From Block-based Ensembles to Online Learners in Changing Data streams: If- and How-To

Dariusz Brzezinski and Jerzy Stefanowski

Poznan University of Technology, Poland

From Block Ensembles to Online Learners: If- and How-To

Dariusz Brzezinski and Jerzy Stefanowski

Poznan University of Technology, Poland

Outline

- The problem: from block to online ensembles
- Three strategies
- Experiments
- Conclusions and future work

Data streams with concept drift

• Limited time

- examples arrive rapidly
- each example can be processed only once
- Limited memory
 - streams are often too large to be processed as a whole
- Concept drift
 - data streams can evolve over time
 - many types of concept changes

New challenges for data mining algorithms!

From Block-based Ensembles to Online Learners: If- and How-To

Different processing schemes

Block to online transformation: Why

- Complementary approaches:
 - Block-based algorithms react well to gradual changes
 - Online algorithms offer quicker reactions to sudden drifts
- Block-based algorithms can be adapted to work in online environments
- Online learners are of more value in most scenarios
- Preliminary results show it's worth investigating

Block to online transformation: How

- We focus on certain ensemble methods:
 - Ensembles predict by weighted voting
 - Weights calculated based on classifier performance
 - Ensemble periodically updated with a new candidate classifier trained on last d examples
- Three **generic** strategies:
 - Windowing technique
 - Additional online ensemble member
 - Drift detector

Combined prediction

Strategy 1: Windowing technique

Idea: convert data blocks into sliding windows

- Component classifiers evaluated and weighted after each example, not every *d* examples
- For efficiency, candidate created every *d* examples
- Online weighting => faster reactions to drift

Strategy 2: Online ensemble member

Idea: introduce an additional online component

- Online component:
 - has a high weight
 - trained after each example
 - pruned every *d* examples

• Online training => recent data, better prediction

Strategy 3: Drift detector

Idea: react actively to changes in the stream

- Drift detector:
 - incrementally trained
 - forces component retraining when drift is detected
 - reinitialized every d example

• Drift detection => fast reactions, quicker retraining

From Block-based Ensembles to Online Learners: If- and How-To

Experimental setup

- 11* algorithms:
 - AWE + 3 modifications
 - AUE + 3 modifications
 - DWM, Online Bagging, ACE
- 8 real datasets
 - 6 artificial and 2 real
 - from 45,000 to 1,000,000 examples
- Different drift scenarios
 - incremental, gradual, sudden, blips, no drift
- Evaluation wrt: time, memory, and accuracy

Results

- The windowing technique improved accuracy of AWE and AUE (2.3%) but at high processing costs (15x)
 => online reweighting is costly but effective
- The online candidate worked for AWE but not AUE
 => the candidate weight should be algorithm-specific
- The drift detector was useful for AUE but not AWE
 => incremental retraining allows chunk size reduction

Results

- The windowing technique improved accuracy of AWE and AUE (2.3%) but at high processing costs (15x)
 => online reweighting is costly but effective
- The online candidate worked for AWE but not AUE
 => the candidate weight should be algorithm-specific
- The drift detector was useful for AUE but not AWE
 => incremental retraining allows chunk size reduction

Periodical training and incremental reweighting improved accuracy

Accuracy on the RBF dataset

From Block-based Ensembles to Online Learners: If- and How-To

Ш

Results

- Proposed modifications were more accurate than DWM and ACE, and comparable to Online Bagging
- The proposed modifications were less memory consuming than Online Bagging
- Fully incremental versions were additionally tested
 - each component updated after *each* example
 - accuracy further improved
 - practically no additional costs

From Block-based Ensembles to Online Learners: If- and How-To

Conclusions

From Block Ensembles to Online Learners

- If:
 - It is profitable to retain periodical evaluation and accuracy based weighting in online environments

• How:

- Results obtained by the 3 proposed strategies suggest that components should be incrementally evaluated, reweighted, and trained
- Algorithm-tailored strategies could be an interesting topic for further reserach

Thank You!

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

