
From Block-based Ensembles to Online Learners

In Changing Data Streams: If- and How-To

Dariusz Brzezinski and Jerzy Stefanowski

Institute of Computing Science, Poznan University of Technology,
ul. Piotrowo 2, 60–965 Poznan, Poland

{dariusz.brzezinski,jerzy.stefanowski}@cs.put.poznan.pl

Abstract. Ensemble classifiers have become an established research line
in the field of mining time-changing data streams. However, in environ-
ments where class labels are available after each example, ensembles
which process instances in blocks do not react to sudden changes suffi-
ciently quickly. On the other hand, existing online ensemble algorithms,
which process streams incrementally, do not take advantage of period-
ical weighting mechanisms known from block-based ensembles, which
offer accurate reactions to gradual and recurring changes. In this paper,
we analyze if and how the characteristics of block and incremental pro-
cessing can be combined to produce accurate ensemble classifiers. We
propose and experimentally evaluate three strategies to transforming a
block ensemble into an online learner: the use of a sliding window, an
additional incrementally trained ensemble member, and a drift detector.
The obtained results verify, which of these approaches is most effective
and what characteristics of block processing are most beneficial in online
environments.

Keywords: concept drift, data streams, online classifier ensemble

1 Introduction

Progress in information technology as well as the continuous development of
sensor and telecommunication systems have paved the way to processing massive
datasets in the form of data streams. For the last two decades, several data
mining techniques have been proposed to extract interesting knowledge from
large data volumes, yet data streams pose a number of unique challenges, which
are not easily solved by traditional machine learning methods. The processing of
streaming data implies new requirements concerning limited amount of memory,
small processing time, and one scan of incoming examples [1, 2]. Moreover, data
streams are often subject to concept drifts, i.e., changes in distributions and
definitions of target classes over time. Depending on the rate of these changes,
concept drifts are usually divided into sudden or gradual ones, both of which
require different reaction mechanisms. All these challenges make data streams a
complex source which calls for separate data mining techniques.
Out of several machine learning algorithms proposed to tackle time-changing

data streams, ensemble methods play an important role in reacting to many types

of concept drift. Essentially, a classifier ensemble is a set of component classifiers
whose predictions are combined into a single, more accurate, prediction. In the
field of data stream mining, ensemble methods are divided into block-based and
online approaches. Block-based approaches are designed to work in environments
were examples arrive in portions, called blocks or chunks. Most block ensem-
bles periodically evaluate their components and substitute the weakest ensemble
member with a new (candidate) classifier after each chunk of examples. Such
an approach ensures accurate reactions to gradual concept drifts. Furthermore,
when training their components block-based methods often take advantage of
batch algorithms known from static classification.
In contrast to chunk-based approaches, online ensembles are designed to ac-

curately learn in environments were labels are available after each example. With
class labels arriving online, algorithms should adapt to changes as quickly as pos-
sible. Many researchers tackle this problem by designing new online ensemble
methods, ignoring weighting mechanisms known from block-based algorithms.
We argue that these weighting mechanisms as well as periodical component
evaluations could be still of much value in online ensembles. Our previous work
concerning data stream ensembles suggests that by modifying block-based en-
sembles towards incremental classifiers one can improve classification accuracy
on gradual and sudden drifts [3, 4]. This leads us to our research question: Is it
profitable to retain periodic evaluations and weighting mechanisms known from
block-based algorithms while constructing on-line ensembles for time-changing
data streams?
In this paper, we propose to review existing block-based ensemble methods

and seek ways of adapting them to suit online environments. Our contributions
are as follows:

– In Section 3, we put forward three general strategies to transforming block-
based ensembles into online learners. More precisely, we investigate: 1) the
use of a windowing technique which updates component weights after each
example, 2) the extension of the ensemble by an incremental classifier which
is trained between component reweighting, and 3) the use of an online drift
detector which allows to shorten drift reaction times.
– In Section 4, we experimentally compare these modifications with popular
online ensembles and verify whether block-based algorithms can be success-
fully transformed into incremental learners.
– In Section 5, we discuss the most important issues in transforming block-
based ensembles and draw lines of further research.

