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Abstract. In this paper we study the problem of constructing accu-
rate block-based ensemble classifiers from time evolving data streams.
AWE is the best-known representative of these ensembles. We propose a
new algorithm called Accuracy Updated Ensemble (AUE), which extends
AWE by using online component classifiers and updating them according
to the current distribution. Additional modifications of weighting func-
tions solve problems with undesired classifier excluding seen in AWE.
Experiments with several evolving data sets show that, while still re-
quiring constant processing time and memory, AUE is more accurate
than AWE.

1 Introduction

Ensembles have attracted many researchers as an approach for improving pre-
dictive accuracy. However, most of the research is devoted to static environments
where the classification task is fixed and complete data is available for learning
classifiers. On the other hand, a new type of problems is becoming more visible,
one in which learning algorithms work in dynamic environments with data con-
tinuously generated in the form of a stream [1]. Processing data streams implies
new requirements concerning limited amount of memory, small processing time,
and one scan of incoming data. Moreover, the data distributions and definitions
of target classes change over time. These changes are categorized into sudden or
gradual concept drift depending on appearance of novel classes in a stream and
the rate of changing definitions of classes [2]. Concept drifts directly influence al-
gorithm classification abilities as classifiers generated prior to change have been
trained on a different class distribution. As the reason of these changes is hidden
and not known a priori, the task of learning classifiers becomes very difficult.

A classifier (individual or ensemble), if intended for such non-stationary envi-
ronments, has to adapt to concept drifts. Several adaptation methods have been
proposed including mainly: sliding window approaches, new online algorithms,
special detection techniques, and adaptive ensembles. In the area of adaptive
ensembles, component classifiers are generated from sequential blocks of train-
ing examples. When a new block arrives, classifiers are evaluated and later up-
dated, removed, or modified according to the result of the evaluation. Accuracy
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Weighted Ensemble (AWE) is the most popular method in this area [3]. However,
defining an appropriate size of the data block can be problematic. Moreover, too
many component classifiers can be excluded from the ensemble when they are
not accurate enough. We have also noticed in preliminary experiments that AWE
is not as accurate as other online classifiers [4].

Therefore, we decided to propose a new algorithm, called Accuracy Updated
Ensemble (AUE), which would improve over AWE on classification accuracy,
while still keeping good computational efficiency. The other aim of this paper is
to evaluate the proposed algorithm on several changing data sets and compare
it with AWE and other related ensembles available in the MOA framework [5].

2 Related Work

Similarly to most researchers we consider completely supervised learning, i.e.
class labels of incoming examples in the stream are available and can be used
for evaluating and updating a classifier. Below, we briefly discuss methods most
related to our proposal and those used in experiments. For more comprehen-
sive reviews, in particular concerning online incremental ensembles consult [1,
2]. Unlike ensembles that can be modified after reading single examples, we dis-
cuss streams divided into blocks of examples (non-overlapping and of the same
size). In an adaptive ensemble, each component is learned using typical “batch”
mode on the most recent block (also called a chunk) of data. Following discussion
from [1], in time-changing streams, data is generated from a mixed distribution,
which can be seen as a weighted combination of distributions characterizing the
target concepts. This justifies multiple classifiers where each component classifier
receives a weight reflecting its performance on the most recent block of data.

The SEA algorithm [6] was one of the first algorithms following this idea
of building separate classifiers from sequential blocks. Component classification
scores are evaluated on the newest block and the weakest classifier in the fixed
size ensemble can be replaced by a newly trained one.

Another way of restructuring an ensemble was proposed by Wang et al. [3].
In their Accuracy Weighted Ensemble (AWE), the authors propose to train a
new classifier on each incoming data block and use that block to evaluate all
the existing classifiers in the ensemble. They formally proved that if component
classifiers are weighted by their expected accuracy on the test data, the ensemble
improves classification accuracy over a single classifier. To weight the members
of an ensemble we need to know the actual function being learned, which is
unavailable. That is why Wang et al. proposed to derive weights by estimating
the error rate on the most recent data block xi, as shown in Equations 1-2:

MSEi =
1

|xi|
∑

(x,c)∈xi

(1− f ic(x))2, MSEr =
∑
c

p(c)(1− p(c))2, (1)

wi = MSEr −MSEi, (2)

where f jc (x) denotes the probability given by classifier Ci that x is assigned to
class c. The value of MSEr is the mean square error of a randomly predicting
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classifier and it is used as a threshold to zero the weights of classifiers, which
are not accurate enough. For the first k data chunks AWE takes a set of all
available classifiers, but when processing further chunks it selects only the k
best components to form an ensemble. For a large data stream it is impossible
to remember all the components and the number of stored components should
be limited. The predictions of components are aggregated by a weighted voting
rule. Experiments comparing AWE with different single classifiers, such as C4.5,
RIPPER, and Naive Bayes showed that AWE improved both computational
efficiency in learning and classification accuracy.

