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Abstract. Learning classifiers from imbalanced data is particularly chal-
lenging when class imbalance is accompanied by local data difficulty
factors, such as outliers, rare cases, class overlapping, or minority class
decomposition. Although these issues have been highlighted in previous
research, there have been no proposals of algorithms that simultaneously
detect all the aforementioned difficulties in a dataset. In this paper, we
put forward two extensions to popular clustering algorithms, ImKmeans
and ImScan, and one novel algorithm, ImGrid, that attempt to detect
minority sub-clusters, outliers, rare cases, and class overlapping. Exper-
iments with artificial datasets show that ImGrid, which uses a Bayesian
test to join similar neighboring regions, is able to re-discover simulated
clusters and types of minority examples on par with competing methods,
while being the least sensitive to parameter tuning.

Keywords: class imbalance, minority class categorization, data diffi-
culty factors, class overlapping, minority sub-clusters

1 Introduction

Improving classifiers learned from class-imbalanced data has been a topic of
growing research in recent decades and several specialized algorithms have been
introduced [2,6]. However, less effort has been put into studying the characteris-
tics of imbalanced data, which make learning from imbalanced data so difficult.

It has been shown that neither the global imbalance ratio between the mi-
nority class and majority class nor the cardinality of the minority class are
the main sources of difficulty. Other data difficulty factors, referring to internal
characteristics of class distributions, are usually more influential. Several studies
have demonstrated the high impact of the following factors: decomposition of
the minority class into many sub-concepts [7,9], overlapping between the classes
[5,16], and presence of many minority class examples inside the majority class re-
gion [13]. When these data difficulty factors occur together with class imbalance,
they may seriously deteriorate the recognition of the minority class [12,13].

Identification of data difficulty factors may help in distinguishing different
categories of imbalanced datasets (easier or more difficult to learn from). Con-
sequently, specialized classifiers and preprocessing methods are more sensitive
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to certain data categories [11,12]. Therefore, such an analysis of data character-
istics and data difficulty factors may be important, on the one hand, to better
understand the nature of class imbalanced data and, on the other, to aid the
development of new classification methods.

Nevertheless, automatic discovery of the aforementioned factors in real world
datasets is not an easy task and may not give unique results. Most known stud-
ies on difficulty factors have been carried out on synthetic data with ground
truth knowledge. Discovering sub-concepts of the minority class is usually done
with clustering algorithms such as k-means [9,14]. However, tuning parameters
of clustering, the number of expected sub-concepts, dealing with complex, non-
spherical shapes and outliers is problematic in real imbalanced datasets. There-
fore, discovering minority sub-concepts still constitutes a research challenge.

Some other difficulty factors may be linked to different types of examples
forming the minority class distribution with respect to their relative position.
This view has led Napierala and Stefanowski to differentiate between safe and
unsafe examples for recognizing minority instances [11]. The unsafe examples
are further categorized into borderline, rare cases, and outliers. These authors
have also introduced an approach to identify these types of examples by analyz-
ing class label distributions in the neighborhood of minority examples [11,12].
The results of these works have been useful for constructing new preprocessing
methods and specialized classifier ensembles for imbalanced data [19]. However,
this approach is unable to detect sub-concepts inside the minority class.

Therefore, an open research question is: whether it is possible to construct
a clustering approach that simultaneously discovers sub-concepts in complex
imbalanced data and categorizes types of examples inside discovered clusters?

The main aim of this paper is to solve this research problem by introduc-
ing new specialized clustering algorithms. For this purpose, we put forward two
extensions of popular clustering algorithms, ImKmeans and ImScan, as well as
propose a novel approach, called ImGrid, dedicated to discovering minority sub-
concepts and categorizing examples simultaneously. ImGrid uses spatial, density,
and statistical characteristics of the attribute space, to detect and analyze mi-
nority class regions. The algorithms are experimentally evaluated on a compre-
hensive set of synthetic datasets with hidden sub-concept structures and various
proportions of data difficulty factors.