2 Related Work

Categorizations of methods for handling concept drift divide stream classifiers
into several categories, such as windowing techniques, adaptive algorithms (e.g.
decision trees), drift detectors, and active ensembles [5, 2, 6]. In our study, we
focus on ensemble methods, which can be further divided into two general groups:
online ensembles, which learn incrementally after processing single examples, and

block-based ensembles, which process blocks of data. In the following paragraphs,
we review existing methods falling into both groups.

Referring to online ensembles, one of the first proposed algorithms was On-
line Bagging [7], a generalization of batch bagging known from static environ-
ments. In Online Bagging, Oza and Russell propose to use incremental learners
as component classifiers that combine their decision using a simple majority
vote. Sampling, crucial to batch bagging, is performed incrementally by present-
ing each example to a component k times, where k is defined by the Poisson
distribution. More recently, Bifet et al. introduced a modification of Oza’s and
Russell’s algorithm, called Leveraging Bagging [8], which aims at combining the
simplicity of Online Bagging with adding more randomization to base classifiers.

Another online ensemble was presented in an algorithm called Dynamic
Weighted Majority (DWM) [9]. In DWM a set of incremental classifiers is weigh-
ted according to their accuracy after each incoming example. With each mistake
made by one of DWM’s component classifiers, its weight is decreased by a user
specified-factor. Furthermore, after a period of predictions the entire ensemble
is evaluated and, if needed, a new classifier is added to the ensemble. Finally,
a hybrid online approach was proposed by Nishida with the Adaptive Classifier
Ensemble (ACE) [10]. This solution aims at reacting to sudden drifts by track-
ing the error-rate of a single incremental classifier with each incoming example,
similarly to the Drift Detection Method (DDM) proposed by Gama et al. [11].
In contrast to DDM, drift detection in ACE is used to control the validity of an
ensemble classifier, which is slowly reconstructed with large chunks of examples.

Out of the presented online ensembles, Online and Leveraging Bagging do
not perform periodical component pruning nor reweighting, possibly causing high
computational costs and poor reactions to gradual and recurring changes. On
the other hand, the DWM algorithm periodically reweights ensemble members
but component substitution is conditional and, therefore, for gradually changing
streams the forgetting mechanism may not trigger. Finally, ACE does not prune
component classifiers and uses a drift detector, both of which possibly lead to
poor reactions to gradual changes.

The discussed alternative for online ensembles involves re-evaluating compo-
nents with fixed-size blocks of incoming instances and replacing the worst com-
ponent with a classifier trained on the most recent examples. The first of such
block-based ensembles was the Streaming Ensemble Algorithm (SEA) [1], which
used a heuristic replacement strategy based on accuracy and diversity. Using
these two factors, after each block of examples SEA reevaluates a set of deci-
sion trees and substitutes the weakest classifier with a new decision tree trained
on examples from the most recent chunk. Following a similar scheme, Wang et
al. put forward an algorithm called Accuracy Weighted Ensemble (AWE) [12],
which also trains a new classifier on each incoming data block by a typical static
learning algorithm such as C4.5, RIPPER, or Naive Bayes. Similarly, after a new
classifier is trained, all previously learned component classifiers, already present
in the ensemble, are evaluated on the most recent chunk. However, in AWE
evaluations are done with a special version of the mean square error (MSE),

which estimates the error-rate of the component classifiers (with probability dis-
tributions of their class predictions). Such an evaluation method is justified as
Wang et al. stated and proved that if component classifiers are weighted by their
expected accuracy on the test data, the ensemble achieves greater or equal clas-
sification accuracy compared to a single classifier [12]. It is important to notice
that the performance of SEA, AWE, and other block-based ensembles largely
depends on the size of the processed data chunks. Bigger chunks can lead to
more accurate classifiers, but can contain more than one concept drift. On the
other hand, smaller chunks are better at separating changes, but usually lead to
creating poorer classifiers.
More recently proposed block-based ensemble methods include: Learn++NSE

