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Abstract. While diversity of ensembles has been studied in the context
of static data, it has not still received such research interest for evolv-
ing data streams. This paper aims at analyzing the impact of concept
drift on diversity measures calculated for streaming ensembles. We con-
sider six popular diversity measures and adapt their calculations to data
stream requirements. A comprehensive series of experiments reveals the
potential of each measure for visualizing ensemble performance over time.
Measures highlighted as capable of depicting sudden and virtual drifts
over time are used as basis for detecting changes with the Page-Hinkley
test. Experimental results demonstrate that the κ interrater agreement,
disagreement, and double fault measures, although designed to quantify
diversity, provide a means of detecting changes competitive to that using
classification accuracy.

Keywords: classifier ensemble, diversity measure, data stream, concept
drift, drift detection

1 Introduction

Recent decades have increased interest in collecting big data, which resulted
in new challenges for data storage and processing. Apart from their massive
volumes, these demanding data sources are also characterized by the speed at
which data is passed to analytical systems. These properties are especially rele-
vant when data are continuously generated in the form of data streams.

Compared to static data, classification in streams implies new requirements
for algorithms, such as constraints on memory usage, restricted processing time,
and one scan of incoming examples [5,6]. An even more challenging aspect of
analyzing streaming data is that learning algorithms often act in dynamic, non-
stationary environments, where the data and target concepts change over time.
This phenomenon, called concept drift, deteriorates the predictive accuracy of
classifiers, as the instances the models were trained on differ from the current
data. Examples of real-life concept drifts include spam categorization, weather
predictions, monitoring systems, financial fraud detection, and evolving customer
preferences; for their review see, e.g. [8,11,20].

Since typical batch learning algorithms for supervised classification are not
capable of fulfilling the aforementioned data stream requirements, several new
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learning algorithms have been introduced [5,6]. They are based on using slid-
ing windows to manage memory and provide a forgetting mechanism, sampling
techniques, drift detectors, and new online algorithms. Out of several propos-
als, ensemble methods play an important role. Ensembles of classifiers are quite
naturally adapted to non-stationary data streams, as they are capable of incor-
porating new data by either introducing a new component or updating existing
components. Forgetting of outdated knowledge can be implemented by remov-
ing components that perform poorly at a given moment or by continuously
adapting component weights accordingly to performance on recent data. Classi-
fier ensembles for streaming data are typically divided into block-based (batch-
incremental) and online (instance-incremental) approaches, depending on the
way they process incoming examples.

Most of the existing experimental studies on stream classifiers focus on pre-
dictive abilities and computational costs of ensembles in several scenarios of con-
cept drifts [3]. However, in earlier research on batch ensembles for static data,
several researchers were also interested in the diversity of ensembles, which is
usually calculated as the degree in which component classifiers make different
decisions for a single case [12]. Some authors hypothesize that high predictive ac-
curacy and diversity among component classifiers should be related. As a result,
many researchers considered special techniques for: visualizing diversity [13], se-
lecting the most diverse ensemble [10], or using diversity measures to prune a
large pool of component classifiers [1,9,13].

On the other hand, such interest in diversity measures is not so visible in re-
search on data stream ensembles. As ensemble components are typically learned
form different parts of the data stream, potentially referring to different con-
cept distributions, most researchers claim that they are diversified but do not
measure it directly [18]. There have been rare attempts at directly promoting
diversity during classifier training [14,16,19], yet once again diversity over time
was not reported in these studies. Notably, Minku et al. [14] discuss the im-
pact of diversity on online ensemble learning and reactions to drift by modifying
the Poisson distribution used in Online Bagging. However, doing so they only
measure accuracy of the modified ensemble, not its diversity.

In this paper, we analyze the more general problem of measuring ensemble
diversity in evolving data streams. More precisely, we are interested in answering
the following research questions, which are not answered by previous works:

1. Which commonly used diversity measures can be calculated for streams pro-
cessed: in blocks, incrementally, incrementally with forgetting?

