a longer period of time (e.g., changes of
customer preferences). Additionally, some authors distinguish two types of gradual drift [28]. The first type
of gradual drift refers to the transition phase where the probability of sampling from the first distribution
P j decreases while the probability of getting examples from the next distribution P j+1 increases. The
other type, called incremental (stepwise) drift, may include more sources, however, the difference between
them is smaller and the change is noticed only in a longer period of time [28]. In some domains, situations
when previous concepts reappear after some time are separately treated and analyzed as recurrent drifts.
Moreover, data streams can contain blips (rare events/outliers) and noise, but these are not considered as
concept drifts and adaptive classifiers should be robust to them. For more information on class label swaps
and other changes in underlying data distributions, the reader is referred to wider reviews [14, 24, 34].

Several classifiers for dealing with concept drift have already been proposed. Here, we only briefly
describe works most related to our study. Although different taxonomies of algorithms for learning form
time changing data streams exist [14], for the purposes of this paper we distinguish trigger-based and adaptive

classifiers.
Trigger-based approaches include drift detectors that analyze incoming examples and indicate the need

for rebuilding a classifier. The most popular technique from this group is the Drift Detection Method
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(DDM) [15]. It is used with an online classifier which predicts a class label for each example. The true
label of the examples is compared with the predicted one. Classification errors are modeled with a Binomial
distribution and for each moment in time it is verified whether the current error falls into the expected bounds
of a warning or alarm level. When a warning level is signaled learning examples are stored in a special buffer.
If the alarm level is reached, the previously taught classifier is removed and a new classifier is built from
buffer examples. Alternative drift detection methods include the ADWIN and PH-Test algorithms [4].

Adaptive methods operate in a different manner, as they try to update the classifier without explicit
change detection. Single incremental classifiers, e.g., Naive Bayes classifiers or neural networks, are not
sufficient to adapt to concept drifts. However they can be used as component classifiers in ensembles
or extended with windowing techniques. Windowing provides a simple forgetting mechanism by selecting
examples introduced to the learning algorithm, thus, eliminating those examples that come from an old
concept distribution. The most popular windowing strategy involves using a so called sliding window that
moves over processed examples and ensures that only the most recent data is included in the current window.
Some techniques use windows of a fixed size, however, this introduces the problem of choosing a proper size
for a given stream (larger window sizes are more useful for slower concept drifts, but fail whenever sudden
drifts occur). Alternatively dynamic adjusting of the window size can also be applied [3, 38, 37].

In our experiments, we use an incremental algorithm for constructing decision trees, called Very Fast
Decision Tree (VFDT or Hoeffding Tree) [10]. The algorithm induces a decision tree from a data stream
incrementally, without the need for storing examples after they have been used to update the tree. It works
similarly to the classic tree induction algorithm and differs mainly in the selection of the split attribute.
Instead of selecting the best attribute (in terms of a given split evaluation function) after viewing all the
examples, it uses the Hoeffding bound to calculate the number of examples necessary to select the right
split-node with a user-specified probability. The originally proposed VFDT algorithm was designed for
static data streams and provided no forgetting mechanism. Hulten et al. [19] addressed this problem by
introducing a new algorithm called CVFDT, which used a fixed-size window to determine which nodes are
aging and may need updating.

In our study, we focus on ensemble methods, which can be further divided into two general groups:
online ensembles, which learn incrementally after processing single examples, and block-based ensembles,
which process blocks of data.

Referring to online ensembles, one of the first proposed algorithms was the Weighted Majority Algo-
rithm [25], which combines the predictions of a set of component classifiers and updates their weights when
they make false predictions. Another popular online ensemble is Online Bagging [31], a generalization of
batch bagging known from static environments, proposed by Oza and Russell. It uses incremental learners
as component classifiers and modifies the sampling of examples. Unlike batch bagging which draws examples
with replacement over the entire learning set, here sampling is performed incrementally by presenting each
example to a component k times, where k is defined by the Poisson distribution. More recently, Bifet et al.
introduced a modification of Oza’s and Russell’s algorithm, called Leveraging Bagging [2], which aims at
combining the simplicity of Online Bagging with adding more randomization to component classifiers. A set
of several different online bagging ensembles is also used in the DDD algorithm [29], which is a meta-classifier
based on the analysis of levels of ensemble diversities.

Another online ensemble related to the proposed OAUE is an algorithm called Dynamic Weighted Major-
ity (DWM) [21]. In DWM a set of incremental classifiers is weighted according to their accuracy after each
incoming example. With each mistake made by one of DWM’s component classifiers, its weight is decreased
by a user specified-factor. Furthermore, after a period of predictions the entire ensemble is evaluated and,
if needed, a new classifier is added to the ensemble. However, if learned on a large number of examples,
DWM can potentially generate extensive numbers of components, therefore, pruning of classifiers might be
considered in its extensions.

Finally, a hybrid online and block-based approach was proposed by Nishida with the Adaptive Classifier
Ensemble (ACE) [30]. This solution aims at reacting to sudden drifts by tracking the error-rate of a single
incremental classifier with each incoming example, similarly to the Drift Detection Method proposed by
Gama et al. [15] but using different alarm levels. In contrast to DDM, drift detection in ACE is used to
control the validity of an ensemble classifier, which is slowly reconstructed with large blocks of examples.
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Out of the presented online ensembles, Online and Leveraging Bagging do not perform periodical com-
ponent pruning nor reweighting, possibly causing high computational costs and poor reactions to gradual
and incremental changes. On the other hand, the DWM algorithm periodically reweights ensemble mem-
bers but component substitution is conditional and, therefore, for gradually changing streams the forgetting
mechanism may not trigger. Finally, ACE does not prune component classifiers and uses a drift detector,
both of which possibly lead to poor reactions to gradual changes.

The discussed alternative to online ensembles involves re-evaluating components with fixed-size blocks of
incoming instances and replacing the worst component with a new candidate classifier trained on the most
recent examples. The first of such block-based ensembles was the Streaming Ensemble Algorithm (SEA) [33],
which used a heuristic replacement strategy based on accuracy and diversity. Using these two factors, after
each block of examples SEA reevaluates a set of decision trees and substitutes the weakest classifier with a
new decision tree trained on examples from the most recent block. Following a similar scheme, Wang et al.
put forward an algorithm called Accuracy Weighted Ensemble (AWE) [35], which also trains a new classifier
on each incoming data block by a typical static learning algorithm such as C4.5, RIPPER, or Naive Bayes.
Similarly, after a new classifier is trained, all previously learned component classifiers, already present in
the ensemble, are evaluated on the most recent block. However, in AWE evaluations are done with a special
version of the mean square error (MSE), which estimates the error-rate of the component classifiers using
probability distributions of their class predictions. Such an evaluation method is justified, as Wang et al.
stated and proved that if component classifiers are weighted by their expected accuracy on the test data,
the ensemble achieves greater or equal classification accuracy compared with a single classifier [35]. It is
important to notice that the performance of SEA, AWE, and other block-based ensembles largely depends
on the size of the processed data blocks. Bigger blocks can lead to more accurate classifiers, but can contain
more than one concept drift. On the other hand, smaller blocks are better at separating changes, but usually
lead to creating poorer classifiers.