[13] which uses a sophisticated accuracy-based weighting mechanism, the Batch
Weighted Ensemble (BWE) [14] which contains a special drift detector anal-
ogously to ACE but processes streams in blocks, and the Accuracy Updated
Ensemble (AUE) [3] which incrementally trains its component classifiers after
every processed block of examples. Although AUE is not the only block ensem-
ble that uses incremental learners as component classifiers, it is unique due to
the fact that it updates component classifiers already present in the ensemble.
Results obtained by AUE [3, 4] suggest that by incremental learning of periodi-
cally weighted ensemble members one could preserve good reactions to gradual
changes, while reducing the chunk size problem and, therefore, improving ac-
curacy on abruptly changing streams. In the following section, we propose and
analyze three general strategies to transforming block-based ensembles into on-
line learners and verify whether such approaches can produce algorithms that
achieve higher accuracy.

3 Strategies to Transforming Block-based Ensembles into

Online Learners

Before discussing approaches to converting block ensembles into online ensem-
bles, let us define a generic chunk-based training scheme, which will help describe
the proposed strategies.

Algorithm 1 Generic block ensemble training scheme

Input: S: data stream of examples partitioned into blocks of size d, k: number of
ensemble members, Q(): classifier quality measure

Output: E : ensemble of k weighted classifiers
1: for all data blocks Bi ∈ S do
2: build and weight candidate classifier Cc using Bi and Q();
3: weight all classifiers Cj in ensemble E using Bi and Q();
4: if |E| < k then E ← E ∪ {Cc};
5: else if ∃j : Q(Cc) > Q(Cj) then replace weakest ensemble member with Cc;

Let S be a data stream partitioned into evenly sized blocks B1, B2, . . . , Bn,
each containing d examples. For every incoming block Bi, the weights of compo-

nent classifiers Cj ∈ E are calculated by a classifier quality measure Q(), often
called a weighting function. The function behind Q() depends on the algorithm
being analyzed; e.g., for AWE Q(Cj) = MSEr − MSEi [12], while for AUE
Q(Cj) =

1
(MSEi+ǫ) [3]. In addition to component reweighting, a candidate clas-

sifier is built from block Bi and added to the ensemble if the ensemble’s size
is not exceeded. If the ensemble is full but the candidate’s quality measure is
higher than any member’s weight, the candidate classifier substitutes the weakest
ensemble member.
The described training scheme, presented in Algorithm 1, can be used to

generalize most popular block-based stream ensemble classifiers, such as SEA,
AWE, AUE, Learn++.NSE, or BWE. The following subsections present three
strategies to modifying this generic algorithm to suit incremental environments.

3.1 Windowing

The first strategy converts a data block into a sliding window. Instead of evaluat-
ing component classifiers every d examples, ensemble members are weighted after
each example using the last d training instances. This way component weights
are incrementally updated and can follow changes in data faster. Because the
creation of the candidate classifier is a costly process, especially in block-based
ensembles which use batch component classifiers, we propose to add new classi-
fiers to the ensemble every d examples, just as in the original block processing
scheme. The described strategy is presented in Algorithm 2.

Algorithm 2 Windowing strategy

Input: S: data stream of examples, k: number of ensemble members, W : window of
examples, d: size of window, Q(): classifier quality measure, i: example number

Output: E : ensemble of k weighted classifiers
1: for all examples xi ∈ S do
2: if |W | < d then W ←W ∪ {xi};
3: else replace oldest example in W with xi;
4: weight all classifiers Cj in ensemble E using W and Q();
5: if i > 0 and i mod d = 0 then
6: build and weight candidate classifier Cc using W and Q();
7: if |E| < k then E ← E ∪ {Cc};
8: else if ∃j : Q(Cc) > Q(Cj) then replace weakest ensemble member with Cc;