The paper is organized as follows: related literature is discussed in Section 2;
the proposed ImKmeans, ImScan, and ImGrid algorithms are described in Sec-
tion 3; experimental results are discussed in Section 4; and finally conclusions
and lines of future research are drawn in Section 5.

2 Related Work

2.1 Characteristics of Imbalanced Data

A dataset is considered to be imbalanced when the cardinality of the minority
class is much smaller than the majority class (which is expressed by the global



Discovering Minority Class Characteristics from Imbalanced Data 3

imbalanced ratio between these two classes). In this paper we consider a standard
formulation of the binary class or binarized multi-class imbalance problem [6].

It is worth noting that the global imbalance between classes may not pose
difficulty for learning accurate classifiers by itself. Some, even highly, imbalanced
data can be accurately learned by standard algorithms if the classes are well
separated. When the rarity of the minority class is combined with other data
difficulty factors concerning instance distributions in the attribute space [19],
then it has a stronger negative impact on the recognition of the minority class.

Although many of the considered data factors are also known to affect learn-
ing in balanced domains, when they occur together with class imbalance the
deterioration of classification performance is amplified and affects mostly (or
sometimes only) the minority class. In this study, we focus on the following data
difficulty factors: decomposing the minority class into sub-concepts, overlapping
between classes, presence of outliers, and rare instances.

The influence of class decomposition into smaller sub-parts has been noticed
by Japkowicz et al. [9]. Their experimental studies have demonstrated that the
degradation of classification performance has resulted from the fragmentation of
the minority class, rather than from changing the global imbalance ratio. Such
sub-clusters of minority examples, surrounded by majority examples correspond
to, so called, small disjuncts, which are harder to learn and cause more classifi-
cation errors than larger sub-concepts [16]. Other experiments [13] showed that
classification performance drops when decision boundaries around sub-clusters
are non-linear and overlap with majority class examples. Finally, a visual analysis
of projections of popular imbalanced UCI data [12] confirmed that the minority
class often does not form a compact homogeneous distribution, but is scattered
into many smaller sub-clusters surrounded by majority examples.

High overlapping between regions of different classes in the attribute space
has already been recognized as particularly influential for standard, balanced,
classification problems. However, its impact is even stronger when recognizing
minority examples, see e.g. experimental studies [5]. The authors of these studies
have also shown that the local imbalance ratio inside the overlapping region is
more influential than the global ratio.

Other researchers characterize difficulty factors by considering mutual po-
sitions of a minority example with respect to other examples. One of the first
studies in this direction [10] distinguished between safe and unsafe examples.
More precisely, examples located in homogenous sub-regions populated by ex-
amples from the same class were called safe, whereas all other examples were
denoted as unsafe. Napierala and Stefanowski proposed to further categorize un-
safe examples into borderline, rare cases, and outliers [11]. Borderline examples
can either be located in the overlapping between classes or positioned very close
to complex non-linear decision boundaries. The two other types of examples
occur deeper inside the safe region of the majority class. Outliers are isolated
minority class singletons, whereas rare examples correspond to very small groups
(pairs or triples) of examples. Comprehensive experiments [11,12] have shown
that most benchmark imbalanced datasets contain mainly unsafe minority ex-
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amples and the categorization of unsafe data correlates with the performance of
classifiers.

2.2 Identification of sub-concepts and types of minority examples

Nearly all approaches to identify sub-concepts apply clustering algorithms that
are run on examples of a single class, without analyzing their relation to re-
maining classes. Japkowicz et al. [7,14] proposed a k-means based oversampling
method, where random oversampling is applied to majority and minority class
clusters until the global class distribution becomes balanced. Other researchers
discover within-class sub-concepts while constructing a classifier, by exploiting
classifier predictions to tune the number of clusters k [18]. Nevertheless, the use
of clustering algorithms for real-world datasets is still a non-trivial task. In case
of k-means, the main difficulty is to tune the number of clusters k. It is also
not obvious which optimization criteria should be considered as most clustering
evaluation metrics were proposed for purely unsupervised frameworks. Moreover,
existing works focus on the minority class without taking into account its local
relationship with majority examples and challenges, such as class overlapping,
rare cases, and outliers.

