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Abstract. The nearest neighbor classifier is a powerful, straightforward,
and very popular approach to solving many classification problems. It
also enables users to easily incorporate weights of training instances into
its model, allowing users to highlight more promising examples. Instance
weighting schemes proposed to date were based either on attribute values
or external knowledge. In this paper, we propose a new way of weight-
ing instances based on network analysis and centrality measures. Our
method relies on transforming the training dataset into a weighted signed
network and evaluating the importance of each node using a selected cen-
trality measure. This information is then transferred back to the train-
ing dataset in the form of instance weights, which are later used during
nearest neighbor classification. We consider four centrality measures ap-
propriate for our problem and empirically evaluate our proposal on 30
popular, publicly available datasets. The results show that the proposed
instance weighting enhances the predictive performance of the nearest
neighbor algorithm.

Keywords: classification, instance weighting, nearest neighbors, net-
work analysis, centrality measures

1 Introduction

Instance weighted classification enables data analysts to specify the importance
of each training example in order to steer the learning process towards more
promising instances. The weights can either be assigned manually by an expert
or automatically as a result of some additional process. For these weights to
be used by a classifier, it has to possess a certain structure, as not all learning
schemes are designed to incorporate weights. One type of learners which has a
very straightforward way of using weights is the nearest neighbor classifier [1].
In this method, the class prediction for each new example is based on the classes
of the most similar training instances, so instance weights can directly influence
the model’s predictions.

A domain in which instance weights also play a significant role is network
analysis, where the importance of nodes is assessed by centrality measures [2]. As
network analysis focuses on relations between nodes rather than their individual
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characteristics, centrality measures carry the information about the importance
of each node based on its position in the network. Clearly, such information
is absent in non-network data where the information about the topology of
relationships between nodes is missing.

In this paper, we show how to incorporate network centrality measures into
instance-weighted nearest neighbor classification of non-network data. This pro-
cess consists of three main steps. The first step is the transformation of data into
a network using a distance measure and a nearest neighbor approach, so that
each node in the network corresponds to one training example and the differences
in classes between nodes are expressed as signs of their connections (positive — if
from the same class, negative — otherwise). The second step is the assessment of
importance of each node in the network. This goal is achieved using one of several
centrality measures capable of processing negative ties which we discuss in this
paper. The final step is incorporating the centrality values as instance weights
into the nearest neighbor classification algorithm. The experiments conducted
on 30 datasets show that our weighted nearest neighbor algorithm surpasses the
non-weighted version in terms of predictive performance.

In particular, the main contributions of this paper are as follows.

– We propose an automatic instance-weighting algorithm for the nearest neigh-
bor classifier based on network centrality measures.

– We illustrate how to transform a non-network dataset into a network format.
– We discuss several centrality measures and select those which are suitable

for instance weighted classification.
– We evaluate our algorithm by performing an experiment involving classifi-

cation of 30 popular, publicly available datasets.

2 Related Work

The k-nearest neighbors classifier was first proposed by Fix and Hodges in
1951 [1], and has been gaining popularity ever since. In 1976, Dudani [3] proposed
a version which weighted the votes of the neighbors according to their distance to
the classified example. This method was further refined by Gou et al. [4], where
the authors address the problem of sensitivity w.r.t. parameter k. Recently, Sam-
worth [5] proposed an optimal (under certain assumptions) weighting function
for nearest neighbor classification of examples with continuous attributes. This
approach is based on the ranked similarity of neighbors and is able to automati-
cally select the value of k. These proposals compute the weights based either on
attributes or some distance function, but do so dynamically adjusting neighbor
weights for each testing example. In contrast, to the best of our knowledge, our
proposal is a first attempt to calculate static weights for each training instance
based on network analysis.

Network analysis has been a hot research topic for several years now. The
area of particular interest to scientists in this field has been the assessment of
the importance of nodes in the network. This goal can be achieved using one
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of many centrality measures proposed to date [6]. Standard measures, like de-
gree [2], betweenness [2], closeness [2], clustering coefficient [7], or eigenvector [8]
centrality, or measures of influence, like Katz [9] or Bonacich [10] centrality, are
widely adopted in general network analysis. However, they are designed for uni-
modal networks (i.e., networks in which all nodes belong to the same category),
whereas in this paper we consider multi-modal networks with nodes belonging
to multiple categories (where each category corresponds to a single class). Con-
sidering the fact that we are expressing the differences in classes between nodes
as signs of the weights of their connections, we also have to discard measures
designed for networks with exclusively negative ties, like negative degree [11] or
h∗ centrality [11]. Consequently, we are focusing on measures designed for signed
and weighted networks: modified degree, modified clustering coefficient [12], sta-
tus [13], and PN [11], which will be described in Section 3.