2. How is ensemble diversity affected by concept drifts? Does diversity change
over time?

3. Do incremental component classifiers enhance or degrade diversity, compared
to batch component classifiers?

4. Can diversity measures be used as additional information during classifier
training or drift detection?

To answer the above questions, in the following sections we perform a review
of the most popular diversity measures known from static learning, analyze the
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possibility of calculating these measures online, and perform a comprehensive
series of experiments to evaluate the use of each measure for visualizing and
detecting various types of concept-drift.

2 Related Work

2.1 Ensemble Diversity Measures

To the best of our knowledge, there have been no proposals of specialized en-
semble diversity measures for changing data streams. Therefore, we will analyze
the use of diversity measures known from static learning in streaming scenarios.
For this purpose, we selected six popular definitions of diversity based on the
comprehensive review done by Ludmila Kuncheva [12].

To illustrate the calculation of each measure, we will consider the joined
outputs of two component classifiers Ci and Cj shown in Table 1. The table
presents proportions of correct/incorrect answers of one of or both components,
thus, the total of all the cell values a+ b+ c+d = 1. An ensemble of L classifiers
will produce L(L− 1)/2 pairwise diversity values based on such tables. To get a
single value we average across all pairs.

Table 1: The 2x2 ensemble component relationship table with probabilities [12]

Ci correct Ci wrong

Cj correct a b
Cj wrong c d

The six analyzed diversity measures are: disagreement (D), Kohavi-Wolpert
variance (KW ), double fault (DF ), interrater agreement (κ), Yule’s Q statistic
(Q), and coincident failure diversity (CFD). The definitions of all the measures,
using values from Table 1, are presented in Eq. 1–6. Note that we use shorter
equivalents of definitions given by primary authors, to make measure descriptions
shorter. For a broader discussion on ways of computing each measure, please
review [12].

Di,j = b+ c (1) KW =
L− 1

2L
Dav (2)

DFi,j = d (3) κ = 1− 1

2p̄(1− p̄)
Dav (4)

Qi,j =
ad− bc
ad+ bc

(5) CFD =

{
0, p0 = 1;

1
1−p0

∑L
i=1

L−i
L−1pi, p0 < 1.

(6)
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The disagreement measure D (1) is equal to the probability that two clas-
sifiers will disagree on their decision. It is worth noting that for binary classi-
fication the true label of an example is not needed to determine if components
disagree. The Kovavi-Wolpert variance KW (2) is inspired by the variance of
the predicted class label across different training sets that were used to build
the classifier. However, here we use the property that KW differs from the aver-
aged disagreement Dav by a coefficient. Double fault DF (3) counts the number
of times both classifiers make mistakes, whereas κ (4) measures the level of
agreement between classifiers, where p̄ is the arithmetic mean of the compo-
nents’ classification accuracy. The Q statistic (5) varies between -1 and 1, where
components that tend to recognize the same objects correctly will have positive
values and components which tend to classify different examples incorrectly will
have negative values. Finally, CFD (6) is a measure that originates from soft-
ware reliability, and achieves its best value of 1 when all misclassifications are
unique. In Eq. (6), pi denotes the probability that exactly i out of L components
fail on a randomly chosen input.

2.2 Stream Classifiers and Drift Detectors

As an increasingly important data mining technique, data stream classification
has been widely studied by different communities; a detailed survey can be found
in [5,6]. In our study, we focus on representatives of block-based and online en-
sembles. As an example of that first category, we will use the Accuracy Updated
Ensemble (AUE) [3], which creates a new component with each block of exam-
ples and adds it to the ensemble, incrementally trains previously created compo-
nents, and weights (evaluates) components according to their performance on the
newest data block. As an example of online ensemble learning, we will use Online
Bagging [15], which incrementally updates components with each incoming ex-
ample and makes a final prediction with simple majority voting. The sampling,
crucial to batch bagging, is performed incrementally by presenting each example
to a component k times, where k is defined by the Poisson distribution.