In an attempt to address these issues, as one of the contributions of this
paper, we verify the utility of density-based clustering algorithms for the task of
detecting sub-concepts. One of the analyzed algorithms is DBSCAN [4], which
is capable of finding clusters of any shape and does not require the specification
of the number of clusters. Nevertheless, DBSCAN requires specification of the
following parameters: the minimal number of data points min points and the
maximal distance among those points ε in order to begin the formation of a new
cluster. Just as finding a suitable k in k-means, the tuning of min points and
epsilon is not trivial.

Additionally, the proposed ImGrid algorithm is inspired by grid-based clus-
terers [3]. Algorithms from this group divide the attribute space into a set of cells,
which are later joined in order to form clusters. To the best of our knowledge,
grid-based clusterers have not been applied to imbalanced data analysis.

Concerning the identification of types of minority class examples, Napierala
and Stefanowski [11] proposed to identify four types of examples (safe, border-
line, rare, outlier) by analyzing class label distributions inside the neighborhood
of each minority class example. The authors considered two ways of modeling
the neighborhood, either with k-nearest neighbors or kernels. Depending on the
number of examples from the majority class inside the neighborhood, it is esti-
mated how safe or unsafe a minority example is. If all, or nearly all, its neighbors
belong to the minority class, this example is treated as a safe one, otherwise it is
categorized as one of three unsafe types: borderline, rare, outlier. The decision
which of the four types should be assigned to a given example can either depend
on the parameter k or thresholds on the within-region class probabilities.1

1 Details on tuning the size of the neighborhood and a comparison between the k-NN
and kernel-based approach can be found in [12]
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3 Clustering and Categorizing Minority Examples

Following the critical discussion on limitations of existing approaches in the
previous section, the main goal of our work is to create a clustering algorithm
that is capable of not only discovering minority class sub-concepts, but also
revealing their underlying example types. For this purpose, we put forward a
novel learning approach, called ImGrid, and devise modifications of k-means
and DBSCAN, called ImKmeans and ImScan.

ImGrid (Imbalanced Grid) is inspired by grid clustering algorithms [3]. The
main steps of the algorithm involve: 1) dividing the attribute space into grid
cells, 2) joining similar adjacent cells taking into account their minority class
distributions, 3) labeling examples according to difficulty factors, 4) forming
minority sub-clusters.

Since cells are joined based on example distributions, each cell should con-
tain enough examples to make the estimation of the example density feasible.
Hence, the presented algorithm divides each dimension of the attribute space
into d m

√
|D|/10e equally wide intervals, where |D| is the size of the dataset and

m is the number of dimensions of the attribute space. This formula, inspired by
histogram bin count heuristics, ensures that, on average, we have 10 data points
in each cell. The value 10 was chosen to make the cell as small as possible,
while retaining a reasonable amount of data for statistical comparisons of cell
distributions.

The second step of ImGrid requires a method for joining adjacent cells. The
joining mechanism takes into account the distribution of minority and major-
ity class examples in grid cells and combines them only if the distribution of
the classes is similar. In particular, the algorithm aims at connecting cells that
contain examples of similar difficulty, and one way of achieving this goal is to
use the statistical hypothesis testing framework. The most popular tests for the
comparison of discrete distributions are Pearson’s chi-squared test and its exact
alternatives, such as Fisher’s exact test or Barnard’s test [1]. However, since
those tests cannot directly state that the distributions are identical (they can
only fail to reject the null hypothesis), we decided to use a Bayesian test [8],
which allows to calculate the hypotheses’ probability. Using this test, ImGrid
joins adjacent cells when the data statistically shows that the distributions are
similar. The level of required confidence in order to merge cells is a parameter
of the algorithm α; note that in this case α should be always greater than 0.5
(probability that the distributions are similar should be higher than they are
not). Since in binary classification the comparison of the class distribution re-
duces to the analysis of two proportions, we have chosen a test constructed on
the Bayes factor for the beta-binomial model. As prior distribution of the classes
we use a non-informative Jeffreys prior [8].