3 Centrality-weighted Nearest Neighbors

Given a dataset of training examples D = {(x1, y1), (x2, y2), ..., (xn, yn)}, where
xi = (xi1, xi2, ..., xim) is a vector of attribute values and yi ∈ Y is a class label,
the task of a classifier is to assign each new unlabeled example x̂ to one of the
predefined classes ŷ ∈ Y. In case of the nearest neighbor classifier, each new
example x̂ is classified according to the majority voting of a subset of training
examples Nx̂ ⊆ D that are closest to x̂, called nearest neighbors of x̂:

ŷ = argmax
y∈Y

∑
(xi,yi)∈Nx̂

I(yi = y), (1)

where I(p) equals 1 if predicate p is true and 0, otherwise. The instances can
also be weighted, in which case instead of counting examples in each class we
simply sum their weights, so the formula from Eq. (1) becomes:

ŷ = argmax
y∈Y

∑
(xi,yi)∈Nx̂

I(yi = y)wi, (2)

where wi is the weight of the i-th training example. Notice that if wi = 1 for
all training examples (xi, yi) ∈ D, the formulas for weighted and unweighted
classifiers are equivalent.

The nearest neighbors of x̂ are selected according to some distance function ∆
defined on the examples (e.g., euclidean distance). The selection can be carried
out in several ways. Common approaches include: choosing k nearest examples
(where k is a user-defined value), known as the k-nearest neighbors approach
(knn); using only a single closest example (a variant of knn with k = 1), known
as 1-nearest neighbor (1nn); selecting all examples within a user-defined distance
range. In this paper, we will use the most popular knn approach with instance
weighting as presented in Eq. (2). We will refer to this algorithm as the weighted
k-nearest neighbors classifier (wknn).
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Let us now define the distance between two examples xi and xj , which we will
use to select the nearest neighbors. For this purpose, we will use a measure that is
capable of comparing instances on both numerical and categorical attributes [14].
Given that xil is the value of the l-th attribute in example xi, the distance δ
between two corresponding attribute values xil, xjl of examples xi and xj is
defined as follows:

δ(xil, xjl) =

{
|xil − xjl| attribute l is numerical

I(xil 6= xjl) attribute l is categorical.

Assuming that δN gives normalized (rescaled to 〈0, 1〉) values of δ, we define the
distance ∆ between two examples xi, xj as an average normalized distance over
all attributes:

∆(xi,xj) =
1

m

m∑
l=1

δN (xil, xjl), (3)

where m is the number of attributes.
With all parts of the weighted k-nearest neighbors classifier introduced, let

us now describe the proposed process of calculating weights based on central-
ity measures. The process takes a training dataset D as input and outputs a
vector of weights w where each weight wi corresponds to one training example
(xi, yi) ∈ D. Conceptually, this process consists of three steps: 1) transformation
of the input dataset into a network so that each training example is represented
by a single node, 2) calculating a selected network centrality measure for each
node, 3) assigning the calculated centrality values as instance weights to training
examples corresponding to the nodes. This procedure is illustrated in Fig. 1.
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Fig. 1: The process of transforming a dataset into a weighted, signed network
(using knn graph with kg = 2), calculating the degree measure, and using the
values as weights of instances. Dashed circles represent class C1, solid circles C2.

In order to transform the dataset D into a network, we use an approach
inspired by the k-nearest neighbors classifier — the knn graph. First, we calculate
the distances between all training examples according to Eq. (3). Next, each
training example (xi, yi) ∈ D becomes a node in the network and is connected
with kg other examples which are closest to it. These connections form directed
edges in the network, starting at a given node and ending at its nearest neighbors.
As the distances between examples carry potentially valuable information for
further processing, we want to include this information in the network in the
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form of edge weights. However, because in network analysis edges represent the
strength of connections, first, we need to convert the distances into similarities.
To achieve this goal, we use a common conversion method [14] and rescale values
back to 〈0, 1〉, defining the similarity between two examples xi, xj as:

sN (xi,xj) =
1−∆(xi,xj)

1 +∆(xi,xj)
.

