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Abstract

Preprocessing methods for imbalanced data transform the training data to a form more
suitable for learning classifiers. Most of these methods either focus on local relationships
between single training examples or analyze the global characteristics of the data, such
as the class imbalance ratio in the dataset. However, they do not sufficiently exploit the
combination of both these views. In this paper, we put forward a new data preprocess-
ing method called ImWeights, which weights training examples according to their local
difficulty (safety) and the vicinity of larger minority clusters (gravity). Experiments with
real-world datasets show that ImWeights is on par with local and global preprocessing
methods, while being the least memory intensive. The introduced notion of minority clus-
ter gravity opens new lines of research for specialized preprocessing methods and classifier
modifications for imbalanced data.

Keywords: Imbalanced data, example weighting, grid clustering, over-sampling

1. Introduction

The predictive performance of most classifiers considerably deteriorates when learned from
imbalanced data. In response to this issue, over the last decades researchers have pro-
posed various specialized data preprocessing methods and classifier modifications that tackle
skewed data distributions (Branco et al., 2016; He and Yungian, 2013). Nevertheless, the
problem of learning from imbalanced data is still considered a challenge, both from a re-
search and application perspective (Krawczyk, 2016).

Although first studies on imbalanced data have focused on the global view at the data,
expressed e.g. by the imbalance ratio between the minority and majority class, it has since
been shown that local data difficulty factors also play a crucial part in the challenging nature
of skewed datasets. Local difficulty factors refer to internal characteristics of class distribu-
tions in the sub-regions of data or example neighborhoods, such as the decomposition of the
minority class into many sub-concepts (Japkowicz and Stephen, 2002; Jo and Japkowicz,
2004), overlapping between the classes (Garcia et al., 2007), and presence of many minority
class examples inside the majority class region (Napiera la et al., 2010).

Both global as well as local characteristics have been used to propose specialized data
preprocessing methods. Simple resampling methods, such as Random Oversampling, use
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the global imbalance ratio to level class cardinalities by multiplicating examples. On the
other hand, methods such as variants of SMOTE (Chawla et al., 2002) or ADASYN (He
et al., 2008) analyze pairs of examples to control the level of oversampling in different
regions of the attribute space. However, local and global information has been mostly used
separately or combined without providing any smooth spectrum between knowledge about
pairs of examples and entire datasets.

Here, we consider yet another view at exploiting local and global information. We
propose a new method for preprocessing imbalanced data called ImWeights, which uses
example weighting to combine information about the local difficulty of single examples
with knowledge about neighboring clusters and class proportions. To achieve this goal, we
use a recently proposed clustering algorithm called ImGrid (Lango et al., 2017) to calculate
example safety based on class proportions and combine it with the concept of gravity, which
is emitted by neighboring minority class regions. We will show that ImWeights provides a
smooth spectrum of weights by using local and global data characteristics. Moreover, we will
experimentally compare ImWeights with popular global and local oversampling strategies
on benchmark imbalanced datasets.

The remainder of the paper is organized as follows: related literature is discussed in
Section 2, the proposed ImWeights algorithm is described in Section 3, experimental results
are discussed in Section 4, and finally conclusions and lines of future research are drawn in
Section 5.

2. Related works

The proposed algorithm is a data preprocessing method that takes into account local neigh-
borhood information and data difficulty factors. Section 2.1 discusses existing works on
local preprocessing methods for imbalanced data, whereas Section 2.2 describes taxonomies
and clustering algorithms concerning data difficulty factors.

2.1. Preprocessing methods using local information

Preprocessing of imbalanced data transforms it to a form (example distribution) more suit-
able for learning accurate classifiers. According to (Branco et al., 2016), the main pre-
processing strategies can be categorized into: re-sampling methods, adaptations of active
learning, and example weighting. In this paper, we focus on re-sampling and weighting
strategies that modify the available data distribution, usually into a more class-balanced
one. According to several studies, such balancing may improve classifier predictions (Weiss
and Provost, 2003).