In this paper, we investigate ensemble diversity measures not only as a means
of visualizing ensemble and stream characteristics, but also as a basis for drift
detection. For this purpose, we modify the Page-Hinkley (PH) test [7], however,
generally other drift detection methods could also have been adapted [8]. The
PH test considers a variable mt, which measures the accumulated difference
between observed values e (originally error estimates) and their mean till the
current moment ēt, decreased by a user-defined magnitude of allowed changes
δ: mt =

∑t
i=1 (ei − ēt − δ). After each observation et, the test checks whether

the difference between the current mt and the smallest value up to this moment
min(mi, i = 1, . . . , t) is greater than a given threshold λ. If the difference exceeds
λ, a drift is signaled. In this paper, we propose to use the studied diversity
measures as the observed value.
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3 Calculating Diversity Measures for Streaming Data

We will discuss the possibility of calculating ensemble diversity measures in three
basic stream processing scenarios: in blocks, incrementally, and prequentially [6].

Block-based processing is the most natural framework for calculating diver-
sity measures, as examples arrive in portions (chunks) of sufficient size. Thus,
one can recalculate ensemble diversity on each incoming data block in a similar
way as for static data. We note that each of the presented measures is based
on individual component predictions and their summary in the form of pair-
wise component relationships presented in Table 1. Therefore, for a data block
of d examples and L ensemble components, measures 1-6 can be computed in
O(d · L2) time and O(d · L) memory. Since d and L are user-defined constants,
this resolves to constant time and memory per block, therefore, the analyzed
measures can be successfully used in block processing.

Incremental calculation assumes that a measure can be computed based only
on a summary of all previous examples and a single new example. This is slightly
less trivial, however, if we monitor the number of processed examples and update
a, b, c, d counts with each instance, each of the measures considered in this study
can be calculated for a new example in O(L2) time and O(L2) memory.

Finally, if a stream is subject to changes, one may be interested in calculating
diversity measures prequentially, that is, incrementally with forgetting [4,7]. Two
basic approaches to calculating values with forgetting are used: sliding windows
and fading factors [7]. Sliding windows provide a way of limiting the amount
of analyzed examples by retaining a set of only d most recent examples at each
time point. Fading factors, on the other hand, discount older information across
time by multiplying the previous summary by a factor and adding a new value
computed on the the incoming example. Sliding windows resemble data blocks
updated after each example, and can be similarly used to calculate diversity
measures with forgetting. Furthermore, due to the fact that all of the analyzed
measures are based on counts, all of the measures can be also computed using
fading factors. For this purpose, it suffices to calculate the fading sum Sx,α(t)
and fading increment Nα(t) from a stream of objects x at time t [7]:

Sx,α(t) = xt + α× Sx,α(t− 1)

Nα(t) = 1 + α×Nα(t− 1)

where x can be counts of any of the values a, b, c, d from Table 1. For example,
if dt is 1 when both components misclassify an example, then double fault can
be calculated as DFα(t) = Sd,α(t)/Nα(t). As with incremental computation,
the prequential calculation of any of the analyzed diversity measures for a new
example requires O(L2) time and O(L2) memory.

To sum up, all the considered diversity measures can be computed on blocks,
incrementally, and prequentially, while fulfilling limited time and memory re-
quirements of stream processing. As we are interested in using these diversity
measures on concept-drifting data, in the following sections we will visualize and
analyze diversity calculated prequentially. To the best of our knowledge, this is
the first study of diversity measures from this perspective.



6 Brzezinski D., Stefanowski J.

4 Experimental study

We performed two basic groups of experiments, one visualizing and comparing
diversity measures over time, and another assessing the possibility of using them
as a basis for drift detection. In the first group, we tested two different ensem-
ble classifiers: Online Bagging (Bag) and Accuracy Updated Ensemble (AUE).
Bag was chosen as an online approach, whereas AUE represents block-based
ensembles. As component classifiers we compared: Naive Bayes (NB), Linear
Perceptron (P), Decision trees (J48), and Hoeffding Trees (HT). For the second
group of experiments, we compared drift detectors using Online Bagging with
HT components.