More recently proposed block-based ensemble methods include: Learn++NSE [11] which uses a sophis-
ticated accuracy-based weighting mechanism, the Batch Weighted Ensemble (BWE) [8] which contains a
special drift detector analogously to ACE but processes streams in blocks, and the Accuracy Updated Ensem-
ble (AUE) [6] which incrementally trains its component classifiers after every processed block of examples.
Although AUE is not the only block ensemble that uses incremental learners as component classifiers, it
is unique due to the fact that it updates component classifiers already present in the ensemble. Results
obtained by AUE [5, 6] suggest that by incremental learning of periodically weighted ensemble members
one could preserve good reactions to gradual changes, while reducing the block size problem and, therefore,
improving accuracy on abruptly changing streams.

3. Strategies for transforming block-based ensembles into online learners

In this section, we discuss the basics of block-based processing and propose three general strategies for
adapting block-based ensembles to online environments. The impact of these strategies will be experimen-
tally studied in Section 5.2 and conclusions form these experiments will serve as a basis for the construction
of the OAUE algorithm.

3.1. Notation and basic concepts of block-based ensembles

Before discussing different approaches to converting block ensembles into online learners, let us define a
generic block-based training scheme, which will help describe the proposed strategies.

Let S be a data stream partitioned into evenly sized blocks B1, B2, . . . , Bn, each containing d examples.
For every incoming block Bj , the weights of component classifiers Ci ∈ E are calculated by a classifier
quality measure Q(), often called a weighting function. The function behind Q() depends on the algorithm
being analyzed; e.g., for AWE Q(Ci) = MSEr −MSEij [35], while for AUE Q(Ci) = 1/(MSEij + ǫ) [5],
where MSEij corresponds to the error-rate of the i-th component classifier and MSEr is the error of a
randomly predicting classifier. In addition to component reweighting, a candidate classifier is built from
block Bj and added to the ensemble if the ensemble’s size k is not exceeded. If the ensemble is full but
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the candidate’s quality measure is higher than any member’s weight, the candidate classifier substitutes the
weakest ensemble member.

Algorithm 1 Generic block ensemble training scheme

Input: S: data stream of examples partitioned into blocks of size d, k: number of ensemble members, Q():
classifier quality measure

Output: E : ensemble of k weighted classifiers
1: for all data blocks Bj ∈ S do

2: build and weight candidate classifier C ′ using Bj and Q();
3: weight all classifiers Ci in ensemble E using Bj and Q();
4: if |E| < k then E ← E ∪ {C ′};
5: else if ∃i : Q(C ′) > Q(Ci) then replace weakest ensemble member with C ′;
6: end for

The described training scheme, presented in Algorithm 1, can be used to generalize most popular block-
based ensemble classifiers, such as SEA [33], AWE [35], AUE [5, 6], Learn++.NSE [11], or BWE [8]. The
following subsections present three different strategies for modifying this generic algorithm to suit incremen-
tal environments.

3.2. Online evaluation of components

The first strategy converts a data block into a sliding window. Instead of evaluating component classifiers
every d examples, ensemble members are weighted after each example using the last d training instances.
This way component weights are incrementally updated and can follow changes in data faster. Because the
creation of the candidate classifier can be a costly process, especially in block-based ensembles which use
batch component classifiers, we propose to add new classifiers to the ensemble every d examples, just as in
the original block processing scheme. The described strategy is presented in Algorithm 2.

Algorithm 2 Windowing strategy

Input: S: data stream of examples, k: number of ensemble members, W : window of examples, d: size of
window, Q(): classifier quality measure, t: example number

Output: E : ensemble of k weighted classifiers
1: for all examples xt ∈ S do

2: if |W | < d then W ←W ∪ {xt};
3: else replace oldest example in W with xt;
4: weight all classifiers Ci in ensemble E using W and Q();
5: if t > 0 and t mod d = 0 then

6: build and weight candidate classifier C ′ using W and Q();
7: if |E| < k then E ← E ∪ {C ′};
8: else if ∃i : Q(C ′) > Q(Ci) then replace weakest ensemble member with C ′;
9: end if

10: end for

3.3. Introducing an additional incremental learner

The second strategy involves using an incremental classifier as an extension of a block-based ensemble.
The ensemble works exactly like in the original algorithm but an additional online learner, which is trained
with each incoming example, is taken into account during component voting. Such a strategy ensures that
the most recent data is included in the final prediction. Two factors are crucial for the incremental classifier
to have an effect on the ensemble’s performance: its weight and its accuracy. We propose to use the maximum
of the weights of remaining ensemble members as the candidate’s weight. Using such a value ensures that
this strategy remains independent of the algorithm being modified and that the incremental learner will have
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substantial voting power. As for accuracy, to ensure accurate predictions in a time changing environment a
classifier should be trained only on the most recent data. On the other hand, using too few examples will
make the classifier inaccurate. That is why we propose to initialize the incremental learner with the last full
buffer of examples and incrementally train for the next d examples, after which the incremental learner is
reinitialized. This strategy is presented in Algorithm 3.

Algorithm 3 Additional incremental learner strategy

Input: S: data stream of examples, Co online learner, k: number of ensemble members, B: example buffer
of size d, Q(): classifier quality measure, t: example number

Output: E : ensemble of k weighted classifiers and 1 incremental classifier
1: for all examples xt ∈ S do

2: incrementally train Co with xt

3: B ← B ∪ {xt}
4: if t > 0 and t mod d = 0 then

5: build and weight candidate classifier C ′ using B and Q();
6: weight all classifiers Ci in ensemble E using B and Q();
7: if |E| < k then E ← E ∪ {C ′};
8: else if ∃i : Q(C ′) > Q(Ci) then replace weakest ensemble member with C ′;
9: reinitialize Co with B;

10: B ← ∅;
11: end if

12: end for

3.4. Using a drift detector

The last strategy, presented in Algorithm 4, uses a drift detector attached to an online learner which
triggers component reweighting.

Algorithm 4 Drift detector strategy

Input: S: data stream of examples, D: drift detector, k: number of ensemble members, B: example buffer
of size d, Q(): classifier quality measure, t: example number

Output: E : ensemble of k weighted classifiers and 1 classifier with a drift detector
1: for all examples xt ∈ S do

2: incrementally train D with xt

3: B ← B ∪ {xt}
4: if |B| = d or drift detected then

5: build and weight candidate classifier C ′ using B and Q();
6: weight all classifiers Ci in ensemble E using B and Q();
7: if |E| < k then E ← E ∪ {C ′};
8: else if ∃i : Q(C ′) > Q(Ci) then replace weakest ensemble member with C ′;
9: reinitialize D;

10: B ← ∅;
11: end if

12: end for

In periods of stability, when no drifts occur, the algorithm works similarly to the second strategy. If a
drift occurs, a candidate classifier is built on a smaller portion of the most recent examples, weighted, and
added to the ensemble according to Q(). Existing ensemble members are also reweighted after each drift.
This approach aims at faster, online, reactions to sudden changes.