Up to now, many re-sampling techniques have been introduced; for their comprehensive
review see (Branco et al., 2016; He and Garcia, 2009). The most popular approaches are
random under- and over-sampling. The first approach simply removes examples from the
majority classes until a required degree of balance between class cardinalities is reached.
On the other hand, over-sampling randomly adds copies of minority class examples or
generates new synthetic minority examples. Although simple random re-sampling methods
help in some problems and can be quite efficient, particularly in changing training sets
for specialized ensembles for imbalanced data, in general it is claimed that they are not
sufficiently good at improving the recognition of imbalanced classes of single classifiers.
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For instance, random under-sampling may potentially remove some important examples,
whereas simple over-sampling may lead to overfitting (He and Garcia, 2009). Therefore,
several researchers have focused their interests on informed re-sampling methods, which
take into account local information about particular example positions in attribute space.

For instance, informed under-sampling is often realized by removing potentially harmful
majority examples, in particular noisy or class overlapping instances. Such an approach
is often based on exploiting local information by analyzing relations between minority
and majority examples, e.g., with Tomek-links (Tomek, 1976) or Edited Nearest Clean-
ing Rule (Laurikkala, 2001). The Tomek-links method removes examples from overlapping
minority-majority regions. On the other hand, the Nearest Cleaning Rule removes major-
ity outliers and examples leading to wrong re-classification of minority examples. These
ideas also appear in hybrid methods such as SPIDER (Napiera la et al., 2010), which selec-
tively filters out harmful examples from the majority class and amplifies difficult minority
examples.

Probably the best-known oversampling method is SMOTE (Chawla et al., 2002). SMOTE
oversamples the minority class by generating new synthetic examples also in the local per-
spective, although with a global parameter referring to the imbalance ratio. It considers
each minority class example as a seed and finds its k-nearest neighbors from the minority
class. Then, according to the user-defined over-sampling ratio, for each minority example
SMOTE randomly selects one of its k neighbors and introduces a new example along the
line connecting the seed example with the selected neighbor.

As the basic version of SMOTE blindly generates these minority examples without con-
sidering positions of the majority examples, it has been generalized in many ways (Fernández
et al., 2018). Some of these generalizations also exploit local neighborhood. For instance,
Borderline SMOTE (Han et al., 2005) focuses on oversampling the difficult examples lo-
cated around decision boundaries, and skips examples that are far from this borderline.
The borderline examples are identified by using the local ratio between the majority and
minority examples within the neighborhood of each minority candidate for oversampling.
The other perspective of exploiting such local ratios is presented in ADASYN (He et al.,
2008), which dynamically modifies the amount of over-sampling depending on the difficulty
of the minority examples. More precisely, for each minority example its difficulty is defined
based on the ratio of majority examples in its neighborhood. Then, given a global balancing
rate, the number of new synthetic examples to be generated around each minority class is
calculated with respect to its difficulty ratio.

Yet another idea of exploiting local information is to force the algorithm to focus on
examples which are most difficult to learn and use an energy-based analogy for pushing
the majority examples out of the minority example neighborhood. Such an approach was
recently put forward in the Combined Cleaning and Resampling (CCR) algorithm (Koziarski
and Woźniak, 2017).

Finally, several other approaches for class imbalanced data use clustering algorithms.
First proposals concern cluster-based oversampling (Jo and Japkowicz, 2004), which ad-
dresses both the global imbalance between classes and internal class decompositions into
small disjuncts. More recently, other clustering algorithms were applied in informed re-
sampling, e.g. MWMOTE or DBSMOTE (Fernández et al., 2018).
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On the other hand, example weighting for imbalanced data is typically used in the
context of ensemble models and often related to the cost-sensitive learning methodology.
Chen et al. (2004) used a more global concept of class weight to improve minority class
recognition by Random Forests. Class weight was used in the calculation of tree split
criterion to prefer clearer splits of the minority class. It was estimated by out-of-bag estimate
or manually tuned. Example weighting is also used in boosting approaches for imbalanced
data. For example, Wang and Japkowicz (2010) proposed Boosting-SVM with Asymmetric
Cost and a classifier-independent cost-sensitive boosting is described in (Sun et al., 2007).
Our weighting approach significantly differs from those proposed in the literature since 1)
it is not a modification of any specific learning algorithm and 2) it does not use the notion
of classification cost.