3.2 Additional Incremental Learner

The second strategy involves using an incremental classifier. The ensemble works
exactly like in the original algorithm but an additional online learner, which is
trained with each incoming example, is taken into account during component
voting. Such a strategy ensures that the most recent data is included in the
prediction. Two factors are crucial for the incremental classifier to have an effect
on the ensemble’s performance: its weight and its accuracy. We propose to use

the maximum of the weights of remaining ensemble members as the candidate’s
weight. Using such a value ensures that this strategy remains independent of the
algorithm being modified and that the incremental learner will have substantial
voting power. As for accuracy, to ensure accurate predictions in a time changing
environment a classifier should be trained only on the most recent data. On the
other hand, using too few examples will make the classifier inaccurate. That
is why we propose to initialize the incremental learner with the last full buffer
of examples and incrementally train for the next d examples, after which the
incremental learner is reinitialized. This strategy is presented in Algorithm 3.

Algorithm 3 Additional incremental learner strategy

Input: S: data stream of examples, Co online learner, k: number of ensemble members,
B: example buffer of size d, Q(): classifier quality measure, i: example number

Output: E : ensemble of k weighted classifiers and 1 incremental classifier
1: for all examples xi ∈ S do
2: incrementally train Co with xi

3: B ← B ∪ {xi}
4: if i > 0 and i mod d = 0 then
5: build and weight candidate classifier Cc using B and Q();
6: weight all classifiers Cj in ensemble E using B and Q();
7: if |E| < k then E ← E ∪ {Cc};
8: else if ∃j : Q(Cc) > Q(Cj) then replace weakest ensemble member with Cc;
9: reinitialize Co with B;
10: B ← ∅;

3.3 Drift Detector

The last strategy, presented in Algorithm 4, uses a drift detector attached to an
online learner which triggers component reweighting.

Algorithm 4 Drift detector strategy

Input: S: data stream of examples, D: drift detector, k: number of ensemble members,
B: example buffer of size d, Q(): classifier quality measure, i: example number

Output: E : ensemble of k weighted classifiers and 1 classifier with a drift detector
1: for all examples xi ∈ S do
2: incrementally train D with xi

3: B ← B ∪ {xi}
4: if |B| = d or drift detected then
5: build and weight candidate classifier Cc using B and Q();
6: weight all classifiers Cj in ensemble E using B and Q();
7: if |E| < k then E ← E ∪ {Cc};
8: else if ∃j : Q(Cc) > Q(Cj) then replace weakest ensemble member with Cc;
9: reinitialize D;
10: B ← ∅;

In periods of stability, when no drifts occur, the algorithm works similarly to
the second strategy. If a drift occurs, a candidate classifier is built on a smaller
portion of the most recent examples, weighted, and added to the ensemble ac-
cording to Q(). Existing ensemble members are also reweighted after each drift.
This approach aims at faster, online, reactions to sudden changes.

4 Experiments

In our experiments we evaluate 4 versions (the original algorithm and the three
proposed modifications) of 2 block-based ensembles: the Accuracy Weighted En-
semble (AWE) and the Accuracy Updated Ensemble (AUE). Furthermore, AWE
and AUE, along with their modifications, are compared with 3 online ensem-
bles: Online Bagging (Bag), the Dynamic Weighted Majority (DWM), and the
Adaptive Classifier Ensemble (ACE). We chose AWE and AUE as representa-
tives of block-based ensembles because periodical component weighting is very
important to the performance of these algorithms. Moreover, AWE uses batch
component classifiers while AUE has incremental components. Online bagging
was chosen as a strong representative of online ensembles, DWM was selected
because it periodically evaluates an ensemble, and ACE represents a processing
scheme similar to the third proposed modification.
All of the tested algorithms were implemented in Java as part of the MOA