Finally, as each node in the network corresponds to a training example of a
certain class, we express this information in the network by adding a sign for
each edge. The weight of an edge is positive if the adjacent nodes correspond to
training examples from the same class, and negative, otherwise. This gives us
the final edge weight between two training examples as:

ω(xi,xj) = sN (xi,xj)(2I(yi = yj)− 1). (4)

After this process is complete, we obtain a network expressed as a graph G =
〈V, E〉 in which V is a set of nodes, where each node vi ∈ V corresponds to one
training example xi, and E is a set of edges, where each edge (vi, vj , wij) ∈ E
represents a connection (tie) from node vi to node vj with weight wij . The graph
is represented with two matrices: adjacency matrix A, where each element Aij

denotes an edge directed from node vi to vj , and weight matrix W, where each
element Wij denotes the weight of edge Aij . Fig. 1 presents an example of a
complete transformation from a training dataset to a network with directed,
weighted, and signed ties.

After constructing the network, a selected centrality measure is calculated
for every node. Since centrality values will be used as instance weights in wknn
classification, the measure has to take into account the signs of the edges. Con-
sequently, one can choose between four different centrality measures: degree,
clustering coefficient [12], status [13], and PN [11].

Degree centrality is a classical measure which can be easily adapted to
weighted, signed networks. Originally, for a given node vi, degree centrality di is
calculated as the number of its connections. In weighted and signed networks it
simply becomes a sum of all connection weights of a given node:

di =

|V|∑
j=1

Wji. (5)

Because we are interested in the importance of an instance from the perspective
of other instances, we only take into account the in-degree of each node.

Clustering coefficient is another classical centrality measure which calculates
the level of connectedness of a node’s nearest neighborhood. For node vi ∈ V,
clustering coefficient is the ratio of the number of edges between the nodes which
are connected with vi to the number of all possible edges between them. In
unweighted and unsigned networks, clustering coefficient ci of node vi is usually
calculated according to the Watts and Strogatz definition [7]:

ci =

∑|V|
j,k=1 (AijAikAjk)

ki(ki − 1)
,
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where ki is the degree of node vi. Several versions have been proposed for
weighted and signed networks [12], however, given the special meaning of edge
signs in our problem, we propose the following definition:

ci =

∑|V|
j,k=1 [(Wij +Wik +Wjk)(AijAikAjk)]

3ki(ki − 1)
. (6)

The measure produces values between −1 (if all nodes in the neighborhood
are fully connected and belong to different classes) and 1 (if all nodes in the
neighborhood are fully connected and belong to the same class as node vi).

Status [13] is a modification of the eignevector centrality, which measures
the relative importance of a node w.r.t. the importance of its adjacent nodes
using a recursive definition of importance (a node is important if it is adjacent
to important nodes). In order to approximate the value of the status measure
we rely on the power iteration method defined as follows:

sl =
Wsl−1

max(Wsl−1)
, (7)

where sl is a vector of statuses for all nodes in iteration l > 0 and s0 = 1.
Finally, PN [11] is a measure designed specifically for networks with signed

ties and is defined as follows:

pn =

(
I− 1

2|V| − 1
M

)−1
1. (8)

In the equation, pn is a vector of PN values for all nodes and M = P−2N, where
P and N denote two matrices containing positive and negative ties, respectively.

In the following section, we experimentally verify the predictive performance
of wknn with instances weighted according to the described centrality measures.

4 Experiments

4.1 Experimental Setup

The goal of this paper is to assess the effect of centrality instance weighting on
the predictive performance of the nearest neighbor classifier. For this purpose,
we compare the knn classifier with instances weighted:

– identically (equivalent of unweighted knn; uniform),
– randomly according to a uniform distribution between 0 and 1 (random),
– using clustering coefficient (cluster),
– based on the in-degree (degree),
– based on PN (PN),
– using status (status),
– using the centrality measure with the highest validation score (bestCV).
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The first two approaches serve as baselines of traditional (unweighted) knn and
random instance weighting; the remaining approaches test the usefulness of the
proposed data transformation and centrality measures.