2.2. Algorithms for discovering local difficulty factors from imbalanced data

Most research on improving classifiers learned from imbalanced data has been focused on
developing new algorithms, while less effort has been put into studying the data charac-
teristics that make learning from imbalanced data so difficult. Nonetheless, researchers
have already demonstrated the high impact of the following factors: decomposition of the
minority class into many sub-concepts, overlapping between classes, and presence of many
minority class examples inside the majority class region. When these data difficulty factors
occur together with class imbalance, they may seriously deteriorate the recognition of the
minority class (Lopez et al., 2014; Napiera la et al., 2010).

The authors of (Napierala and Stefanowski, 2012) differentiate between safe and unsafe
minority instances. Unsafe examples are further categorized into borderline, rare cases,
and outliers. Experimental studies (Napierala and Stefanowski, 2016) show that the iden-
tification of dominating types of examples may be useful during assessing the difficulty of
imbalanced datasets, interpreting differences between preprocessing methods, and develop-
ing new specialized algorithms for imbalanced data (Stefanowski, 2016).

However, most current algorithms for detecting data difficulties focus on single factors,
rather than on discovering multiple difficulties at once. Therefore, we direct our interest to
the recent proposal of the ImGrid (Imbalanced Grid) algorithm that attempts to simulta-
neously uncover sub-concepts in complex imbalanced data and categorize types of examples
inside these detected clusters (Lango et al., 2017). Since ImGrid is a crucial part of the
proposed ImWeights algorithm, we will describe it in more detail.

ImGrid is inspired by grid clustering algorithms and involves: 1) dividing the attribute
space into grid cells, 2) joining similar adjacent cells taking into account their minority
class distributions, 3) labeling examples according to difficulty factors, 4) forming minority
sub-clusters.

First, Imgrid divides the attribute space into equally wide intervals. In order to obtain
enough instances for joining adjacent cells, the authors of ImGrid propose to estimate the
number of intervals as d m

√
|D|/10e, where |D| is the number of examples in the dataset and

m is the number of dimensions of the attribute space. Next, the joining step of ImGrid
takes into account the probability distribution of minority and majority class examples
in adjacent grid cells. It merges them only if the distributions of the classes are similar
according to Jeffreys’ Bayesian test (Jeffreys, 1935). As a result merged cells constitute
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candidate clusters. In the next step of ImGrid, each cluster is assigned to one of four
difficulty labels: safe, borderline, rare, or outlier (Napierala and Stefanowski, 2016). These
labels are estimated based on the local proportion of minority examples to all examples in
the cluster. Finally, having a preliminary clustering that divides the data into sub-regions
of different difficulties, adjacent cells containing minority examples are joined into minority
sub-clusters.

ImGrid has been experimentally validated and compared with imbalanced adaptations
of DBSCAN and k-means clustering algorithms on a large collection of artificial datasets
with hidden class distribution structures. These results have demonstrated that ImGrid, re-
discovers simulated clusters and types of minority examples on par with competing methods,
while being the least sensitive to parameter tuning. However it has not been applied to real
data and its output information has not been considered in any data preprocessing method
for imbalanced data. Therefore, in the following section we put forward an algorithm that
uses ImGrid to enhance classifier performance on real-world imbalanced data.

3. ImWeights

We propose a new preprocessing algorithm based on example weighting which we call
ImWeights. The proposed method combines information about the local difficulty of exam-
ples with knowledge about the vicinity of safe minority clusters. The example weights are
determined by using a concept of safety, which is defined by the ImGrid algorithm (Lango
et al., 2017), and gravity, which is emitted by neighboring regions with a force proportional
to their safety. The safety of an the example is defined as the ratio of the minority exam-
ples to all examples in a grid cell computed by ImGrid. The proposed ImWeights algorithm
combines the concepts of safety and gravity using the following formula:

wx = 1 + f(safety(x))(1 + gravity(x)) (1)

where x is the example being weighed, and f() is a scaling function. Both the gravity() and
f(safety()) take values from zero to one, therefore the final weight of a minority example
is from one to three. The pseudo-code for ImWeights is presented in Algorithm 1.