framework [15]. We implemented the AWE and AUE algorithms and all their
modifications, DWM was implemented and published by Paulo Gonçalves, the
code of the Adaptive Classifier Ensemble was provided courtesy of Dr. Nishida
and adapted to MOA, while all the remaining classifiers were already a part of
MOA. The experiments were performed on a machine equipped with an Intel
Pentium Core 2 Duo P9300 @ 2.26 GHz processor and 3.00 GB of RAM. All
the tested ensembles used k = 10 component classifiers; for AWE and ACE
those classifiers were J48 trees with default WEKA parameters, while AUE,
Bag, and DWM used Hoeffding trees with adaptive Naive Bayes leaf predictions
with a grace period nmin = 100, split confidence δ = 0.01, and tie-threshold
τ = 0.05 [16]. ACE was used with its proprietary drift detector combined with
a Naive Bayes classifier [10] while the AWE and AUE modifications which used
drift detectors utilized DDM with a Hoeffding tree. The data chunk size used for
block ensembles was equal d = 500 for all the datasets as this size was considered
the minimal suitable for block ensembles [1, 12].
In accordance with the main characteristics of data stream processing [4],

we evaluate the performance of the analyzed algorithms with respect to time
efficiency, memory usage, and accuracy. All evaluation measures were periodi-
cally calculated using the prequential evaluation method [17] with a window of
d = 500 examples and a fading factor α = 0.01.

4.1 Datasets

There is a shortage of publicly available datasets for evaluating data stream
classification methods. Most of the common benchmarks for machine learning

algorithms, e.g., gathered in the UCI repository [18], contain too few examples
and usually do not contain any type of concept drift. For this reason, data stream
classifiers are tested mostly on synthetic datasets, in which concept drift can be
introduced. Below, we briefly describe 6 artificial and 2 real datasets that were
used in our experiments. All the synthetic datasets were generated using the
MOA framework, while real datasets are publicly available.
Hyperplane (Hyp) is a popular dataset generator used in many stream clas-

sification experiments [12]. We use this generator to create a dataset containing
1,000,000 instances, which is described by 10 features, contains 5 gradual drifts
with a magnitude of change wi = 0.001, and has 5% of class noise added to
the concepts. The Radial Basis Function generator (RBF) creates a user specified
number of centroids and assigns each incoming example to one centroid with the
probability given by that center’s weight. We use this generator to create two
datasets: the RBFB dataset, which contains 4 decision classes and 4 very short
sudden drifts (2 blips), which should be ignored by the tested classifier, and the
RBFG, which is designed to contain 4 gradual recurring drifts with each concept
containing 4 decision classes.
To generate the three remaining artificial datasets we used the SEA genera-

tor (SEA), Random Tree Generator (Tree), and LED generator (LED). The SEA
datasets contains 1,000,000 examples with sudden drifts occurring every 250,000
examples. The TreeGen dataset contains only 100,000 instances but is the fastest
drifting dataset with 15 sudden recurring drifts, each occurring every 3000 ex-
amples. Finally, the LED dataset contains 250,000 examples and 20% of noise,
but has no drift.
The two real datasets used are the Electricity (Elec) and Covertype (Cov)

datasets. Elec is one of the most widely used real datasets in data stream classifi-
cation and consists of energy prices from the electricity market in the Australian
state of New South Wales [19]. The dataset contains 45,312 instances each de-
scribed by 7 features. Decision class values “up” and “down” indicate the change
of the price. The Cov dataset contains cover type information about four wilder-
ness areas located in the Roosevelt National Forest of northern Colorado. The
dataset consists of 581,012 examples, which are defined by 53 cartographic vari-
ables that describe one of 7 possible forest cover types. We used normalized
versions of these two datasets available from the MOA website.
The described synthetic datasets were chosen to evaluate the analyzed algo-

rithms in different drift scenarios, such as sudden, gradual, and recurring drifts,
blips, and static environments. As for the real datasets, we cannot unequivo-
cally state when drifts occur or if there is any drift; they serve to compare the
algorithms in a simple real life scenario rather than a concrete drift situation.

4.2 Results

Tables 1–3 present average prequential accuracy, processing time, and memory
usage of the analyzed methods. Algorithms modified using the windowing, in-
cremental candidate, and drift detector strategies are denoted with subscripts:

W , C , and D respectively.