The performance of AWE and other block-built ensembles largely depends
on the size of the data blocks. Bigger blocks can lead to more accurate classifiers,
but can contain more than one concept drift. On the other hand, smaller blocks
are better at separating changes, but usually lead to poorer classifiers.

In our approach we learn classifiers with Very Fast Decision Trees (also known
as Hoeffding Trees). They were introduced in [7] to efficiently learn from massive
data in an incremental way without the need for storing consecutive examples.
The tree is learned by recursively replacing leaves with decision nodes. Each
leaf stores sufficient statistics about attribute values, which are needed by an
evaluation function that judges the merit of split-tests based on attribute values.
The key idea is to show that a relatively small sample can be enough to choose
the optimal split-test, based on collected statistics. The main innovation is the
use of the Hoeffding bound to guarantee that the selected split is really the
best one. The original VFDT algorithm was proposed for static data streams.
However different adaptations to handle concept drift were later proposed; see
their review in [1].

VFDT are also used in an ensemble called Option Trees. This generalization
of a single tree includes option nodes where instead of selecting only the best
split-test attribute, all promising attributes are kept. Later, for each of those
attributes a decision subtree is constructed. Thus, making a final decision with
an option tree involves weighted combining of the predictions of all applicable
subtrees. In our experiments we use Kirkby’s [8] proposal of Hoeffding Option
Trees (HOT) for streaming data (see section 10.4 in [1] for details).

3 Accuracy Updated Ensemble

Following the critical discussion of AWE in Section 1, we propose a new adaptive
ensemble called Accuracy Updated Ensemble (AUE). The proposed algorithm is
inspired by AWE and its weighting mechanism, but improves its flaws. AUE not
only selects classifiers, but also updates them according to the current distribu-
tion. Let us remind that processing of data blocks allowed AWE to learn compo-
nent classifiers by “traditional batch” algorithms (not special online ones) and
later only adjust component weights according to the current distribution. How-
ever, this leads to problems with tuning the block size (in [3] it was estimated in
many trails). In AUE we turn to online learning of component classifiers. This al-
lows to update base classifiers rather than only adjust their weights. If no change
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occurs between a series of blocks, the component classifier will improve just as
if it was built on a bigger block (more appropriate for periods of stability). As
a result, we can reduce the size of the block without the risk of creating less
accurate components. Furthermore, we preserve the basics of AWE’s weighting
mechanism and depreciate classifiers if sudden drift occurs. The combination of
classifier selection and updating should make AUE better than AWE in times of
stability or gradual drift, while being at least as accurate for sudden drift.

Another drawback of AWE is its weighting function. Because the algorithm
is designed to perform well on cost-sensitive data [3], the MSEr threshold in
Equation 2 cuts-off “risky” classifiers. In rapidly changing environments with
sudden concept drifts (as the Electricity data set) this threshold can “mute” all
ensemble members causing no class to be predicted. To avoid this, in AUE we
propose a simpler weighting function:

wi =
1

(MSEi + ε)
(3)

MSEi is calculated just like in Equation 1 and ε is a very small constant value,
which allows weight calculation in rare situations when MSEi = 0.

We want to update component classifiers according to the current distribu-
tion, while still keeping their diversity. To achieve this, we update only selected
classifiers. First of all, we consider only current ensemble members - the k top
weighted classifiers. Then we use MSEr as a threshold for allowing online updat-
ing of only “accurate enough” classifiers (line 12 of AUE psuedo-code). Therefore,
inaccurate classifiers can enter the ensemble, but will not be updated. The full
pseudo-code of the Accuracy Updated Ensemble is listed in Algorithm 1.