In the third step of ImGrid, one of four difficulty labels (safe, borderline, rare,
or outlier) is assigned to each cluster based on the ratio of minority and majority
class examples. We refer to previous studies on modeling data difficulties [12] and
use the following thresholds to assign the labels: if the proportion of minority
examples p is greater than 0.7, the safe label is assigned; if 0.7 ≥ p > 0.3 then
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borderline label is attached; the rare or outlier label is assigned if 0.3 ≥ p > 0.1
or 0.1 ≥ p > 0, respectively [12].

Finally, having a clustering that divides the data into regions of different
difficulties, adjacent cells containing minority examples are joined. By joining
minority examples regardless of their difficulty labels, the algorithm forms mi-
nority sub-clusters. The pseudocode of ImGrid is presented in Algorithm 1.

Algorithm 1 ImGrid

Input: D: m-dimensional dataset, α: threshold for statistical test
Output: types grid: grid with detected types, clustering grid: grid with clustering

1: grid← split dimensions into
⌈

m
√
|D|/10

⌉
equi-width intervals . 1) Create grid

2: to each cell ∈ grid assign corresponding data points
3: while [cell1, cell2]← find cells to join(grid) do . 2) Join similar cells
4: grid.join(cell1, cell2)

5: for cell ∈ grid do . 3) Assign type to examples in cells
6: p← cell.minority num/cell.example num
7: cell.assign label(p)

8: types grid← grid.copy()
9: for cell ∈ grid do . 4) Form minority clusters

10: for neighbor ∈ cell.get neighbors() do
11: if cell.has minority() and neighbor.has minority() then
12: grid.join(cell, neighbor)

13: clustering grid← grid
14: return [types grid, clustering grid]

1: function find cells to join(grid)
2: sort cells in grid by the prevalence of minority class in descending order
3: for cell ∈ grid do
4: for neighbor ∈ cell.get neighbors() do
5: neighbor.p ← probability that the distribution of examples in neighbor

and cell is the same
6: [p, best neighbor]← neighbor with the highest neighbor.p
7: if p > α then return [cell, best neighbor]

8: return false

We also put forward extensions of the k-means and DBSCAN clustering al-
gorithms. The proposed approaches consist of: 1) dividing the whole dataset into
two datasets with examples of one class only, 2) performing standard clustering
on the dataset with minority examples, 3) incorporating majority examples into
the clustering result, and finally, 4) assigning difficulty labels to each cluster.

In the third step of the extensions we attempted to imitate the philosophy of
the original clustering algorithms. ImKmeans assigns each majority example to
the minority cluster with the nearest centroid. This naive approach relies solely
on the global clustering information available in k-means, thus, local difficulty



Discovering Minority Class Characteristics from Imbalanced Data 7

type categorization produced ImKmeans may be very imprecise. Conversely, Im-
Scan attaches majority examples to the cluster of its nearest minority example,
but only if the distance to the nearest minority example does not exceed ε. Both
ImScan and ImKmeans assign difficulty labels using the same rules as ImGrid.
Algorithms 2 and 3 present the pseudocodes of the proposed extensions.

Algorithm 2 ImKmeans

Input: D: dataset, k: number of clusters
Output: clustering: a set of clusters with detected types

1: [D+, D−]← split D based on class labels . 1) Divide dataset
2: clustering ← k-means(D+, k) . 2) Cluster minority examples
3: for maj example ∈ D− do . 3) Add majority examples to clusters
4: c← cluster with the nearest centroid to maj example
5: c.add example(maj example)

6: for c ∈ clustering do . 4) Assign type to examples in clusters
7: p← c.minority num/c.example num
8: c.assign label(p)

9: return clustering

Algorithm 3 ImScan

Input: D: dataset, ε: radius of considered neighborhood, min points: minimum
number of points required to form a dense region
Output: clustering: a set of cluster with detected types

1: [D+, D−]← split D based on class labels . 1) Divide dataset
2: clustering ← DBScan(D+, ε,min points) . 2) Cluster minority examples
3: for maj example ∈ D− do . 3) Add majority examples to clusters
4: nearest← minority example closest to maj example
5: if distance(nearest,maj example) < ε then
6: c← cluster of nearest
7: c.add example(maj example)

8: for c ∈ clustering do . 4) Assign type to examples in clusters
9: p← c.minority num/c.example num

10: c.assign label(p)

11: return clustering

To the best of our knowledge, there have been no previous proposals of algo-
rithms that simultaneously detect minority sub-concepts and identify local data
difficulty factors. In the following section, we examine the utility of the proposed
algorithms in terms sub-concept discovery and minority example categorization.