Table 1. Average prequential accuracy [%]

AWE AWEW AWEC AWED AUE AUEW AUEC AUED DWM Bag ACE

LED 37.76 46.56 43.36 43.10 51.02 51.52 50.73 51.56 42.24 51.50 40.14
Hyp 75.48 84.03 77.90 62.27 88.34 88.77 88.33 88.79 78.07 88.35 79.67
SEA 88.12 88.22 88.17 84.94 89.15 89.33 88.98 89.32 84.14 88.94 85.86
RBFB 94.80 94.69 95.04 94.52 95.69 96.95 95.19 96.55 87.75 97.85 84.72
RBFG 93.97 93.72 94.23 94.11 95.74 96.95 95.16 96.69 85.36 97.52 84.13
Tree 65.67 45.71 65.86 57.40 44.04 44.43 44.85 42.06 45.33 49.82 43.82
Cov 87.88 84.50 88.93 49.07 82.79 87.95 84.75 70.30 90.68 88.80 69.54
Elec 75.62 76.81 79.60 58.88 73.12 78.27 80.57 77.15 85.86 87.83 77.32

Table 2. Average time required to process d = 500 examples [s]

AWE AWEW AWEC AWED AUE AUEW AUEC AUED DWM Bag ACE

LED 0.30 8.66 0.32 0.29 0.24 30.21 0.26 0.33 0.08 0.24 0.08
Hyp 0.22 2.60 0.19 0.39 0.38 5.20 0.38 0.65 0.10 1.08 0.25
SEA 0.12 0.77 0.13 0.16 0.37 1.58 0.39 0.51 0.04 1.06 0.05
RBFB 0.19 2.13 0.23 0.22 1.01 15.86 1.02 1.17 0.18 1.69 0.62
RBFG 0.18 2.09 0.22 0.22 1.00 16.28 0.93 1.17 0.17 1.54 0.62
Tree 0.19 2.12 0.22 0.18 0.21 9.20 0.20 0.25 0.08 0.25 0.26
Cov 0.21 2.68 0.24 0.17 0.54 22.39 0.57 0.56 0.31 0.43 0.22
Elec 0.12 0.70 0.14 0.10 0.09 2.30 0.10 0.12 0.04 0.13 0.05

Table 3. Average ensemble memory usage [MB]

AWE AWEW AWEC AWED AUE AUEW AUEC AUED DWM Bag ACE

LED 3.53 3.55 3.76 3.40 0.23 0.36 0.26 0.93 0.03 1.28 0.25
Hyp 1.24 1.25 1.28 3.69 1.31 1.48 1.33 3.85 0.14 5.91 0.12
SEA 0.71 0.73 0.74 1.06 1.76 1.90 1.77 2.33 0.07 6.83 0.10
RBFB 1.58 1.61 1.63 2.09 4.03 4.28 4.06 5.19 0.32 12.14 0.16
RBFG 1.62 1.64 1.66 2.40 6.89 8.00 6.92 9.25 0.30 12.19 0.17
Tree 1.86 1.81 1.97 1.67 0.54 1.19 0.56 1.10 0.06 1.13 0.21
Cov 3.12 3.13 3.16 2.14 1.05 1.70 1.10 0.92 0.45 1.13 0.17
Elec 0.91 0.92 0.93 0.54 0.24 0.85 0.26 0.30 0.10 0.46 0.09

Comparing the performance of AWE and its first modification, AWEW , we
can see that apart from the Tree and Cov datasets the windowing technique
seems to improve classification accuracy. The improvement, however, comes at
the cost of much higher processing time, which is a direct result of testing the
classifier with a window of examples to recalculate component weights after each
processed instance. The second modification, AWEC , increases accuracy on all
the datasets and does not require so much additional processing time. Finally,
the classification accuracy of the AWED modification seems to show that a sim-
ple addition of a drift detector is not sufficient to improve reactions on sudden

drifts while not deteriorating the ensemble’s ability to react to gradual changes.
All the modifications have similar memory requirements to AWE, with AWED
showing higher variance depending on the number of detected drifts. The differ-
ences between accuracies of the analyzed algorithms were verified to be statis-
tically significant by performing the Friedman test at p = 0.050. Furthermore,
by performing a series of Wilcoxon tests it was confirmed that AWEC increases
(pC = 0.006) while AWED deteriorates (pD = 0.034) the accuracy of AWE.