The three presented strategies tackle different aspects of reacting to drifts in online environments. Con-
sequently, gradual updates using online weighting, faster training by using incremental learners, and instant
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reactions to detected changes, all have a different impact on the modified block-based ensemble. The ex-
perimental analysis of each strategy (discussed in Section 5.2) led to the creation of a new online algorithm,
called Online Accuracy Updated Ensemble, which tries to combine the best aspects of these strategies.

4. The Online Accuracy Updated Ensemble

In environments were examples arrive in portions, block-based ensembles offer the possibility of using
batch algorithms and, if component classifiers are correctly weighted, achieve higher accuracy than a single
classifier trained on all available examples [35]. However, in online environments batch algorithms can be too
expensive in terms of required processing time and memory. Additionally, determining the block size of a
block-based ensemble is a non-trivial task, which requires finding a compromise between accurate predictions
and fast reactions to changes [38, 5]. Theoretically, one could even use blocks containing single examples,
thus, allowing a block-based ensemble to work online. However, component classifiers require more than
one example to give satisfactory predictions and more than one example is also needed when evaluating
the classification performance of a component. Therefore, in practice it is impossible to correctly weight
an ensemble of 1000 classifiers built on one example each, and require it to be more accurate than a single
classifier built on 1000 examples. The strategies proposed in Section 3, showcased alternative approaches to
adapting block-based ensembles to online processing. Anticipating the presentation of experimental results,
we can state that the analysis of these approaches has shown that the use of incremental learners and online
weighting are the most important factors in converting a block-based learner. These results coincide with
our previous experiences with in the Accuracy Updated Ensemble, where periodical incremental updates of
components using blocks of examples were a key factor in achieving high accuracy [5, 6]. Based on that
knowledge, we introduce a new online ensemble classifier which uses incremental learners and block-based
inspired weighting mechanisms, but in an online, time and memory efficient manner.

The proposed algorithm, called Online Accuracy Updated Ensemble, maintains a weighted set of com-
ponent classifiers and predicts the class of incoming examples by aggregating the predictions of components
using a weighted voting rule. After processing a new example, each component classifier is weighted accord-
ing to its accuracy and incrementally trained. We keep the idea from block-based ensembles, that every
d examples a new classifier is created which substitutes the weakest performing ensemble member. In our
experiments we will use Hoeffding trees as component classifiers, but one could use any online learning
algorithm as a base learner. The pseudocode of the proposed ensemble classifier is presented in Algorithm 5.
The key element of the proposed algorithm is a block-based inspired weighting function, which we discuss
in more detail in the following paragraphs.

Let S be a data stream. For each incoming example xt, the weights wt
i of component classifiers Ci ∈ E

(i = 1, 2, . . . , k) are calculated by estimating the prediction error on the last d examples as shown in (1)-(5):

MSEt
i =



























MSEt−1

i +
eti
d
−

et−d
i

d
, t− τi > d

t− τi − 1

t− τi
·MSEt−1

i +
eti

t− τi
, 1 ≤ t− τi ≤ d

0, t− τi = 0
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t))2 (2)
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∑

y

rt(y), t = d (3)

rt(y) = pt(y)(1− pt(y))2 (4)
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Algorithm 5 Online Accuracy Updated Ensemble (OAUE)

Input: S: data stream of examples, d: window size, k: number of ensemble members, m: memory limit
Output: E : ensemble of k weighted incremental classifiers
1: E ← ∅;
2: C ′ ← new candidate classifier;
3: for all examples xt ∈ S do

4: calculate the prediction error of all classifiers Ci ∈ E on xt;
5: if t > 0 and t mod d = 0 then

6: if |E| < k then

7: E ← E ∪ {C ′};
8: else

9: weight all classifiers Ci ∈ E and C ′ using (5);
10: substitute least accurate classifier in E with C ′;
11: end if

12: C ′ ← new candidate classifier;
13: if memory usage(E) > m then

14: prune (decrease size of) component classifiers;
15: end if

16: else

17: incrementally train classifier C ′ with xt;
18: weight all classifiers Ci ∈ E using (5);
19: end if

20: for all classifiers Ci ∈ E do

21: incrementally train classifier Ci with xt;
22: end for

23: end for

wt
i =

1

MSEt
r +MSEt

i + ǫ
(5)

Function f t
iy(x

t) denotes the probability given by classifier Ci that xt is an instance of class yt. It is
important to note that, instead of single class predictions, probabilities of all classes are considered. The
value of MSEt

i estimates the prediction error of classifier Ci on the last d examples; τi denotes the time
at which classifier Ci was created. MSEt

r is the mean square error of a randomly predicting classifier (also
trained on the last d examples) and is used as a reference point to predictions made based on the current class
distribution. Additionally a very small positive value ǫ is added to wt

i to avoid division by zero problems.
The presented formulas for calculatingMSEt

i andMSEt
r are incremental versions of evaluation measures

used by Wang et al. to weight component classifiers of the Accuracy Weighted Ensemble [35], which worked
on blocks of examples Bj :

MSEij =
1

|Bj |

∑

{x,y}∈Bj

(1− f i
y(x))

2 (6)

MSEr =
∑

y

p(y)(1− p(y))2 (7)

Instead of remembering a block of last d examples and performing component evaluations on the same
example multiple times (as described in the strategy presented in Section 3.2) we derived an incremental
version of (6) and (7). A newly added classifier (t−τi = 0) is treated like an error-less classifier (MSEt

i = 0).
Such an approach is based on the assumption that the most recent block or window provides the best
representation of the current and near-future data distribution and was analyzed in our previous work [6].
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For t−τi ≤ d we scale the mean-square error calculated on the previous example and add the prediction error
calculated on xt. When a component classifier has been trained on more than d examples, the prediction
errors used for weight calculation are limited to the last d, to evaluate only on the most recent data. The
influence of different d values as well as the possible use of a linear weighting function will be discussed in
Section 5.3. The equation for MSEt

r was built analogously, with the difference that instead of adding and
removing errors, distributions (rt) of the class of the newest (yt) and oldest (yt−d) example are updated,
and that MSEt

r is first calculated after creating the first component (after d examples).
Let us now analyze the complexity of the proposed approach. As Hoeffding Trees can be learned in

constant time per example [10], the training of an ensemble of k Hoeffding Trees has a complexity of O(k).
Additionally, the weighting procedure defined by (1)-(5) requires a constant number of operations, thus,
for weighting k components O(k) time is needed. Therefore, the training and weighting of OAUE has a
complexity of O(2k) per example and since k is a user-defined constant this resolves to a complexity of
O(1). It is worth noticing that the same would be true for any other constant time per example component
classifier, such as the Naive Bayes algorithm. The memory requirements of an ensemble of Hoeffding trees
depends on the concept being learned and can be denoted as O(kavcl), where a is the number of attributes,
v is the maximum number of values per attribute, c is the number of classes, and l is the number of leaves
in the tree [10]. The weighting mechanism of OAUE increases this value by d per component for calculating
MSEt

i and c for calculating MSEt
r, which gives a total of O(kavcl+k(d+c)). Since k, d, and c are constants,

the proposed weighting scheme does not increase the space complexity compared to an ensemble without
weighting.