All the algorithms and evaluation methods were implemented in Java as
part of the MOA framework [2]. The experiments were conducted on a machine
equipped with a dual-core Intel i7-2640M CPU, 2.8Ghz processor and 16 GB of
RAM. For all the experiments, base learners where parametrized with default
values proposed in MOA.

4.1 Datasets

In experiments showcasing visualizations of diversity measures over time, we
used 2 real and 10 synthetic datasets1. For the real-world datasets it is difficult
to precisely state when drifts occur. In particular, Airlines (Air) is a large,
balanced dataset, which encapsulates the task of predicting whether a given
flight will be delayed and no information about drifts is available. However,
the second real dataset (PAKDD) was intentionally gathered to evaluate model
robustness against performance degradation caused by market gradual changes
and was studied by many research teams [17].

Additionally, we used the MOA framework [2] to generate 10 artificial data-
sets with different types of concept drift. The SEA generator [16] was used to
create a stream without drifts (SEAND), as well as three streams with sudden
changes and constant 1:1 (SEA1), 1:10 (SEA10), 1:100 (SEA100) class imbalance ra-
tios. Similarly, the Hyperplane generator [18] was used to simulate three streams
with different class ratios, 1:1 (Hyp1), 1:10 (Hyp10), 1:100 (Hyp100), but with a
continuous incremental drift rather than sudden changes. Streams with sub-
scripts 10 and 100 were created to assess measures in the presence of class imbal-
ance, which usually remains undetected by classification accuracy [4]. We also
tested the performance of the analyzed measures in the presence of very short,
temporary changes in a stream (RBF) created using the RBF generator [2].

Apart from data containing real drifts, we additionally created four streams
with virtual drifts, i.e., class distribution changes over time. SEARC contains
three sudden class ratio changes (1:1/1:100/1:10/1:1), whereas HypRC simulates
a continuous ratio change from 1:1 to 1:100 throughout the stream. All the
synthetic datasets, apart from RBF, contained 5–10% examples with class noise.

1 Source code, test scripts, and generator parameters available at:
http://www.cs.put.poznan.pl/dbrzezinski/software.php

http://www.cs.put.poznan.pl/dbrzezinski/software.php
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For experiments assessing diversity measures as potential drift detectors, we
created 7 synthetic datasets using the SEA (SEA), RBF (RBF), Random Tree (RT),
and Agrawal (Agr) generators [2]. Each dataset tested for a single reaction (or
lack of one) to a sudden change. SEANoDrift contained no changes, and should
not trigger any drift detector, while RT involved a single sudden change after
30 k examples. The Agr1, Agr10, Agr100 datasets also contained a single sudden
change after 30 k examples, but had a 1:1, 1:10, 1:100 class imbalance ratio,
respectively. Finally, SEARatio included a sudden 1:1/1:100 ratio change after 10
k examples and RBFBlips contained two short temporary changes, which should
not trigger the detector. The main characteristics of all the datasets are given
in Table 2.

Table 2: Characteristic of datasets

Dataset #Inst #Attrs Class ratio Noise #Drifts Drift type

SEAND 100 k 3 1:1 10% 0 none
SEA1 1 M 3 1:1 10% 3 sudden
SEA10 1 M 3 1:10 10% 3 sudden
SEA100 1 M 3 1:100 10% 3 sudden
Hyp1 500 k 5 1:1 5% 1 incremental
Hyp10 500 k 5 1:10 5% 1 incremental
Hyp100 500 k 5 1:100 5% 1 incremental
RBF 1 M 20 1:1 0% 2 blips
SEARC 1 M 3 1:1/1:100/1:10/1:1 10% 3 virtual
HypRC 500 k 3 1:1 → 1:100 5% 1 virtual
Air 539 k 7 1:1 - - unknown
PAKDD 50 k 30 1:4 - - unknown
Elec 45 k 8 1:1 - - unknown
KDDCup 494 k 41 1:4 - - unknown