Looking at the results of AUE and its modifications we can see trends slightly
different than those observed in AWE. The AUEW modification improves clas-
sification accuracy much more than AWEW but at higher processing costs. As
AUEW updates existing component classifiers it can grow larger component Ho-
effding trees, which require more time to test on a window of examples. Thus, the
windowing technique is much more time consuming when used to modify AUE
than it was on AWE. The additional incremental classifier, present in AUEC ,
allows to improve AUE’s accuracy on fast changing datasets such as Tree, Cov,
and Elec, but does not seem to be so useful on slower changing data. This is
probably the effect of using a static (maximum) weight for the incremental can-
didate; in AWE which uses a linear weighting function it had a different effect
than in AUE which uses a non-linear quality measure. Nevertheless, the use
of an additional incremental component gives comparable or better accuracy
than the original AUE at very small time and memory costs. Finally, the use
of a drift detector with AUE proves more rewarding that its addition to AWE.
Since, in contrast to AWE, AUE’s components can be incrementally updated af-
ter a drift is detected, AUED could manage to build strong component classifiers
while AWE is left with weak learners after each drift. This seems to show that
when combined with periodical incremental component updates a drift detector
can enhance sudden drift reactions without degrading performance on gradual
changes. As Table 1 shows, accuracies of AUE and its modifications are gener-
ally higher than AWE’s which could also be caused by incremental updating of
component classifiers. Concerning classification accuracies of the modifications
of AUE, the null hypothesis of the Friedman test can be rejected at p = 0.050,
while the Wilcoxon test shows that AWEW significantly increases (pW = 0.006)
the accuracy of AUE.

By comparing the discussed results with the performance of the tested online
ensembles, we can see that the proposed modifications were more accurate than
DWM and ACE on almost all datasets and gave results comparable to Online
Bagging. However, Online Bagging is the most expensive of all the compared
algorithms in terms of memory and, if we exclude the windowing modification,
time. Therefore, the proposed generic modifications could be considered as valid
strategies for improving the performance of block ensembles in incremental envi-
ronments. For AWE the additional incremental component seems to be the best
strategy while AUE benefited from using periodical weighting. In both cases,
the incremental updating of existing component classifiers seems to be an im-
portant performance factor. For this reason, we decided to implement and test
modifications of AUE which concentrated even more on updating components.

Table 4. Average performance of online updated versions of AUE. Prequential accu-
racy presented in percentage [%], time required to process d = 500 examples in seconds
[s], classifier memory usage in megabytes [MB].

AUEOW AUEOC AUEOD

Acc. Time Mem. Acc. Time Mem. Acc. Time Mem.

LED 51.54 19.67 0.34 50.17 0.24 0.25 51.43 0.30 0.93
Hyp 88.97 4.80 1.72 88.34 0.25 0.95 89.11 0.63 4.38
SEA 89.35 1.48 2.34 88.53 0.22 1.10 89.25 0.28 1.35
RBFB 97.40 15.74 4.53 95.17 1.18 4.92 97.11 1.48 6.49
RBFG 97.09 15.77 7.90 95.18 0.96 6.69 96.89 1.30 9.93
Tree 46.79 9.17 1.32 45.06 0.19 0.51 41.75 0.18 0.53
Cov 89.90 21.85 1.96 85.53 0.63 1.21 83.51 0.51 0.60
Elec 87.37 2.44 1.03 84.72 0.21 0.67 86.00 0.16 0.42

Since AUE already uses incremental component classifiers, we decided to
implement additional modifications of AUE in which component classifiers are
updated after each example, not after drift detection or d processed instance.
Such a modification is not limited to AUE and could be applied to any block
ensemble which uses incremental components, such as Learn++.NSE. Table 4
presents the average prequential accuracy, processing time, and memory usage
of these online updated versions of AUE. We can see that online updating can
further increase classification accuracy, especially on dynamic datasets like Cov
and Elec. The best performing online modification is AUEOW , which according to
the Wilcoxon test achieves accuracy higher than AUEW with p = 0.006. Further-
more, online updating does not pose additional time and memory requirements
compared to chunk versions of AUE.