First, the proposed method executes the ImGrid clustering algorithm (line 1), which
outputs a grid of cells containing information about example difficulty factors (types of
minority examples based on class proportions), minority clusters, and relations between
them. Next, for each minority example the gravity force is calculated (lines 3–10) and
used to compute the examples’ weights according to Eq. 1 (line 11). Lastly, the majority
examples receive weights that, in sum, balance out all the weights of minority examples
(lines 15–17).

The weight formula (Eq. 1) has essentially two parts. The first part describes the weight
amplification which depends on the cluster’s safety level. The weight is further augmented
by the second part which depends on the gravity coming from neighboring cells. Note
that this formula guarantees that the gravity can only amplify the example’s weight. On
the other hand, locally calculated safety has the ability to entirely eliminate the impact of
gravity.
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Algorithm 1: ImWeights

Input: D: m-dimensional dataset, α: threshold for statistical test (ImGrid parameter)
Output: dataset D with assigned weights

1 grid← ImGrid(D, α)
2 for cell ∈ grid do
3 for x ∈ cell.minority examples do
4 x.gravity ← 0
5 for k ∈ {1, 2, ..,m} do

6 position← x[k]−cell.min value[k]
cell.max value[k]−cell.min value[k]

7 x.gravity ← x.gravity + position ∗ cell.right neighbour[k].safety
8 x.gravity ← x.gravity + (1− position) ∗ cell.left neighbour[k].safety

9 end
10 x.gravity ← 1

m ∗ x.gravity
11 x.weight← 1 + f(cell.safety) ∗ (1 + x.gravity)

12 end

13 end
14 minority weights sum←

∑
x∈grid.minority examples x.weight

15 for x ∈ grid.majority examples do

16 x.weight← minority weights sum
|grid.majority examples|

17 end
18 return grid.majority examples ∪ grid.minority examples
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To control the effect of the example’s safety level on its weight, we use a scaling function
defined as follows:

f(x) = max{0,min{1,−2.5x+ 1.75}} (2)

This function is equal to 1 for safety ranging from 0 to 0.3, then drops linearly to achieve its
minimum equal to 0 for a safety of 0.7. The rationale behind this function is the assumption
that the more unsafe a cluster is, the more the example weight should be increased. However,
focusing the learning algorithm on outliers too extensively can lead to overfitting and cause
an adverse effect. Similarly, safe examples usually do not pose a big challenge to the
learning methods, hence, their weight does not need to be inflated. Following previous
works (Napierala and Stefanowski, 2016), a local neighborhood with safety higher than 0.7
is considered a safe one. For such values of safety the scaling function (Eq. 2) returns zero
and, as a consequence, does not boost the weight of safe examples in any way. Then, the
scaling function linearly increases in the range of safety between 0.7 and 0.3, which is usually
attributed to borderline examples. Finally, the function is truncated at 1 for examples with
safety lower then 0.3 i.e. rare and outlier examples.

The gravity for a given example is calculated by taking the average of gravities emitted
by all adjacent cells. The influence of a single cell’s gravity on a particular example depends
on two factors: the cell safety and the distance between the cell border and the example. At
its borders a cell emits gravity which is equal to its safety. As the gap between the position
of the weighted example and the cell border increases, its intensity drops linearly until the
border of the next cell is reached.

Figure 1: An example dataset divided into grid cells. The minority examples (filled points)
are colored according to their types: safe (green) and borderline (orange). The
intensity of the background indicates the value of gravity.

Let us illustrate the concept of gravity with an example (Figure 1). We will compute
the gravity that affects the leftmost minority instance in cell A2 (red dashed circle). Cell
A2 contains 11 minority examples and 20 majority example, hence its safety is equal to

11
20+11 = 0.35. This cell has two neighbors A1 and A3 with safety equal 0% and 97%,
respectively. Hence, the cell A1 does not emit any gravity. The leftmost minority example
is located in approximately 40% of the cell’s width, thus the influence of gravity is equal to
40% · 0.97 + 60% · 0 = 0.39. For comparison, the gravity force on the rightmost example of
A2 (blue dotted circle), which is closer to the A3 gravity emitter, will be 0.95.