Algorithm 1 Accuracy Updated Ensemble

Input: S: data stream of examples
k: number of ensemble members

Output: E : ensemble of k online classifiers with updated weights

1: C ← ∅; //C: set of stored classifiers

2: for all data chunks xi ∈ S do
3: train classifier C′ on xi;
4: compute error MSE of C′ via cross validation on xi;
5: derive weight w′ for C′ using (3);
6: for all classifiers Ci ∈ C do
7: apply Ci on xi to derive MSEi;
8: compute weight wi based on (3);
9: E ← k of the top weighted classifiers in C ∪ {C′};

10: C ← C ∪ {C′};
11: for all classifiers Ce ∈ E do
12: if we > 1

MSEr
and Ce 6= C′ then update classifier Ce with xi;
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To sum up, AUE differs from AWE in the definition of the weight function, the
use of online base classifiers, and updating components with incoming examples.
Ensemble members are weighted, can be removed, and are not always updated,
unlike in online bagging [1]. Compared to VFDT based ensembles, ASHT and
HOT, we do not limit base classifier size, do not use any windows, and update
members only if they are accurate enough according to the current distribution.

4 Experimental Evaluation

The aim of the experiments was to compare the newly proposed AUE with AWE
and two other stream classifiers: the Hoeffding Option Tree (HOT) and a single
Hoeffding Tree with a static window (HT+Win). We chose AWE as it is the
classifier we tried to improve, HOT as a different ensemble that uses Hoeffding
Trees, and HT+Win as a reference point to using a single classifier. In all the
compared algorithms we construct component classifiers with Hoeffding Trees
and compare basic characteristics on popular synthetic and real life data sets.

All of the tested algorithms were implemented in Java as part of the MOA
framework [5]. We implemented the AWE and AUE algorithms, and a data chunk
evaluation procedure, while all the other algorithms were already a part of MOA.
The experiments were done on a machine equipped with an Intel Pentium Core 2
Duo P9300 @ 2.26 GHz processor and 3.00 GB of RAM. To make the comparison
more meaningful, we set the same parameter values for all the algorithms. For
ensemble methods we set the number of component classifiers to 15: AWE and
AUE have 15 trees, HOT has 15 options. The size of data block, as suggested in
[3], is equal dr = 500 and da = 1000, for real and artificial data sets, respectively.
We also set the static window size to 15 × blockSize to make the number of
examples seen by the windowed classifier similar to that seen by AWE and AUE.
The parameters of the Hoeffding Tree used with a static window are the same
as those of the option tree, and the base classifiers (also Hoeffding Trees) of the
ensembles.

According to the main characteristics of data streams [5, 4], we evaluate per-
formance of algorithms with respect to time efficiency, memory usage, and ac-
curacy. Classification accuracy was calculated using the data block evaluation
method, which works similarly to test-then-train paradigm. This method reads
incoming examples without processing them, until they form a data block of size
d. Each new data block is first used to test the existing classifier, then it updates
the classifier. More details concerning this method can be found in [4].

4.1 Data Sets

Following literature on adaptive ensembles we selected three real and four syn-
thetic data sets with concept drift, all of which are publicly available.

Real Data Sets. We selected: Electricity market data (Elec), Ozone level
detection (Ozone), and Donation data (Don). Electricity [9] is a data set that
consists of energy prices from the electricity market in the Australian state of
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New South Wales. Ozone problem concerns local ozone peak prediction, that is
based on eight hours measurement [10]. The true model behind the data evolves
gradually over time. Another difficulty in mining this data set, is that many of
the 72 features collected for each instance are irrelevant. Finally, Donation [11]
is a data set used for the 2nd KDDCup. Donation is the largest real data set
and contains examples of sudden drift.

Synthetic data sets. For testing algorithms on larger data sets we used four
popular generators: LED (Led), Waveform (Wave) [1], Hyperplane (Hyp) [3], and
SEA (Sea) [6]. LED consists of a stream of 24 binary attributes, 17 of which are
irrelevant, that define the digit displayed on a seven-segment LED display. We
generated 1,000,000 examples with sudden and gradual concept drift. Waveform
consists of a stream with three decision classes where the instances are described
by 40 attributes. With Waveform we generated 1,000,000 instances with gradual
concept drift. Hyperplane is used to generate a stream of 5,000,000 examples
representing gradual concept drift by rotating the decision boundary for each
concept. Finally, we use SEA to generate a data stream of 20,000,000 instances
with 10% of noise and sudden concept drift.

4.2 Results

Time analysis. Tables 1 and 2 present average train and test times for each data
set. Training time for HOT is usually the highest, in particular for larger artificial
data. Of course the single tree (HT+Win) learns much faster than ensembles.
We also analyzed graphical plots of time with respect to the number of processed
examples1, which showed that testing times remain close to constant throughout
the whole processing of the data stream. This observation is true for all tested
data sets. On the other hand, training time is not constant for all algorithms -
HOT shows clear linear growth of training time when no sudden drift occurs.
Hoeffding trees become more complex as they see more examples. In periods of
stability HOT will successively grow bigger trees, thus consuming more memory.
The windowed tree, AWE, and AUE are built from a limited number of data
blocks, which naturally restricts memory.