5 Conclusions

We analyzed the problem of integrating weighting mechanisms and periodical
component evaluations, known from block ensembles, into online classifiers. To
verify the validity of such an approach, we proposed and evaluated three strate-
gies to transforming block-based classifiers into online learners: a windowing
technique, the use of an additional incremental learner, and the use of a drift
detector. Experimental results demonstrate that all three strategies can be ben-
eficial to the performance of a block ensemble and, therefore, it is profitable to
retain periodic evaluations and weighting mechanisms while constructing on-line
ensembles. Concerning the question how to transform a block-based ensemble
to suit online environments, differences in the performance of the applied strate-
gies seem to suggest that incremental classifier updates are more advantageous
than continuous component reweighting. As future research, we plan to investi-
gate possible combinations of the proposed strategies and tailor them to specific
algorithms.

Acknowledgments. The authors are grateful to Dr. Nishida for sharing his
implementation of ACE and to Bifet et al. for making the MOA framework
available as open source. This work was partly supported by the Polish National
Science Center under Grant No. DEC-2011/03/N/ST6/00360.

References

1. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale
classification. In: Proc. 7th ACM SIGKDD Int. Conf. Knowl. Disc. Data Min.,
New York, NY, USA, ACM Press (2001) 377–382

2. Kuncheva, L.I.: Classifier ensembles for changing environments. In: Proc. 5th MCS
Int. Workshop on Mult. Class. Syst. Volume 3077 of LNCS., Springer (2004) 1–15

3. Brzezinski, D., Stefanowski, J.: Accuracy updated ensemble for data streams with
concept drift. In: Proc. 6th HAIS Int. Conf. Hyb. Art. Intell. Syst., Part II. Volume
6679 of LNCS., Springer (2011) 155–163

4. Brzezinski, D.: Mining data streams with concept drift. Master’s thesis, Poznan
University of Technology, Poznan, Poland (2010)

5. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall (2010)
6. Zliobaite, I.: Adaptive training set formation. PhD thesis, Vilnius University (2010)
7. Oza, N.C., Russell, S.J.: Experimental comparisons of online and batch versions of
bagging and boosting. In: Proc. 7th ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., New York, NY, USA, ACM Press (2001) 359–364

8. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams.
In: ECML/PKDD (1). (2010) 135–150

9. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: An ensemble method for
drifting concepts. J. Mach. Learn. Res. 8 (2007) 2755–2790

10. Nishida, K., Yamauchi, K., Omori, T.: ACE: Adaptive classifiers-ensemble system
for concept-drifting environments. In: Proc. 6th Int. Workshop Multiple Classifier
Systems. Volume 3541 of LNCS., Springer (2005) 176–185

11. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In:
Proc. 17th SBIA Brazilian Symp. Art. Intel. (2004) 286–295

12. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using
ensemble classifiers. In: Proc. 9th ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., USA, ACM Press (2003) 226–235

13. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary
environments. IEEE Trans. Neural Netw. 22(10) (Oct. 2011) 1517–1531

14. Deckert, M.: Batch weighted ensemble for mining data streams with concept drift.
In: ISMIS. Volume 6804 of LNCS., Springer (2011) 290–299

15. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis.
J. Mach. Learn. Res. 11 (2010) 1601–1604

16. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proc. 6th ACM
SIGKDD Int. Conf. Knowl. Disc. Data Min., USA, ACM Press (2000) 71–80

17. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning
algorithms. In: Proc. 15th ACM SIGKDD Int. Conf. Knowl. Disc. Data Min.
(2009) 329–338

18. Frank, A., Asuncion, A.: UCI machine learning repository. http://archive.ics.
uci.edu/ml (2010)

19. Harries, M.: SPLICE-2 comparative evaluation: Electricity pricing. Technical
report, The University of South Wales (1999)