In contrast to representative block-based ensembles like AWE [35] or SEA [33], the proposed algorithm
does not use static batch learners to construct component classifiers and does not divide the stream into
blocks. OAUE utilizes the notion of accuracy-based weighting introduced in AWE, but it does not require a
block of d most recent examples and does not evaluate component classifiers on more than one example at
a time. Instead, OAUE processes the data stream one instance at a time and only requires each component
classifier to remember its error on the last d examples. This means that the memory used by OAUE, apart
from the memory used by component classifiers, is dictated only by the ensemble size k and number of
predictions used for weighting d and, thus, is stream-invariant. Additionally, since component classifiers are
incrementally trained after each example, OAUE is much less sensitive to the number examples between
which a new component classifier is introduced to the ensemble.

The Online Accuracy Updated Ensemble also differs from other data stream ensemble classifiers. Ensem-
ble members of OAUE are incrementally weighted and periodically removed, unlike in Online Bagging [31]
or Leveraging Bagging [2]. In contrast to ACE, OAUE does not use any drift detector or static batch learner
and does not process the stream in blocks. In comparison with Learn++.NSE [11], the proposed algorithm
incrementally trains all existing component classifiers after each example, retains only k of all the created
components, and uses a different weighting function which ensures that all components will have non-zero
weights. In contrast to DWM [21], OAUE weights components according to their prediction error, treats
the candidate classifier as a perfect learner, and its weighting function does not require any user-specified
parameters. It is also worth noting that DWM is only capable of penalizing component classifiers using a
user-specified value, while OAUE, thanks to its memory of last d component errors, can penalize or reward
components according to their mean square error.

Although weights of component classifiers in OAUE are calculated on a window of last d errors, it is
not similar to sliding window algorithms used in data stream classification. In contrast to algorithms like
ADWIN [3], OAUE does not aim at direct detection of drifts by analyzing windows of examples. We also
do not remember, weight, or select past examples like in FISH [38] or algorithms using decay functions [7].
Moreover, OAUE differs from algorithms that integrate sliding windows to calculate additional statistics to
rebuild or prune parts of a single classifier, like in CVFDT [19] and other extensions of online decision trees.
Furthermore, unlike the aforementioned extensions of single classifiers, constructing ensembles directly with
sliding windows is not so frequent [37]. In contrast to the WWH algorithm from Yoshida et al. [37], we do
not build component classifiers on overlapping windows to select the best learning examples or modify the
Weighted Majority Algorithm. Finally, in contrast to algorithms using sliding windows, OAUE periodically
reconstructs the ensemble by replacing component classifiers.
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5. Experimental evaluation

The aim of combining mechanisms known from block-based ensembles with incremental learners is to
provide accurate reactions to different types of changes. In this section, we summarize experiments conducted
during the creation and evaluation of the proposed OAUE algorithm. In the first part, we evaluate the
performance of three transformation strategies considered in Section 3. Then, we study the impact of
different elements of the OAUE algorithm and compare it with other online ensembles.

5.1. Experimental setup

In our experiments concerning transformation strategies, we evaluate four versions (the original algorithm
and the three proposed modifications) of two block-based ensembles: the Accuracy Weighted Ensemble
(AWE) [35] and the primary version of the Accuracy Updated Ensemble (AUE) [5]. Subsequently, the
proposed Online Accuracy Updated Ensemble (OAUE) is compared against four online ensembles: Online
Bagging with an ADWIN change detector (Bag) [31], Leveraging Bagging (Lev) [2], the Dynamic Weighted
Majority (DWM) [21], and the Adaptive Classifier Ensemble (ACE) [30]. The tested algorithms were
implemented in Java as part of the MOA framework [1]. We implemented the AWE and AUE algorithms
and all their modifications as well as the OAUE algorithm. DWM was implemented and published by Paulo
Gonçalves, the code of the Adaptive Classifier Ensemble was provided courtesy of Dr. Nishida and wrapped
to work with MOA, while all the remaining classifiers were already a part of MOA. The experiments were
performed on a machine equipped with an Intel Core i7-2640M @ 2.80 GHz processor and 10.00 GB of
RAM.

All the tested ensembles used k = 10 component classifiers; for AWE and ACE those classifiers were
J48 trees with default WEKA parameters, while OAUE, AUE, Bag, Lev, and DWM used Hoeffding trees
with adaptive Naive Bayes leaf predictions with a grace period nmin = 100, split confidence δ = 0.01,
and tie-threshold τi = 0.05 [10]. We decided to use ten component classifiers as using more classifiers
(tested systematically from two up to forty) linearly increased processing time and memory, but did not
notably improve classification accuracy of any of the analyzed ensemble methods. ACE was used with its
proprietary drift detector combined with a Naive Bayes classifier [30] while the AWE and AUE modifications
which used drift detectors utilized DDM [15] with a Hoeffding tree. The data block size used for AWE,
AUE, and ACE was equal d = 1000 for all the datasets as this size was considered the best suitable
for block ensembles [33, 35]. Analogously, OAUE and DWM used a window size/evaluation period of
d = 1000. The analyzed algorithms were evaluated with respect to time efficiency, memory usage, and
accuracy. All evaluation measures were periodically calculated using the prequential evaluation method [16]
with a window of d = 1000 examples and a fading factor α = 0.01. The statistical comparisons of average
values of evaluation measures in this section were performed using tests recommended in [9, 20].

As typical machine learning benchmarks, e.g. gathered in the UCI repository [13], do not contain concept
drifts, we decided to use data stream generators available in the MOA framework to construct 11 synthetic
datasets. These datasets were created using the Hyperplane [12, 35, 38], SEA [33], Random Tree, RBF,
LED, and Waveform [1] generators and were designed to include gradual, incremental, sudden, recurring,
and mixed drifts at different speeds.1

In contrast to synthetic datasets, for real-world data there is usually no precise information about the
types or moments of drift. However, we decided to additionally consider five publicly available real datasets
previously used to test the related ensemble algorithms in several papers [31, 3, 39, 32, 36]. Although for
the CovType and Poker datasets it is difficult to precisely state when drifts occur, for the remaining datasets
more information is available. In particular, the PAKDD data was intentionally gathered to evaluate model
robustness against performance degradation caused by market gradual changes and was studied by many
research teams [32]. Similarly, the Power dataset contains hourly information about a company’s power
supply and contains several concepts with identified moments of changes [36]. The main characteristics of
all the considered real and synthetic datasets are given in Table 1.