To test the proposed solution we first divided each dataset into a training set
and a holdout test set consisting of 50% of the original data. Next, we performed
5×2-fold cross-validation [15] on the training set to select the best k for knn. This
way, we tune knn on each dataset to have the best possible performance without
instance weighting and make the comparison more challenging. After setting
k for each dataset, we performed 5 × 2-fold cross-validation on the training set
once again, but this time to select the kg parameter used to create the knn graph
for each centrality measure. During parameter tuning, we additionally highlight
the centrality measure that achieved the best mean cross-validation score as
bestCV. Finally, each model was evaluated on a holdout test set.1 Fig. 2 depicts
the experimental procedure.

Training set Testing set

Training Validation

TrainingValidation

Shuffled and repeated 5 times

Select best k  for knn

Select best parameters 
for each centrality measure

Select best centrality 
measure as best CV

Evaluate model

Fig. 2: Experimental procedure.

Model selection as well as evaluation on the test set were performed using
the κ statistic [15]. In the context of classification, the κ statistic (or Cohen’s
κ) compares the accuracy of the tested classifier with that of a chance classifier:
κ = p0−pc

1−pc
, where p0 is the accuracy of the tested classifier and pc is the accuracy

of a chance classifier [15]. The κ statistic can achieve values from (−∞; 1], where
zero means that the tested model is no better than a chance classifier and values
above/below zero indicate how much better/worse the model performs compared
to chance. We selected κ as the evaluation measure in this study, because it is
suitable for datasets that suffer from class-imbalance and can be applied to
binary as well as multi-class problems.

4.2 Datasets

In our experiments, we used 30 datasets with various numbers of classes, imbal-
ance ratios, and containing nominal as well as numeric attributes. All of the used
datasets are publicly available through the UCI machine learning repository [16].
Table 1 presents the main characteristics of each dataset.

1 Source code in R and reproducible test scripts available at: http://www.cs.put.

poznan.pl/dbrzezinski/software.php

http://www.cs.put.poznan.pl/dbrzezinski/software.php
http://www.cs.put.poznan.pl/dbrzezinski/software.php
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Table 1: Characteristic of datasets

Dataset Inst. Attr. Classes Dataset Inst. Attr. Classes

balance-scale 625 4 3 monks-1 556 6 2
breast-cancer 699 9 2 monks-2 601 6 2
car-evaluation 1,728 6 4 monks-3 554 6 2
cmc 1,473 9 3 pima 768 8 2
credit-screening 690 15 2 promoters 106 57 2
dermatology 366 34 6 sonar 208 60 2
ecoli 336 7 8 spect 267 22 2
glass 214 9 6 statlog-australian 690 14 2
haberman 306 3 2 statlog-heart 270 13 2
heart-disease 303 13 5 tae 151 5 3
hepatitis 155 19 2 tic-tac-toe 958 9 2
house-votes-84 435 16 2 vowel-context 990 10 11
image-segmentation 2,310 19 7 wine 178 13 3
ionosphere 351 34 2 yeast 1,484 8 10
iris 150 4 3 zoo 101 16 7

The datasets were selected based on their availability and popularity among
other studies. As can be seen in Table 1, the testbed consists of binary as well
as multiclass problems with a wide range of instance and attribute counts.

4.3 Results

Table 2 presents evaluation results for the analyzed instance weighting schemes.
Values marked in bold represent the best result on a given dataset.

We can notice that there is no clear winner in this comparison. Additionally,
it is worth highlighting that whenever knn without instance weighting (uniform)
achieves best results, usually one of the centrality measures is equally accurate.

2 3 4 5

CD

PN

random

uniform

degree

cluster

status

(a) Centrality measures separately

1 2 3

CD

prop

random

uniform

(b) Measure chosen during validation

Fig. 3: Performance ranking of instance weighting schemes. Measures that are not
significantly different according to the Nemenyi test (at α = 0.05) are connected.