The main purpose of using gravity to augment weights is to identify and highlight to the
classifier examples which lie in a dangerous region with safe vicinity. Those examples are
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especially important because they lie between a homogeneous minority concept and majority
examples, marking a border between classes. Also, they can exhibit an underrepresented
part of a safe minority concept which can be influential for the construction of a classifier.
By taking into account both the local class proportions and the distance to neighboring
minority clusters ImWeights attempts to provide richer information than traditional local
preprocessing methods. Figure 2 exemplifies this in cell C2 where examples will be treated
differently than in A2 as the neighbors of C2 belong to quite safe regions.

Figure 2: The vizualization of ImGrid clustering with detected types of minority examples:
safe (green), borderline (yellow), rare (red) and outlier (black). The intensity of
the background indicates the value of gravity.

Contrary to several approaches that use local information about an example’s difficulty,
ImWeights is not based on k nearest example analysis, making it less susceptible to potential
noise. Moreover, the used ImGrid clustering does not require the definition of the expected
number of clusters and defines a neighborhood relation between clusters. This relation is
exploited by ImWeights to enhance local information about an example’s difficulty with
the concept of gravity. Furthermore, unlike approaches such as SMOTE and ADASYN the
proposed concept of gravity can smoothly weight minority examples, and does so also for
regions neighboring with a safe area. Finally, since ImWeights is a weighting scheme it is
much more memory efficient than the aforementioned oversampling methods.
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4. Experimental evaluation

Since ImWeights exploits both a local data view and more general information about neigh-
boring clusters, we have investigated its performance against popular approaches which use
knowledge about global and local data characteristics. Random Oversampling (ROS) repre-
sents a simple approach which makes use of the global imbalance ratio only. We have chosen
Borderline-SMOTE2 (Han et al., 2005) and ADASYN (He et al., 2008) as representatives
of methods which also exploit local data characteristics by analyzing k nearest neighbors.

The goal of the experiment is to verify whether combining both global and local infor-
mation with additional knowledge about characteristics of adjacent clusters may positively
influence classification performance of single classifiers.

As classifiers we have chosen Logistic Regression and Naive Bayes with default scikit-
learn parameters. Both algorithms incorporate examples’ weights into the learning proce-
dure in a different way. Logistic Regression optimizes a loss function which is basically an
average of losses attributed to the classification errors of each example. The weights are
integrated into the loss function by simply changing the average into a weighted one. On
the other hand, the examples’ weights are used in Naive Bayes to modify the estimates of
a class prior and data likelihood probability. In the classical version of the classifier, the
class prior probability is calculated as the number of class examples divided by the size
of the dataset. In the weighted version, the class prior probability is computed by taking
a proportion of the sum of examples’ weights which belong to a given class to the total
sum of all weights. The weights are incorporated into likelihood probability estimates in an
analogous way.

Experiments were carried out on 12 real-word datasets from the UCI repository (Ta-
ble 1). The selected datasets represent a variety of different characteristics of imbalanced
data and were often used in earlier papers. Due to the limitations of the ImGrid clustering
algorithm, only numerical features of the selected datasets were used in experiments.

Dataset # examples # attrib. IR Difficulty type

breast-w 699 9 1.90 safe
vehicle 846 18 3.25 safe
new-thyroid 215 5 5.14 safe
pima 768 8 1.87 borderline
haberman 306 3 2.78 borderline
ecoli 336 7 8.60 borderline
transfusion 748 4 3.20 rare
yeast 1484 8 28.10 rare
glass 214 9 12.59 rare
seismic-bumps 2584 11 14.2 rare/outlier
abalone 4177 7 11.47 outlier
balance-scale 625 4 11.76 outlier

Table 1: Datasets characteristics.