1Generator scripts and dataset links available at: http://www.cs.put.poznan.pl/dbrzezinski/software.php
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Table 1: Characteristic of datasets

Dataset #Inst #Attrs #Classes Noise #Drifts Drift type

Airlines 539 k 7 2 - - unknown
CovType 581 k 53 7 - - unknown
HyperF 1 M 10 2 5% 1 incremental
HyperS 1 M 10 2 5% 1 incremental
LEDM 1 M 24 10 30% 3 mixed
LEDND 250 k 24 10 20% 0 none
PAKDD 50 k 30 2 - - unknown
Poker 1 M 10 10 - - unknown
Power 30 k 2 24 - - mixed
RBFB 1 M 20 4 0% 2 blips
RBFGR 1 M 20 4 0% 4 gradual recurring
SEAG 1 M 3 4 10% 9 gradual
SEAS 1 M 3 4 10% 3 sudden
TreeSR 100 k 10 6 0% 15 sudden recurring
Wave 1 M 40 3 random 0 none
WaveM 500 k 40 3 random 3 mixed

5.2. Analysis of ensemble transformation strategies

We evaluate four versions (the original algorithm and the three proposed modifications) of two block-
based ensembles: the Accuracy Weighted Ensemble (AWE) and the Accuracy Updated Ensemble (AUE).
We chose AWE and AUE, because periodical component weighting is very important to the performance
of these algorithms. Moreover, AWE uses batch component classifiers while AUE has incremental compo-
nents. Tables 2–4 present average prequential accuracy, processing time, and memory usage of the proposed
transformation strategies applied on the analyzed ensemble methods. Algorithms modified using the online
evaluation, incremental candidate, and drift detector strategies are denoted with subscripts: W , C , and D

respectively.

Table 2: Average prequential accuracy of different transformation strategies [%]

AWE AWEW AWEC AWED AUE AUEW AUEC AUED

Airlines 63.64 63.26 63.44 59.53 61.80 66.72 62.57 63.15
CovType 85.70 79.92 87.34 41.97 82.97 87.57 84.60 56.45
HyperF 87.75 88.26 88.48 54.31 89.44 90.34 89.03 90.35
HyperS 77.36 84.70 80.03 74.41 86.55 88.73 86.34 88.76
LEDM 45.43 50.63 46.97 48.37 53.03 53.38 52.99 53.39
LEDND 38.46 46.42 44.13 44.94 51.42 51.42 51.42 51.44
PAKDD 80.28 80.28 79.78 79.76 80.26 80.24 80.21 80.27
Poker 79.36 74.02 80.87 51.89 60.34 75.67 67.14 62.88
Power 11.23 11.92 11.35 4.17 15.46 15.26 15.56 14.98
RBFB 95.53 95.27 95.77 64.54 97.00 97.68 96.19 97.23
RBFGR 94.81 94.25 95.08 32.30 96.19 97.26 95.54 97.22
SEAG 88.44 88.34 88.45 85.07 87.45 88.47 86.44 88.73
SEAS 88.60 88.58 88.58 83.92 88.39 89.06 87.03 89.11
TreeSR 58.62 43.49 59.15 54.04 43.05 42.26 44.88 42.21
Wave 81.61 81.71 82.82 76.09 83.06 85.46 81.78 85.55
WaveM 81.16 80.95 82.55 78.93 82.27 84.72 81.33 84.79
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Table 3: Average time required to process d = 1000 examples by different transformation strategies [s]

AWE AWEW AWEC AWED AUE AUEW AUEC AUED

Airlines 1.47 2.22 2.94 0.49 0.41 21.46 0.66 0.63
CovType 0.50 9.17 0.70 0.25 0.42 101.40 0.46 0.51
HyperF 0.49 5.87 0.48 0.26 0.81 20.16 0.33 0.42
HyperS 0.45 8.63 0.51 0.13 0.76 24.83 0.24 0.28
LEDM 0.19 25.82 0.75 0.17 0.30 69.83 0.24 0.29
LEDND 0.44 20.45 0.90 0.20 0.78 87.33 0.25 0.29
PAKDD 6.43 45.66 6.51 3.93 0.48 8.23 0.39 0.33
Poker 0.41 20.08 0.46 0.05 0.07 25.89 0.09 0.12
Power 0.36 36.07 0.37 0.07 0.20 55.62 0.22 0.28
RBFB 0.58 7.69 0.70 0.09 0.56 78.58 0.58 0.59
RBFGR 0.65 9.97 0.73 0.10 0.70 75.19 0.73 0.82
SEAG 0.18 2.70 0.34 0.11 0.12 7.08 0.12 0.13
SEAS 0.31 2.73 0.31 0.10 0.31 5.90 0.20 0.23
TreeSR 0.48 14.77 0.56 0.16 0.37 43.63 0.27 0.40
Wave 0.79 5.84 1.02 0.49 7.45 107.05 2.81 3.28
WaveM 0.91 6.62 1.13 0.16 0.94 142.76 0.87 0.98

Table 4: Average ensemble memory usage for different transformation strategies [MB]

AWE AWEW AWEC AWED AUE AUEW AUEC AUED

Airlines 10.08 7.45 11.31 8.62 1.10 81.61 1.95 7.26
CovType 6.09 6.13 6.15 4.25 1.55 2.22 1.60 0.78
HyperF 2.43 2.47 2.50 6.59 1.85 1.99 1.88 6.39
HyperS 2.57 2.61 2.66 3.22 2.18 2.25 2.19 2.94
LEDM 5.44 5.48 5.83 4.90 0.25 0.49 0.29 1.84
LEDND 7.10 7.13 7.53 5.47 0.25 0.51 0.29 0.96
PAKDD 26.16 26.20 26.17 11.31 1.60 2.76 1.60 2.10
Poker 2.45 2.49 2.51 0.45 0.14 0.75 0.16 0.34
Power 10.01 10.01 11.03 0.19 0.10 0.16 0.11 0.19
RBFB 3.18 3.26 3.24 1.93 5.84 6.37 5.88 6.60
RBFGR 3.23 3.29 3.30 1.81 7.78 9.91 7.82 10.58
SEAG 1.52 1.55 1.55 1.81 1.62 1.70 1.63 1.88
SEAS 1.50 1.54 1.54 1.91 3.13 3.21 3.14 3.60
TreeSR 3.45 4.10 3.67 2.51 2.20 2.65 2.25 3.12
Wave 5.06 5.10 5.15 8.70 41.69 40.64 41.74 51.40
WaveM 5.05 5.08 5.13 4.01 6.69 6.78 6.74 9.26

Comparing the performance of AWE and its first modification, AWEW , we can see that the windowing
technique seems to improve classification accuracy only on certain datasets. Moreover, the improvement
comes at the cost of much higher processing time, which is a direct result of testing the classifier with a
window of examples to recalculate component weights after each processed instance. The second modifi-
cation, AWEC , increases accuracy on practically all the datasets and does not require so much additional
processing time. Finally, the classification accuracy of the AWED modification seems to show that a simple
addition of a drift detector is not sufficient to improve reactions on sudden drifts while not deteriorating
the ensemble’s ability to react to gradual changes. All the modifications have similar memory requirements
to AWE, with AWED showing higher variance depending on the number of detected drifts. The differences
between accuracies of the analyzed algorithms were verified to be statistically significant by performing the
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Friedman test at p = 0.05. Furthermore, by performing a series of Wilcoxon tests it was confirmed that
AWEC increases (pC = 0.002) while AWED deteriorates (pD = 0.002) the accuracy of AWE.