Table 1. Average test and train times in ms for data blocks in real data sets.

Elec Ozone Don

Train Test Train Test Train Test

HOT 101.11 6.64 62.40 1.00 2168.54 17.19
AWE 56.91 13.29 179.40 27.30 3290.93 1074.98
AUE 75.11 15.31 241.80 54.60 3292.64 1086.82
HT+Win 23.98 0.29 46.80 0.00 81.10 1.76

1 Due to space limitations, in this paper we mostly present tabular summaries. For a
complete set of plots see [4].
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Table 2. Average test and train times in ms for data blocks in artificial data sets.

Led Wave Hyp Sea

Train Test Train Test Train Test Train Test

HOT 563.68 9.93 2573.86 51.27 5170.84 14.18 4876.41 6.44
AWE 751.40 181.85 558.21 159.19 41.13 4.96 29.44 5.61
AUE 803.93 185.39 636.59 162.06 240.22 49.39 90.05 18.84
HT+Win 54.42 10.81 36.42 6.96 17.61 3.40 6.32 1.31

Memory Usage. According to Table 3, HT+Win used the least memory
on most data sets. Additionally, the analysis of all memory plots showed that
memory requirements are similar to training time requirements. HOT needs
much more memory for larger data sets than HT+Win, AWE, and AUE, which
processed the data streams using constant memory. An example of linear growth
of HOT’s memory requirements is shown in Figure 1.

Table 3. Average size of the classifier for all data sets, measured in MB.

Elec Ozone Don Led Wave Hyp Sea

HOT 0.41 0.08 13.97 2.76 12.27 18.49 24.45
AWE 0.23 0.28 5.52 0.58 0.33 0.17 0.18
AUE 0.36 0.36 5.64 0.88 0.92 0.86 0.46
HT+Win 0.22 0.30 1.15 0.73 0.42 0.17 0.07

Classification Accuracy. Table 4 presents average classification accuracies
obtained by the tested algorithms on all the data sets.

Table 4. Average accuracy for all data sets in percent.

Elec Ozone Don Led Wave Hyp Sea

HOT 74.37 91.60 94.35 70.68 82.57 85.07 89.81
AWE 71.22 67.59 94.35 71.16 79.63 70.38 78.52
AUE 74.92 76.56 94.35 71.41 82.26 84.72 88.61
HT+Win 42.43 91.60 94.35 60.22 75.46 79.08 87.64

One can notice that none of the tested classifiers is best for all the data
sets. For larger data sets, with little and mostly gradual concept drift, HOT
gives the best results with AUE being close second. For smaller data sets it is
hard to choose a winner. However, in case of sudden changes (Elec, Led) AUE
seems to be the most accurate. It is also important to notice that AUE is more
accurate than AWE on all data sets (except for Don, where they are equal). The
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Fig. 1. Growth of HOT’s memory requirements (Donation data set).

difference in accuracy is especially visible for data sets with gradual drift (Hyp,
Wave), where AWE falls far below AUE.

The most interesting concept drift was introduced in the generation of the
LED data set. We joined two gradually evolving LED data sets with a sudden
change. After half million examples we replaced one data source with another.
The algorithms’ reactions to this type of change are presented in Figure 2. The
plot shows that for this complex concept drift all algorithms have problems
with adjusting to change. AUE seems to cope best with this situation. HOT,
which performed well before the drift, falls down even below the level of AWE.
In periods of stability, HOT grows accurate but complex structures, which are
later difficult to rebuild. AWE and AUE are modular, allow quick substitution
of components, and therefore quickly react to sudden drifts.

5 Conclusions and Future Work

In this paper we introduced a new stream classifier called Accuracy Updated
Ensemble, inspired by an earlier proposed algorithm called Accuracy Weighted
Ensemble. AUE was more accurate than AWE on all data sets (except Donation
where it was equal) whilst still requiring constant processing time and memory.

Considering the updating technique of AUE we can suspect that in periods
of longer distribution stability, when no concept drift occurs, the component
classifiers can be trained on more examples and should become more accurate.
However, updating many components with similar examples may reduce their
diversity. Therefore, in on-going research we study this problem and possible
modifications of AUE to ensure additional diversity of ensemble components.
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Fig. 2. Accuracy on the Waveform data set.
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