We decided to use two common measures of classifier performance for imbalance data,
namely G-mean and the recall of the minority class (Japkowicz and Shah, 2011). The recall
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of minority class was selected as a measure of the classifier’s ability to predict minority
examples, which are usually of particular interest for the user. On the other hand, G-
mean computes the trade-off between the satisfactory recognition of majority and minority
class examples. G-mean is considered to be easily interpretable and has better theoretical
properties than other classification measures for class imbalanced problems (Brzezinski
et al., 2018). The definition of minority class recall and G-mean can be found e.g. in (He
and Garcia, 2009).

All reported results were averaged over 10 runs of 5-fold cross-validation. The experi-
ments were performed using the scikit-learn (Pedregosa et al., 2011) library and its extension
for imbalanced data imbalanced-learn (Lemâıtre et al., 2017).

G-mean Difference with ImWeights
Dataset Baseline ImWt. ROS B-SM. ADA. Baseline ROS B-SM. ADA.

abalone 0.189 0.744 0.769 0.760 0.766 0.555 -0.025 -0.016 -0.022
balance-scale 0.000 0.265 0.328 0.516 0.387 0.265 -0.063 -0.251 -0.123
breast-w 0.957 0.962 0.961 0.969 0.967 0.005 0.001 -0.007 -0.004
ecoli 0.169 0.863 0.875 0.841 0.867 0.695 -0.012 0.023 -0.004
glass 0.000 0.673 0.569 0.609 0.578 0.673 0.103 0.064 0.095
haberman 0.392 0.640 0.643 0.622 0.650 0.249 -0.003 0.018 -0.010
new-thyroid 0.997 0.989 0.994 0.976 0.994 -0.008 -0.006 0.013 -0.005
pima 0.694 0.761 0.752 0.743 0.748 0.067 0.009 0.018 0.013
seismic-bumps 0.448 0.582 0.306 0.333 0.344 0.134 0.276 0.249 0.238
transfusion 0.504 0.664 0.650 0.656 0.668 0.160 0.014 0.008 -0.005
vehicle 0.965 0.963 0.962 0.952 0.963 -0.002 0.000 0.011 -0.001
yeast 0.000 0.846 0.831 0.833 0.815 0.846 0.016 0.014 0.031

Table 2: G-mean for different preprocessing methods and Logistic Regression, averaged over
10 runs of 5-fold cross-validation. The right side of the table shows the difference
between the compared methods and ImWeights (positive difference means better
result of ImWeights).

Table 2 presents the values of G-mean obtained by Logistic Regression with different pre-
processing methods1: no preprocessing (Baseline), ImWeights (ImWt.), Random Oversam-
pling (ROS), Borderline-SMOTE (B-SM.), and ADASYN (ADA.). Note that ImWeights
is almost always better than the baseline (no data preprocessing), and when it is not the
difference is probably not practically significant (below 1%). Concerning the competitive
preprocessing methods, ImWeights performs better than Borderline-SMOTE and ROS, and
is comparable with ADASYN. After ranking the results (computing average ranks as in the
Friedman test), ImWeights gets the second lowest average rank equal to 2.45 outperform-
ing Borderline-SMOTE (3.16) and Random Oversampling (2.95). ADASYN ranks slightly
better (2.33), however, all the differences are not statistically significant. By taking into
account only considerable differences (G-mean > 1%), we found that ImWeights surpasses

1. More detailed results (including other classification measures) can be found at http://www.cs.put.

poznan.pl/mlango/publications/imweights/

10

http://www.cs.put.poznan.pl/mlango/publications/imweights/
http://www.cs.put.poznan.pl/mlango/publications/imweights/


Classifying Imbalanced Data Using Local and Neighborhood Information

ADASYN on four datasets while ADASYN outperforms our approach three times. An
analogous analysis performed between ImWeights and other methods in the experiment
reveals that ImWeights has always more favorable differences than its counterparts. Espe-
cially for SMOTE, ImWeights substantially outpaces it on 8 datasets. It also seems that
ImWeights achieves the best performance on datasets categorized as rare and partly bor-
derline according to (Napierala and Stefanowski, 2012). For instance, on datasets such as
seismic-bumps or glass it outperforms all the other methods, most notably on the first one
where improvements are over 10%.