Looking at the results of AUE and its modifications we can see trends slightly different than those
observed in AWE. The AUEW modification improves classification accuracy much more than AWEW but
at higher processing costs. As AUEW updates existing component classifiers it can grow larger component
Hoeffding trees, which require more time to test on a window of examples. Thus, the windowing technique
is much more time consuming when used to modify AUE than it was on AWE. The additional incremental
classifier, present in AUEC , allows to improve AUE’s accuracy on fast changing datasets such as TreeSR,
CovType, Poker, and Power, but does not seem to be so useful on slower changing data. This is probably
the effect of using a static (maximum) weight for the incremental candidate; in AWE which uses a linear
weighting function it had a stronger impact than in AUE which uses a nonlinear quality measure (the
difference between using a linear and nonlinear function will be discussed in Section 5.3). Nevertheless, the
use of an additional incremental component gives comparable or better accuracy than the original AUE at
very small time and memory costs. Finally, the use of a drift detector with AUE proves more rewarding than
its addition to AWE. Since, in contrast to AWE, AUE’s components can be incrementally updated after a
drift is detected, AUED manages to build strong component classifiers while AWE is left with weak learners
after each drift. This seems to show that when combined with periodical incremental component updates
a drift detector can enhance sudden drift reactions without degrading performance on gradual changes.
As Table 2 shows, accuracies of AUE and its modifications are generally higher than AWE’s which could
also be caused by incremental updating of component classifiers. Concerning classification accuracies of
the modifications of AUE, the null hypothesis of the Friedman test can be rejected at p = 0.05, while the
Wilcoxon test shows that AUEW and AUED significantly increase (pW = 0.001, pD = 0.01) the accuracy of
AUE.

According to the presented results, online component reweighting is the best transformation strategy in
terms of accuracy. Unfortunately, it is also the most costly strategy in terms of processing time. Additionally,
we have noticed that elements of incremental learning also improve classification accuracy. These findings
were our motivation for creating an online ensemble, which uses incremental base learners and performs
online component reweighting, but without additional processing costs.

5.3. Analysis of OAUE components

As in block-based ensembles the block size is a parameter which largely influences the accuracy of the
ensemble [35], we decided to verify the impact of using different block (and simultaneously window) sizes d
for calculating the mean square error (MSEt

i , MSEt
r) in OAUE. Table 5 presents the average prequential

accuracy of OAUE on different datasets while using d ∈ [500; 2000]. Additionally, in Figure 1 we present
three box plots summarizing the differences in accuracy, memory usage, and testing time of OAUE for
different window sizes. The plots were created by, first calculating the mean performance value on each
dataset over all window sizes, and later calculating and plotting the differences between the mean and the
value obtained for a certain d. For example, for the Airlines dataset the mean value of average accuracies
for all d ∈ [500; 2000] is 66.83%, therefore, the deviation for OAUE with d = 500, which has an average
accuracy on Airlines equal 67.50, is +1.00%.

Analyzing the values in Table 5, one can see that differences in each row are small and no global
dependency upon d can be seen. Furthermore, the box plot in Figure 1(a) shows that most values are within
1% from the mean value on each dataset. Conversely, clear tendencies are visible on the plots of time and
memory usage in Figures 1(b) and (c). The larger the window size, the longer and more memory consuming
the classification. This dependency is an effect of creating each new classifier using d examples. When d
grows, so does each candidate classifier, which means higher time and memory requirements.

Performing a Friedman test on the calculated deviations for d ∈ [500; 2000] we obtain FFAcc
= 2.183,

FFMem
= 34.594, and FFTime

= 3.857 for accuracy, memory usage, and evaluation time, respectively. As
the critical value for α = 0.05 is 2.201, we reject the null-hypothesis for memory and time, but not for
accuracy. According to the Friedman test, we can state that there is a difference in average processing time
and memory usage for different values of d, but concerning accuracy there is no significant difference. As
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Table 5: Average classification accuracy [%] of OAUE using different window sizes d

Window size

500 750 1000 1250 1500 1750 2000

Airlines 67.50 66.93 67.03 67.12 66.72 66.33 66.23
CovType 90.07 90.85 90.91 91.08 91.43 91.51 91.58
HyperF 90.55 90.43 90.42 90.26 90.30 90.24 90.19
HyperS 89.05 89.04 88.94 89.00 88.98 88.92 88.97
LEDM 53.40 53.40 53.38 53.24 52.65 52.40 52.38
LEDND 51.54 51.48 51.40 51.39 51.35 51.27 51.28
PAKDD 80.24 80.23 80.23 80.20 80.20 80.20 80.17
Poker 81.54 87.92 88.87 90.18 90.81 92.01 92.65
Power 15.73 15.58 15.54 15.34 15.27 15.23 14.87
RBFB 96.78 97.59 97.83 97.84 97.96 98.00 97.90
RBFGR 96.69 97.27 97.38 97.46 97.56 97.53 97.43
SEAG 88.95 88.85 88.81 88.79 88.70 88.67 88.62
SEAS 89.41 89.32 89.31 89.28 89.23 89.22 89.15
TreeSR 46.23 46.05 45.86 45.21 44.39 43.66 43.28
Wave 84.34 85.25 85.47 85.58 85.53 85.50 85.49
WaveM 83.86 84.75 84.85 84.87 84.86 84.73 84.66

-8 %

-6 %

-4 %

-2 %

0 %

2 %

4 %

6 %

500 750 1000 1250 1500 1750 2000

d
e
v
ia

ti
o
n
 f

ro
m

 a
v
e
ra

g
e
 p

re
q
u
e
n
ti
a
l 
a
c
c
u
ra

c
y

window size

-100 %

-50 %

0 %

50 %

100 %

150 %

500 750 1000 1250 1500 1750 2000

d
e
v
ia

ti
o
n
 f

ro
m

 a
v
e
ra

g
e
 m

e
m

o
ry

 u
s
a
g
e

window size

-100 %

-50 %

0 %

50 %

100 %

150 %

200 %

500 750 1000 1250 1500 1750 2000

d
e
v
ia

ti
o
n
 f

ro
m

 a
v
e
ra

g
e
 t

e
s
ti
n
g
 t

im
e

window size

(a) (b)

(c)

Figure 1: Box plot of average prequential accuracy (a), memory usage (b), and testing time (c) for window sizes d ∈ [500; 2000].
The depicted values are the percentage deviation from the average on each dataset.
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there is no strong dependency upon d in terms of accuracy, but time and memory are proportional, we
decided to use d = 1000 as the value with least outliers and relatively low time and memory consumption.