4 Experimental study

In this section, we experimentally evaluate ImGrid, ImScan, and ImKmeans, on
78 synthetic datasets with controlled proportions and placement of data difficulty
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factors. The proposed algorithms are analyzed in terms of their ability to dis-
cover class sub-concepts and detect different difficulty labels. Hence, the cluster-
ing performance and the accuracy of difficulty type categorization is measured.
Finally, we asses how well the algorithms balance clustering and categorization
tasks, and compare their processing time.

4.1 Experiment setup

In our experiments, we compare the proposed three algorithms (ImGrid, ImScan,
ImKmeans) and the algorithm for the identification of example difficulty type
by Napierala and Stefanowski [11] (Napierala) with the following parameters:

– ImGrid: α ∈ {0.75, 0.80, 0.85, 0.90, 0.95};
– ImScan: ε ∈ {10, 30, 50, 70, 90}, min points ∈ {2};
– ImKmeans: k ∈ [1, 9];
– Napierala: number of neighbors k ∈ {5, 7, 9, 11}.

The algorithm of Napierala and Stefanowski was chosen as a baseline for
categorizing minority class examples, however, this algorithm is not applicable
to clustering tasks and will not be compared with the remaining approaches in
terms of detecting sub-concepts. On the other hand, when analyzing clustering
performance, ImKmeans and Imscan default to standard definitions of k-means
and DBSCAN, and, therefore, can be considered as baseline approaches in terms
of detecting minority sub-concepts. We note that the min points parameter in
ImScan was set to 2 to ensure that rare cases can be identified as separate
clusters and distinguished from outliers.

Clustering was evaluated using Adjusted Mutual Information [17] (AMI)
which takes into account not only the total number of clusters but also the cor-
rectness of example assignation to sub-concepts. Categorization was treated as a
classification task and assessed using G-mean [10] over four difficulty types (safe,
borderline, rare, outlier). These measures were selected, as they are deemed suit-
able for imbalanced data [6,17]. We note that traditionally if at least one class is
unrecognized by the classifier, G-mean resolves to zero. To alleviate this property,
we changed the recall of unrecognized classes from zero to 0.001. To differentiate
from traditional G-mean, we denote the used measure as G-mean0.001.

All the algorithms and evaluation methods were implemented in Python using
the scikit-learn library [15].2 Experiments were conducted on a machine equipped
with an Intel i7-5500U 2.4Ghz processor and 8 GB of RAM.

4.2 Datasets

In our experiments, we used 78 synthetic binary classification datasets with six
basic shapes of minority sub-clusters and varying proportions of data difficulty

2 Source code, datasets, and reproducible test scripts available at:
https://github.com/langus0/imgrid

https://github.com/langus0/imgrid
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factors. The datasets were created with the imbalanced dataset generator of
Wilk et al. [20], which provides the ground truth for sub-concept and difficulty
type detection. As this study focuses on local data difficulty factors, all the
datasets have a constant 1:5 global class imbalance ratio. Table 1 presents the
main characteristics of each dataset.