We also preformed experiments with several modifications of ImWeights, which use
different scaling functions. Besides the scaling function defined by Eq. 2, we also tested
a simple non-truncated linear function and a non-linear function given by f(x) = (1 +
exp(−20x + 9))−1 which takes the form of a shifted sigmoid. ImWeights with a linear
function achieved slightly worse results than its versions with the other functions. The
non-linear function was comparable with the truncated linear function (Eq. 2), however the
latter was finally selected due to its simplicity.

In terms of minority class recall (Table 3) ImWeights is considerably better than the
baseline and Random Oversampling, but weaker than SMOTE and ADASYN. Taking into
account the results on G-mean, one can hypothesize that using Borderline-SMOTE or
ADASYN can lead to an overly extensive generalization of the minority class which causes
substantial deterioration of majority class recognition.

Recall Difference with ImWeights
Dataset Baseline ImWt. ROS B-SM. ADA. Baseline ROS B-SM. ADA.

abalone 0.036 0.696 0.721 0.708 0.733 0.660 -0.025 -0.013 -0.038
balance-scale 0.000 0.184 0.276 0.471 0.361 0.184 -0.092 -0.288 -0.178
breast-w 0.937 0.954 0.950 0.988 0.970 0.017 0.004 -0.034 -0.016
ecoli 0.029 0.943 0.943 0.943 0.943 0.914 0.000 0.000 0.000
glass 0.000 0.882 0.606 0.629 0.688 0.882 0.276 0.253 0.194
haberman 0.160 0.519 0.522 0.472 0.602 0.358 -0.004 0.047 -0.084
new-thyroid 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
pima 0.541 0.754 0.732 0.770 0.753 0.213 0.022 -0.016 0.001
seismic-bumps 0.218 0.795 0.914 0.866 0.889 0.578 -0.119 -0.071 -0.094
transfusion 0.270 0.719 0.690 0.701 0.737 0.449 0.029 0.018 -0.018
vehicle 0.950 0.955 0.955 0.968 0.955 0.005 -0.001 -0.013 0.000
yeast 0.000 0.843 0.812 0.796 0.790 0.843 0.031 0.047 0.053

Table 3: Recall for different preprocessing methods and Logistic Regression, averaged over
10 runs of 5-fold cross-validation. The right side of the table shows the difference
between the compared methods and ImWeights (positive difference means better
result of ImWeights).

G-mean and Recall for Naive Bayes were comparable to those obtained by Logistic
Regression (Tables 4 and 5).

It is also important to note that approaches which, similarly to ImWeights, improve clas-
sifier performance by assigning weights to examples have lower memory requirements than
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G-mean Difference with ImWeights
Dataset Baseline ImWt. ROS B-SM. ADA. Baseline ROS B-SM. ADA.

abalone 0.590 0.557 0.592 0.394 0.348 -0.033 -0.035 0.163 0.210
balance-scale 0.000 0.278 0.342 0.457 0.394 0.278 -0.064 -0.180 -0.117
breast-w 0.962 0.965 0.964 0.964 0.966 0.003 0.000 0.000 -0.001
ecoli 0.851 0.830 0.833 0.798 0.847 -0.021 -0.003 0.032 -0.017
glass 0.594 0.589 0.588 0.601 0.603 -0.005 0.001 -0.011 -0.014
haberman 0.433 0.546 0.551 0.550 0.568 0.112 -0.005 -0.004 -0.023
new-thyroid 0.966 0.960 0.968 0.865 0.969 -0.006 -0.008 0.095 -0.009
pima 0.701 0.740 0.732 0.725 0.728 0.038 0.007 0.014 0.012
seismic-bumps 0.473 0.604 0.605 0.606 0.564 0.131 -0.001 -0.002 0.040
transfusion 0.454 0.574 0.541 0.605 0.571 0.120 0.033 -0.031 0.003
vehicle 0.719 0.710 0.729 0.747 0.708 -0.009 -0.020 -0.037 0.001
yeast 0.358 0.265 0.272 0.574 0.373 -0.093 -0.007 -0.309 -0.107

Table 4: G-mean for different preprocessing methods and Naive Bayes, averaged over 10
runs of 5-fold cross-validation. The right side of the table shows the difference
between the compared methods and ImWeights (positive difference means better
result of ImWeights).