SEANoDrift 20 k 3 1:1 10% 0 none
Agr1 40 k 9 1:1 1% 1 sudden
Agr10 40 k 9 1:10 1% 1 sudden
Agr100 40 k 9 1:100 1% 1 sudden
RT 40 k 10 1:1 0% 1 sudden
SEARatio 40 k 3 1:1/1:100 10% 1 virtual
RBFBlips 40 k 20 1:1 0% 0 blips

4.2 Diversity Analysis over Time

In our first group of experiments, we plotted diversity measures (1–6) over 2
real and 10 synthetic datasets with various types of drift. The measures where
prequentially calculated on a sliding window of d = 1000 examples for Bag and
AUE. Both ensemble classifiers where tested with NB, P, J48, and HT compo-
nent classifiers. For subsequent plots, we also changed the number of component
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classifiers k ∈ {2, 3, 4, 5, 7, 10, 15, 25, 50}. By changing the mentioned parameters,
we are interested in assessing the influence of:

– the type of visualized diversity measure,
– type of drift occurring in the stream,
– number of component classifiers,
– type of component base learner,
– ensemble adaptation procedure.

A set of plots depicting disagreement (D) measured on Bag with different
base learners and varying number of components is presented in Fig. 1. Due
to the overwhelming number of subplots, we only present a full figure for D,
however, a report containing plots of all the analyzed measures, for both Bag
and AUE, is available online.2

Looking at Fig. 1, one can notice that D changes over time, and does so
differently for each dataset (grid column). Moreover, subplots within one col-
umn are similar to each other. As grid rows represent the number of ensemble
components, this shows that, for a given dataset, changes in diversity are not
very sensitive to the ensemble size. This pattern was true for all the analyzed
diversity measures.

Since the shape of each single diversity plot was very similar for varying
ensemble sizes, in Fig. 2 we visually compare all the measures for Bag with
fixed k = 10 components. The first two rows in Fig. 2 present prequentially
calculated accuracy [7] and the area under the ROC curve (AUC) [4] as reference
metrics, and measures CFD, D, DF , κ, KW , Q, in consecutive rows. The plot
clearly showcases that the analyzed diversity measures differ from each other.
For example, CFD is very sensitive to ensemble changes, whereas D, DF , and
KW have relatively smooth plots. It is also worth noticing that D and KW
have plots of identical shape, yet on different y-axis scales. This is expected as
looking at Eq. (1) and (2), one can notice that KW is a scaled version of D.
Additionally, it is worth pointing out that some of the measures seem to depict
sudden (D, DF , κ) and class ratio changes (κ, CFD) over time. This suggests,
that some of the analyzed measures could be monitored over time to signal drifts
or problems with the performance of an ensemble.

Figure 3 presents disagreement D of Bag and AUE with k = 10 components
on a dataset with sudden changes (SEA1). This pair of plots shows that AUE,
which periodically replaces existing components with new classifiers, showcases
high variability over time. Furthermore, Fig. 3 gives a closer look at the impact of
using different component base learners. The Naive Bayes (NB) algorithm does
not promote diversity among components and does not depict diversity changes
over time. The Hoeffding Tree (HT) and Perceptron (P) are much better at de-
picting changes over time due to their incremental nature. Finally, batch decision
trees (J48) are only applicable to block-based ensembles. These properties were
shared by all the analyzed plots.

In the following section, we will take a closer look at the possibility of de-
tecting drifts using ensemble diversity measures.

2 http://www.cs.put.poznan.pl/dbrzezinski/software/DiversityInStream.html

http://www.cs.put.poznan.pl/dbrzezinski/software/DiversityInStream.html
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Fig. 3: Comparison of disagreementD visualizations of Bag and AUE with k = 10
components for a stream with sudden changes (SEA1)
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4.3 Drift Detection using Diversity Measures

The second group of experiments involved using the PH test to detect drifts
based on changes in prequential accuracy and diversity measures. To compare
all the analyzed metrics, we used sliding window sizes (1000–5000) and PH
test parameters (λ = 100, δ = 0.1) as proposed in [7]. Table 3 presents the
number of missed versus false detection counts, with average delay time for
correct detections; subscripts in column names indicate the PH test window size.
The results refer to total counts and means over 10 runs of streams generated
with different random seeds.

