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The problem: from block to online ensembles
Three strategies
Experiments
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Data streams with concept drift

e Limited time
— examples arrive rapidly

— each example can be processed only once

e Limited memory

— streams are often too large to be processed as a whole

e Concept drift Y
— data streams can evolve over time «+— =« .l

— many types of concept changes SR Y Y B
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New challenges for data mining algorithms!
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Different processing schemes

Block processing
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Block to online transformation: Why

e Complementary approaches:
— Block-based algorithms react well to gradual changes
— Online algorithms offer quicker reactions to sudden drifts

e Block-based algorithms can be adapted to work in
online environments

e Online learners are of more value in most scenarios

e Preliminary results show it’s worth investigating
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Block to online transformation: How

e We focus on certain ensemble methods:
— Ensembles predict by weighted voting
— Weights calculated based on classifier performance
— Ensemble periodically updated with a new candidate

classifier trained on last d examples
Classifier
Classifier

e Three generic strategies:

— Windowing technique

— Additional online ensemble member
— Drift detector

Combined prediction
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Strategy 1: Windowing technique

Idea: convert data blocks into sliding windows

e Component classifiers evaluated and weighted after
each example, not every d examples

e For efficiency, candidate created every d examples
e Online weighting => faster reactions to drift
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Strategy 2: Online ensemble member

Idea: introduce an additional online component

e Online component:
— has a high weight
— trained after each example

— pruned every d examples

Combined prediction

e Online training => recent data, better prediction
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Strategy 3: Drift detector

Idea: react actively to changes in the stream

e Drift detector:
— incrementally trained
— forces component retraining
when drift is detected
— reinitialized every d example

Combined prediction

e Drift detection => fast reactions, quicker retraining
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Experimental setup

e 11* algorithms:
— AWE + 3 modifications
— AUE + 3 modifications
— DWM, Online Bagging, ACE

e 8 real datasets

— 6 artificial and 2 real
— from 45,000 to 1,000,000 examples

e Different drift scenarios

— incremental, gradual, sudden, blips, no drift

e Evaluation wrt: time, memory, and accuracy
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e The windowing technique improved accuracy of AWE
and AUE (2.3%) but at high processing costs (15x)

=> online reweighting is costly but effective
e The online candidate worked for AWE but not AUE
=> the candidate weight should be algorithm-specific
e The drift detector was useful for AUE but not AWE

=> incremental retraining allows chunk size reduction
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e The windowing technique improved accuracy of AWE
and AUE (2.3%) but at high processing costs (15x)

=> online reweighting is costly but effective
e The online candidate worked for AWE but not AUE
=> the candidate weight should be algorithm-specific
e The drift detector was useful for AUE but not AWE

=> incremental retraining allows chunk size reduction

Periodical training and incremental
reweighting improved accuracy
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Accuracy on the RBF dataset
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e Proposed modifications were more accurate than
DWM and ACE, and comparable to Online Bagging

e The proposed modifications were less memory
consuming than Online Bagging

e Fully incremental versions were additionally tested
— each component updated after each example
— accuracy further improved
— practically no additional costs
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Conclusions

From Block Ensembles to Online Learners
o |f:

— Itis profitable to retain periodical evaluation and accuracy
based weighting in online environments

e How:

— Results obtained by the 3 proposed strategies suggest that
components should be incrementally evaluated, reweighted,
and trained

— Algorithm-tailored strategies could be an interesting topic
for further reserach

\@?@j/' From Block-based Ensembles to Online Learners: If- and How-To 16



{ CROTCHKIES RESTAURAWT

«— APPENZERS —~
| MIXED FROIT 2.15
FRENCH FRIES 2.75
SIDE 5ALAD 3.35
HOT WINGS 3.55
MOZZAREUA STICKS 420
SAMPLER PLATE

— SANDWICHES ~—

WED LIKE EXACTLY §15.05
WORTH OF APPETIZERS, PLEASE.

1 . EXACTLY? UHK ..

HERE, THESE PAPERS ON THE KNARSACK,
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE Six OTHER
TABLES TO GET TD —

~AS FRST A6 POSSIBLE, (F (DURSE. WANT
SOMETHING ON TRAVELING SALESHANT /

\
(YIER

RARRF/E L BT

‘ ' From Block-based Ensembles to Online Learners: If- and How-To

Thank You!

MY HOBBY:
EVMBEDDING NP-(DMPLETE PROBLEMS. IN RESTRURANT ORDERS
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