Recall Difference with ImWeights
Dataset Baseline ImWt. ROS B-SM. ADA. Baseline ROS B-SM. ADA.

abalone 0.460 0.716 0.690 0.850 0.966 0.257 0.026 -0.134 -0.250
balance-scale 0.000 0.163 0.257 0.378 0.255 0.163 -0.094 -0.214 -0.092
breast-w 0.971 0.979 0.976 0.992 0.991 0.008 0.003 -0.013 -0.012
ecoli 0.943 0.943 0.943 0.943 0.943 0.000 0.000 0.000 0.000
glass 0.765 0.824 0.818 0.765 0.765 0.059 0.006 0.059 0.059
haberman 0.198 0.333 0.336 0.343 0.365 0.136 -0.002 -0.010 -0.032
new-thyroid 0.971 1.000 1.000 1.000 1.000 0.029 0.000 0.000 0.000
pima 0.586 0.698 0.687 0.716 0.695 0.112 0.011 -0.018 0.003
seismic-bumps 0.247 0.429 0.433 0.519 0.587 0.182 -0.004 -0.089 -0.158
transfusion 0.225 0.517 0.404 0.587 0.474 0.292 0.112 -0.070 0.043
vehicle 0.874 0.869 0.929 0.917 0.845 -0.005 -0.059 -0.047 0.024
yeast 0.961 0.961 0.961 0.925 0.945 0.000 0.000 0.035 0.016

Table 5: Recall for different preprocessing methods and Naive Bayes, averaged over 10 runs
of 5-fold cross-validation. The right side of the table shows the difference between
the compared methods and ImWeights (positive difference means better result of
ImWeights).
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standard oversampling methods. When the data imbalance is formidable, the dataset after
oversampling can grow considerably due to new, artificially generated minority examples.
For instance, storing the seismic-bumps dataset requires 242 kB of RAM memory in our
implementation. The same dataset after oversampling requires almost twice this memory
(454kB) while storing weights requires only 1% of memory overhead (244 kB). Therefore,
the growing size of the oversampled dataset can become a serious issue, especially when
processing massive data.

5. Conclusions

In this paper, we have attempted to provide a new perspective on combining local and
global information about an imbalanced dataset. A critical discussion of existing data pre-
processing methods has led us to the proposal of the ImWeights algorithm. The proposed
approach weights examples according to the local safety of each data region and augments
this weight by using a novel concept of gravity emitted by neighboring minority clusters.
Experiments on real-world benchmark datasets have demonstrated that ImWeights achieves
results comparable to several specialized preprocessing methods for imbalance data, out-
performing them on unsafe datasets with dominating borderline or rare minority examples.

ImWeights can be still generalized in future research. For instance, our approach does
not exploit all the data characteristics provided by the ImGrid clustering algorithm. The
number of minority clusters, their size, or the distribution of majority clusters can be em-
ployed to better address different difficulties of data distribution and to, hopefully, improve
classifier performance. There is also room for improvements in the data clustering phase.
The current version of ImGrid uses a grid with all cells of the same size, constructed by
dividing each dimension into sub-intervals of equal width. As the distribution of examples
may vary for each attribute domain, the grid splitting procedure is susceptible to outliers
and groups of values concentrated around distant example sub-centers. Finally, the topic
of supporting qualitative attributes is also an open issue for future research.

Our view of exploiting both local and more global information of dataset difficulty can be
generalized beyond weighting or sampling approaches for imbalanced data. The knowledge
about the number of clusters and their difficulty can be incorporated into the classifier’s
construction procedure, adapting the learning process to the specific data distribution in
particular regions. One can also think about an ensemble model which divides the feature
space according to the clusters’ positions and trains a base classifier for each of them. In
such an approach, the learning procedure can benefit from the awareness of the clusters’
characteristics by creating a meta-classifier that exploits component classifiers depending
on the characteristics of the attribute region of a testing example.
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