First, we note that two diversity measures, Q and KW , are missing from
Table 3. We omitted these two measures from the presentation, because the
drift detector never triggered for these measures. That means that for datasets
with drifts Q and KW always had 10 missed detections and 0 false alarms.
Thus, our first observation is that Q and KW are not good candidates for drift
monitors, at least when using the PH Test. One explanation of this fact may
be that the Kohavi-Wolpert variance KW is a measure with a small range of
values, which most probably makes it difficult for the detector to trigger. The Q
statistic, on the other hand, puts common misclassifications and correct answers
on two ends of its scale, this way introducing difficulties for the used PH Test.

Another outlying measure is CFD. The Coincident Failure Diversity is very
susceptible to small changes in the ensemble, causing a very large number of false
alarms. Therefore, just as Q and KW , CFD is not a good choice of monitored
value when detecting drifts using the PH Test.

The remaining three measures (κ, DF , D) showcase good drift detection
properties. Particularly, κ offers detection rates comparable to those of prequen-
tial accuracy with smaller delay. Additionally, κ successfully detected 9 out of
10 class ratio changes, whereas accuracy did not detect any of them. DF and
D have slightly more missed detections and are slower at signaling changes.
However, it is worth noting that for binary classification problems, D has the
potential of working in unlabeled or partially labeled stream settings. This opens
an interesting option for future research, and might mean that if predictions of
components start to disagree in an unusual way, we may be able to observe
sudden changes even without true labels of incoming examples.

5 Conclusions and Outlook

Diversity is often perceived as one of the most important characteristics of en-
semble classifiers. However, even though ensembles are among the most often
proposed approaches for concept-drifting streams, up till now ensemble diver-
sity measures have not been thoroughly studied in the context of time-evolving
data. In this paper, we reviewed diversity measures known from static data, and
analyzed the possibility of calculating them on blocks, incrementally, and pre-
quentially. Additionally, a comprehensive series of experiments was performed
to evaluate the use of each measure for visualizing and detecting various types
of concept-drift.



Ensemble Diversity in Evolving Data Streams 13

Table 3: Number of missed and false detections (in the format missed:false)
obtained using the PH test with prequential accuracy and diversity measures.
Mean delays of correct detections are given in parenthesis, where (-) means that
the detector was not triggered or the dataset did not contain any change.

Acc1k Acc2k Acc3k Acc4k Acc5k
SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agr1 0:0 (946) 0:0 (1614) 0:0 (2265) 0:0 (2920) 0:0 (3582)
Agr10 0:5 (805) 1:6 (1287) 0:1 (1685) 0:1 (2197) 0:1 (2909)
Agr100 4:13 (1416) 4:11 (1706) 5:13 (2637) 4:10 (3035) 4:9 (3748)
RT 6:0 (1851) 7:0 (2414) 7:0 (3428) 8:0 (3656) 8:0 (4514)
SEARatio 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-)
RBFBlips 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

κ1k κ2k κ3k κ4k κ5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agr1 0:0 (608) 0:0 (986) 0:0 (1352) 0:0 (1719) 0:0 (2082)
Agr10 0:6 (453) 1:8 (648) 5:8 (757) 1:7 (1115) 1:8 (1810)
Agr100 10:10 (-) 8:3 (596) 9:3 (1945) 9:3 (2769) 9:1 (3558)
RT 5:0 (1456) 6:0 (2057) 6:0 (2890) 6:0 (3809) 6:0 (4851)
SEARatio 1:0 (1073) 1:0 (1976) 1:0 (2874) 1:0 (3755) 1:0 (4635)
RBFBlips 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

DF 1k DF 2k DF 3k DF 4k DF 5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agr1 0:0 (1200) 0:0 (2112) 0:0 (3051) 0:0 (4019) 0:0 (5027)
Agr10 0:3 (881) 0:1 (1387) 0:1 (1938) 0:1 (2727) 0:1 (3817)
Agr100 10:10 (-) 10:5 (-) 10:5 (-) 10:5 (-) 10:5 (-)
RT 6:0 (2125) 8:0 (2092) 8:0 (2881) 8:0 (3688) 8:0 (4561)
SEARatio 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-)
RBFBlips 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