To verify the significance of the observed differences, we performed the non-
parametric Friedman test [15]. The null-hypothesis of the Friedman test (that
there is no difference between the performance of all the tested instance weighting
schemes) was rejected. To verify which instance weighting performs better than
the other, we computed the critical difference (CD) chosen by the Nemenyi post-
hoc test [15] at α = 0.05. Fig. 3 depicts the results of the test by connecting the
groups of measures that are not significantly different.
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Table 2: Kappa statistic for knn with different instance weighting schemes.

Dataset uniform random degree cluster status PN bestCV

balance-scale 0.83 0.80 0.79 0.83 0.47 0.83 0.83
breast-cancer 0.92 0.93 0.92 0.92 0.92 0.92 0.92
car-evaluation 0.80 0.74 0.45 0.80 0.34 0.76 0.80
cmc 0.14 0.11 0.15 0.14 0.12 0.16 0.16
credit-screening 0.69 0.67 0.72 0.69 0.63 0.69 0.69
dermatology 0.95 0.95 0.94 0.88 0.86 0.94 0.88
ecoli 0.76 0.74 0.73 0.73 0.70 0.76 0.76
glass 0.53 0.52 0.60 0.52 0.54 0.55 0.55
haberman 0.03 0.04 0.16 0.11 0.00 0.09 0.09
heart-disease 0.22 0.26 0.23 0.19 0.21 0.22 0.21
hepatitis 0.37 0.39 0.30 0.37 0.00 0.48 0.37
house-votes-84 0.81 0.83 0.83 0.81 0.80 0.81 0.81
image-segmentation 0.96 0.96 0.96 0.96 0.96 0.96 0.96
ionosphere 0.81 0.78 0.77 0.70 0.77 0.70 0.70
iris 0.92 0.92 0.94 0.92 0.90 0.92 0.94
monks-1 0.82 0.81 0.66 0.82 0.40 0.86 0.82
monks-2 -0.02 0.06 0.04 0.04 0.00 -0.01 0.04
monks-3 0.96 0.93 0.85 0.96 0.46 0.95 0.96
pima 0.34 0.35 0.34 0.34 0.24 0.37 0.34
promoters 0.46 0.50 0.42 0.46 0.42 0.42 0.42
sonar.all 0.71 0.71 0.71 0.71 0.71 0.71 0.71
spect 0.44 0.39 0.44 0.36 0.43 0.40 0.44
statlog-australian 0.68 0.66 0.67 0.68 0.59 0.68 0.68
statlog-heart 0.56 0.58 0.59 0.35 0.52 0.56 0.56
tae 0.28 0.30 0.28 0.28 0.30 0.28 0.30
tic-tac-toe 0.97 0.92 0.61 0.97 0.29 0.92 0.97
vowel-context 0.91 0.91 0.91 0.91 0.91 0.91 0.91
wine 0.93 0.91 0.93 0.93 0.83 0.93 0.93
yeast 0.46 0.46 0.42 0.46 0.35 0.46 0.46
zoo 0.95 0.97 0.97 0.95 0.97 0.97 0.95

We can notice that the status and cluster measures perform poorly compared
to the remaining weighting schemes. PN and degree, on the other hand, present
promising results, with PN achieving the best average rank in the Friedman test.
Interestingly, if we select the best centrality measure during model selection, the
result is not better than when using PN alone. This may suggest that some of the
analyzed measures may be prone to overfitting or generalize poorly with more
data. This in turn may be an interesting guideline when attempting to propose
new network-based measures for instance weighting.

5 Conclusions

In this paper, we presented a new method of weighting instances in the nearest
neighbor classifier based on network analysis. The approach relies on transform-
ing the dataset into a weighted and signed network, calculating the centrality
of each node, and later using this information during classification. We dis-
cussed the transformation process as well as several centrality measures capable
of dealing with weighted and signed connections. The experiments performed on
30 popular datasets show that our weighted approach can perform favorably to
the unweighted version.
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As future research, we plan on experimenting with alternative ways of con-
structing networks from non-network data, as well as proposing new centrality
measures dedicated for the stated problem. Regarding centrality measures, an
extensive discussion of their properties w.r.t. classification would also constitute
a very interesting line of future research. Furthermore, as evidenced by our ex-
periments, the performance of measures varies with different datasets, therefore,
it would be interesting to verify which measures suit which data characteris-
tics better. Finally, generalizing our solution to other classification algorithms
would be of high interest as it would make our proposal a generic approach to
enhancing classifier performance.
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