Apart from studying the influence of d, we performed another analysis concerning the impact of us-
ing different functions for weighting OAUE’s components. The experiments involved calculating average
prequential accuracies for all test datasets using a nonlinear (wt

NL = 1

MSEt
r+MSEt

i+ǫ
) and linear function

(wt
L = max{MSEt

r −MSEt
i , ǫ}). The results, omitted due to space limitations, showed that both func-

tions performed almost identically on most datasets, with the linear function performing slightly better on
datasets with very frequent changes and the nonlinear function being more accurate on datasets with noise
and longer periods of stability. This dependency can be explained by analyzing component weights during
a concept drift. A practical example of such a situation is depicted in Figure 2 were proportional weight
values of ten components are depicted for OAUE using wt

NL (a) and wt
L (b).
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(a)                Nonlinear weighting function                              (b)                   Linear weighting function

Figure 2: Percentage component weight proportions of OAUE with a nonlinear weighting function (a) and OAUE with a linear
weighting function (b)

As Figure 2 shows, compared with the nonlinear function, the linear function introduces larger propor-
tional weight changes after each example. This can have the effect of faster reactions to changes, but means
that using wt

L the algorithm is more sensitive to noise. We performed a Wilcoxon signed rank test to com-
pare the accuracy of OAUE using wt

NL and wt
L. For α = 0.05, we were unable to reject the null-hypothesis

and, therefore, we cannot see differences in using wt
NL or wt

L. In the comparative study presented below,
we tested OAUE with the nonlinear function, as presented in Section 4. However, it is worth noting that
using the presented linear function would yield a practically identical comparison with identical ranks for
the Friedman test presented in Table 9.

5.4. Comparison of OAUE and other ensembles

To evaluate the OAUE algorithm, we performed an experimental comparison involving four online en-
sembles: Online Bagging (Bag), Leveraging Bagging (Lev), the Dynamic Weighted Majority (DWM), and
the Adaptive Classifier Ensemble (ACE). Online Bagging and Leveraging Bagging were chosen as strong
representatives of online ensembles, DWM was selected because it periodically evaluates an ensemble and
incrementally changes component weights, and ACE represents a processing scheme with a drift detector
similar to the third of the proposed modification strategies. It is worth pointing out that ACE is an al-
gorithm that was ported and not originally written for the MOA framework. This means that ACE used
different base classes and its time and memory usage measured by MOA are not fully comparable with the
remaining algorithms. Additionally, on the Wave, WaveM , and PAKDD datasets which contain a large number
of attributes, ACE exceeded available memory and was unable to process the entire stream, while on other
datasets ACE showcased very low memory usage. This only confirms that the memory usage calculated
by MOA for ACE was underestimated and, therefore, we do not present memory usage of ACE. Average
prequential accuracy, memory usage, and processing time for all algorithms is given in Tables 6-8.
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Table 6: Average prequential classification accuracies [%]

ACE DWM Lev Bag OAUE

Airlines 64.89 64.98 62.84 64.24 67.02

CovType 69.60 89.87 92.11 88.84 90.98
HyperF 84.28 89.94 88.49 89.54 90.43

HyperS 79.59 88.48 85.43 88.35 88.95

LEDM 46.75 53.34 51.31 53.33 53.40

LEDND 39.88 51.48 49.98 51.50 51.48
PAKDD - 80.24 79.85 80.22 80.23
Poker 79.83 91.29 97.67 76.92 88.89
Power 18.57 15.45 16.84 15.96 15.73
RBFB 84.62 96.00 98.22 97.87 97.87
RBFGR 83.78 95.49 97.79 97.54 97.42
SEAG 85.91 88.39 89.00 88.36 88.83
SEAS 86.00 89.15 89.26 88.94 89.33

TreeSR 43.20 42.48 47.88 48.77 46.04
Wave - 84.02 83.99 85.51 85.50
WaveM - 83.76 83.46 84.95 84.90

Additionally, we generated graphical plots for each dataset depicting the algorithms’ performance in
terms of processing time, memory usage, and classification accuracy. Such graphical plots are a common
way of examining the dynamics of a given classifier, in particular, its reactions to concept drift [11, 2]. Due
to space limitations we will only analyze the most interesting accuracy and memory plots, which highlight
characteristic features of the studied algorithms.
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Figure 3: Prequential accuracy on the HyperF dataset
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Figure 4: Memory usage on the HyperF dataset

Figures 3 and 4 present the prequential accuracy and memory usage of the analyzed algorithms on the
HyperF dataset, which contains fast incremental drift. The two best performing algorithms for this dataset
were OAUE and DWM, which seem to react better to incremental changes than ACE, Lev, and Bag. The
characteristic feature of DWM and OAUE is that they periodically change ensemble members, while the
remaining three algorithms do that only when drift is detected. Similar behavior was observed in accuracy
plots for the HyperS dataset, which contains a slow incremental drift. Looking at the memory plot in
Figure 4, we can see that Lev requires much more memory than the remaining algorithms, Bag is second,
while OAUE and DWM are the least memory expensive. This observation was consistent among most
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Table 7: Average memory usage [MB]

ACE DWM Lev Bag OAUE

Airlines - 86.26 63.73 60.27 89.90
CovType - 8.27 6.75 1.19 3.09
HyperF - 4.37 63.41 7.19 3.23

HyperS - 4.24 110.11 6.31 2.87

LEDM - 0.61 1.76 2.56 0.32

LEDND - 0.41 0.98 1.32 0.32

PAKDD - 3.16 38.26 6.24 3.39
Poker - 2.25 4.62 0.17 2.18
Power 0.30 0.09 0.11 0.11 0.18
RBFB - 6.36 60.21 13.07 8.03
RBFGR - 6.22 52.94 13.15 11.06
SEAG - 1.73 31.05 4.06 1.45

SEAS - 1.32 67.33 7.32 2.66
TreeSR - 1.81 3.75 1.10 2.28
Wave - 6.18 480.29 69.71 50.63
WaveM - 6.42 190.03 26.16 12.29

Table 8: Algorithm testing time per d = 1000 examples [s]

ACE DWM Lev Bag OAUE

Airlines 0.04 2.50 11.20 2.64 4.22
CovType 0.22 0.49 2.84 0.35 0.40
HyperF 0.25 0.21 3.90 0.89 0.22
HyperS 0.26 0.20 9.16 0.38 0.20

LEDM 0.09 0.14 0.75 0.21 0.15
LEDND 0.08 0.16 0.27 0.18 0.15
PAKDD - 0.28 9.83 0.85 1.01
Poker 0.03 0.10 1.29 0.06 0.18
Power 0.19 0.11 0.24 0.15 0.12
RBFB 0.62 0.30 11.36 0.75 0.59
RBFGR 0.61 0.31 7.79 0.86 0.70
SEAG 0.05 0.08 5.97 0.23 0.09
SEAS 0.04 0.07 7.94 0.48 0.14
TreeSR 0.25 0.17 0.62 0.17 0.61
Wave - 0.48 33.65 5.04 2.97
WaveM - 0.46 33.46 1.63 1.05

memory plots. It is also worth noticing that OAUE is one of the fastest of the analyzed algorithms and,
in contrast to the analyzed online evaluation strategy from Section 3.2, does not introduce any additional
processing cost compared to its block-based predecessor AUE.