D1k D2k D3k D4k D5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agr1 1:0 (1582) 1:0 (2342) 1:0 (3154) 1:0 (4008) 1:0 (4909)
Agr10 9:1 (3120) 9:1 (3885) 9:0 (4704) 9:0 (5580) 9:0 (6464)
Agr100 7:12 (3693) 8:8 (2337) 8:4 (4818) 9:3 (2991) 9:3 (4272)
RT 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-)
SEARatio 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-)
RBFBlips 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

CFD1k CFD2k CFD3k CFD4k CFD5k

SEANoDrift 0:176 (-) 0:120 (-) 0:80 (-) 0:59 (-) 0:41 (-)
Agr1 0:580 (281) 0:284 (558) 0:176 (1449) 0:121 (1903) 0:93 (1386)
Agr10 0:516 (506) 0:267 (908) 0:181 (741) 0:131 (1919) 0:102 (1673)
Agr100 0:190 (1242) 0:187 (1085) 0:148 (1294) 0:113 (2463) 0:95 (2073)
RT 0:676 (218) 0:330 (531) 0:213 (810) 0:152 (1117) 0:117 (1972)
SEARatio 1:218 (2501) 0:158 (1483) 0:114 (3152) 0:100 (2402) 0:80 (2067)
RBFBlips 0:533 (-) 0:260 (-) 0:170 (-) 0:120 (-) 0:100 (-)
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Regarding the first question posed in the introduction, we can state that all
six of the analyzed measures can be adapted to data stream requirements and
computed according to three basic processing paradigms: on consecutive blocks,
incrementally, and prequentially. We find the answer to the second question much
more interesting. Visualizations of diversity measures calculated on streams with
various types of drifts have shown that ensemble diversity visibly changes over
time. In particular, we were able to highlight κ interrater agreement, double
fault, disagreement, and coincident failure diversity, as measures that were able
to depict sudden changes. Additionally, it is worth noting that diversity of the
tested ensembles was generally low in terms of absolute values, which might
signal that there is still pending research in the field of adaptive ensembles.

The third research question raised the problem of using incremental versus
batch classifiers as ensemble components. Our results show that incremental
base learners have greater potential for depicting diversity over time. In partic-
ular, Hoeffding trees and linear perceptrons were better at visualizing changes
over time than batch decision trees and the Naive Bayes algorithm. We also no-
ticed differences between using an adaptive ensemble that only updates existing
components and one that periodically creates new components. The latter, rep-
resented in our experiment by the Accuracy Updated Ensemble exhibits slightly
higher but also much more variable diversity. Surprisingly, one of the most com-
monly tuned ensemble parameters, the number of components, showcased little
impact on diversity plots over time.

Finally, we were interested whether diversity measures can be used to detect
concept drifts. A separate set of experiments employing the Page-Hinkley test
showed that κ interrater agreement, double fault, and disagreement are capable
of detecting sudden changes. In particular, κ was capable of detecting changes
equally effectively as accuracy, with smaller delays. Moreover, contrary to accu-
racy, κ was capable of detecting class ratio changes.

Observations made in this study open several lines of future research. Draw-
ing parallels from static ensembles, diversity measures could be used to prune
large ensembles online. Moreover, the complementary nature of various diver-
sity and performance measures suggests it might be worth investigating ideas of
combining multiple detectors, which would monitor more than one metric. It is
also worth recalling that for binary classification the true label of an example
is not needed to calculate disagreement. Thus, there might be a possibility of
using disagreement to detect sudden drifts in partially labeled streams, where
supervised detectors cannot be applied. Finally, data stream characteristics call
for new specialized diversity measures and visualizations. For example, one could
take into account differences in component age when calculating pairwise diver-
sity measures or visualize the variability of disagreement among component pairs
by using whiskers or box plots.
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