For streams with gradual drifts (RBFGR and SEAG) the best performing algorithm is Lev, with OAUE and
Bag being close second. However, Lev is also the slowest and most memory consuming algorithm on these
datasets, requiring on an average 13 times more memory and 38 times more processing time than OAUE.
Figure 5 presents the accuracies of the analyzed algorithms on the RBFGR dataset. Gradual drifts created
around examples number 125, 250, 375, 500k have the worst impact on DWM and ACE. ACE uses static
batch learners and, therefore, is not capable of reacting quickly to gradual changes. DWM on the other
hand is probably performing slightly worse because it uses a penalty function which strongly diminishes
component weights during prolonged drifts.
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Figure 5: Prequential accuracy on the RBFGR dataset

Depending on the frequency of drifts, the best performing algorithms for streams with sudden changes
were OAUE and Bag. For rare abrupt changes, such as in the SEAS dataset, OAUE suffered the smallest
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accuracy drops. However, for very fast changes present in the TreeSR stream, algorithms with drift detectors,
such as Lev and Bag, perform much better in terms of accuracy. What is worth noting is that using OAUE
with a linear weighting function (as presented in Section 5.3) would yield an accuracy of 49.68%, which
would be the best result for this dataset. This shows that for very dynamic changes either drift detectors
or very drastic component weight modifications are required to adapt in time.

On datasets with no drift (LEDND), with drifting attribute values (Wave, WaveM ) or added noise (LEDM ,
RBFB), OAUE, Bag, and DWM perform almost identically, with Lev and ACE being slightly less accurate.
On real datasets, in terms of accuracy, there is no single best performing algorithm. On Poker Lev clearly
outperforms all the other algorithms. On CovType, Lev is the most accurate followed by OAUE, while on
PAKDD all the algorithms perform almost identically. On the other hand, OAUE is the most accurate on the
Airlines dataset, while ACE is the best on Power.

To conclude the analysis, we carried out statistical tests for comparing multiple classifiers over multiple
datasets. We used the non-parametric Friedman test, for which the null-hypothesis is that there is no
difference between the performance of all the tested algorithms. Moreover, in case of rejecting this null-
hypothesis we use the Bonferroni-Dunn post-hoc test [9, 20] to verify whether the performance of OAUE
is statistically different from the remaining algorithms. The average ranks of the analyzed algorithms are
presented in Table 9 (the lower the rank the better).

Table 9: Average algorithm ranks used in the Friedman tests

ACE DWM Lev Bag OAUE

Accuracy 4.50 2.94 2.75 2.75 2.06

Memory - 1.81 3.56 2.63 2.00
Testing time 2.50 1.81 4.81 3.19 2.69

By using the Friedman test to verify the differences between accuracies, we obtain FFAcc
= 7.248. As the

critical value for comparing 5 algorithms over 16 datasets for α = 0.05 is 2.525, the null hypothesis can be
rejected. Considering accuracies, OAUE provides the best average achieving usually 1st or 2nd rank on each
dataset. To verify whether OAUE performs better than the remaining algorithms, we compute the critical
difference chosen by the Bonferroni-Dunn test [9, 20] as CD = 1.396. This allows us to state that OAUE
is significantly more accurate then ACE, but concerning the remaining algorithms the experimental data
is not sufficient to reach such a conclusion. However, by performing additional one-tailed Wilcoxon signed
rank tests for comparing pairs of classifiers, we can state that OAUE is more accurate than DWM with
pDWM = 0.004. The p-value for stating that OAUE is more accurate than Bag and Lev are pBag = 0.089
and pLev = 0.163 respectively. Overall, the conducted experiments seem to support our observation that
in terms of accuracy OAUE is not only comparable to other systems in the literature, but in most cases
achieves better performance.

Performing a similar analysis for memory usage and processing time we get FFMem
= 6.793 and FFTime

=
15.476 respectively, which allows us to reject the null-hypothesis in both cases. Analyzing the CD and by
performing Wilcoxon tests we can state that OAUE is significantly faster than Lev (pLev = 0.0002) and less
memory consuming than Lev and Bag (pLev = 0.001, pBag = 0.022).

6. Conclusions

In this paper, we studied the problem of integrating weighting mechanisms and periodical component
evaluations, known from block ensembles, into online classifiers for mining concept drifting data streams.
First, we analyzed which methods for transforming block-based ensembles into online learners are most
promising in terms of classification accuracy and computational costs. We proposed three general transfor-
mation strategies: an online evaluation technique, the introduction of an incremental learner, and the use
of a drift detector. Experimental evaluation of these strategies showed that incremental training combined
with online component reweighting were most beneficial in terms of accuracy. However, the analyzed online
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reweighting strategy, which used a sliding window of examples, suffered from high time and memory costs
due to excessive processing of full examples.

Based on these findings, we proposed a new incremental stream classifier, called Online Accuracy Updated
Ensemble (OAUE), which trains and weights component classifiers with each incoming example. The main
novelty of the OAUE algorithm is the proposal of a cost-effective component weighting function, which
estimates a classifier’s error on a window of last seen instances in constant time and memory without the
need of remembering past examples.

We also carried out experimental studies analyzing the effect of using different window sizes and functions
for evaluating component classifiers. The obtained results showed that the accuracy of the proposed algo-
rithm did not change depending on the window size, but larger windows induced higher time and memory
costs. Concerning different error-based weighting functions, we have found that linear functions performed
better on fast drifting streams, but nonlinear functions were more robust to noise.

Finally, we experimentally compared OAUE with four representative online ensembles: the Adaptive
Classifier Ensemble, Dynamic Weighted Majority, Online Bagging, and Leveraging Bagging. The obtained
results demonstrated that OAUE can offer high classification accuracy in online environments regardless
of the existence or type of drift. OAUE provided best average classification accuracy out of all the tested
algorithms and was among the least time and memory consuming. As future work, we plan to investigate
the problem of introducing additional diversity to online component learning.
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tations of the Adaptive Classifier Ensemble and Learn++.NSE algorithms. This work was partly supported
by the Polish National Science Center under Grant No. DEC-2011/03/N/ST6/00360.

References

[1] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: Massive Online Analysis, J. Mach. Learn. Res. 11 (2010) 1601–1604.
[2] A. Bifet, G. Holmes, B. Pfahringer, Leveraging bagging for evolving data streams, in: ECML/PKDD (1), 2010, pp.

135–150.
[3] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, R. Gavaldà, New ensemble methods for evolving data streams, in: Proc.
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