Table 1: Dataset characteristics; superscripts denote versions of datasets with
different proportions of minority example types: u-unsafe, b-borderline, r-rare;
subscript s denotes “sparse” versions of datasets, with much less examples

Dataset Inst. Attr. Clust. Safe Border Rare Outlier

clover 1500 2/3 1 100 % 0 % 0 % 0 %
dis 1500 2/3/5 3 100 % 0 % 0 % 0 %
hyp 1500 2/3/5 1 100 % 0 % 0 % 0 %
joined 1500 2 4 100 % 0 % 0 % 0 %
normal 1500 2/3/5 1 100 % 0 % 0 % 0 %
rothyp 1500 2 1 100 % 0 % 0 % 0 %

<dataset>u ... ... +13 80 % 12 % 6 % 2 %

<dataset>b ... ... ... 40 % 60 % 0 % 0 %
<dataset>r ... ... +50 30 % 40 % 20 % 10 %
<dataset>s 250 ... ... 100 % 0 % 0 % 0 %
<dataset>us 250 ... +2 80 % 12 % 6 % 2 %

The clover dataset resembles a clover (Fig. 2a) with five prolonged leaves in
2d- (clover) and 3d-attribute space (clover3). dis constitutes an example of
spherical minority class sub-clusters in 2, 3, or 5 dimensions. Datasets hyp and
rothyp exemplify a simple and rotated hyperplane decision boundary between
two classes. The joined dataset allows to test the algorithms on overlapping
sub-clusters, whereas normal is a uniformly distributed sphere in 2, 3 or 5 di-
mensions. Each of the six basic (“safe”) datasets (clover, dis, hyp, joined,
normal, rothyp) has five additional versions:

– u-unsafe: where the minority class also contains borderline instances, rare
cases, and outliers;

– b-borderline: where the minority class is surrounded by a thick border of
examples overlapping with the majority class;

– r-rare: where the number of safe examples is smaller than the number of
unsafe examples;

– s-sparse: where the dataset has much less examples, which introduces spar-
sity to the attribute space;

– u
s -sparse: where the dataset is sparse and contains unsafe examples.

It is important to note that rare cases and outliers introduce additional mi-
nority sub-clusters to the dataset.
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4.3 Minority class sub-clusters

Due to the large number of datasets and space limitations, detailed tabular
results for each algorithm can be found in online supplementary materials.3 In
this and the following section, we summarize the results by means of selected
plots, tabular summaries, and statistical hypothesis tests.

To compare the minority clustering performance of the proposed algorithms,
we calculated Adjusted Mutual Information (AMI) for each clustering. However,
since clustering is an unsupervised learning task and results can strongly depend
on algorithm parameters (e.g. k in k-means), we compare the algorithms on two
levels. The first level involves comparing best models, i.e., we choose the best
parametrization of a given algorithm for each dataset separately, and report this
“best” value for each dataset. This level corresponds to assessing algorithms, as
if we explicitly knew how to tune them (which is usually not true). The second
level involves comparing mean models, i.e., reporting the algorithms performance
averaged over all parameterizations. This scenario corresponds to comparing
algorithms as if they were parametrized by chance.

Table 2 shows detailed results for best models in terms of AMI on three se-
lected datasets: cloveru, disb, and rothypr. Additionally, upper panels of Fig-
ure 2 show sub-concept clusterings for the selected datasets. The results confirm
commonly known, complementary, characteristics of k-means and density-based
clustering algorithms. On the disb dataset, ImKmeans is capable of finding
the perfect clustering, as this dataset has only homogenous sub-concepts. On
cloveru and rothypr, however, ImKmeans has trouble with noisy examples.
Conversely, ImScan and ImGrid perform quite well on noisy datasets, but fail to
detect the right number of clusters, when the sub-concepts overlap.

1 2 3

CD

ImScan
ImKmeans

ImGrid

(a) Best model

1 2 3

CD

ImGrid
ImScan

ImKmeans

(b) Average performance

Fig. 1: Performance ranking using AMI. Algorithms that are not significantly
different according to the Nemenyi test (at α = 0.05) are connected.

Figure 1 graphically presents the results of the Friedman test with Nemenyi
post-hoc analysis for both levels of comparison. The null-hypothesis that best
models for each algorithm perform similarly was rejected with p < 0.001. Ideally
tuned versions of ImKmeans and ImScan are significantly better in terms of AMI
than ImGrid. However, the null-hypothesis of the Friedman test for comparing
mean models cannot be rejected (p = 0.245). Moreover, ImGrid obtains the
highest mean rank in this comparison. This shows how crucial parameter tuning
is to the performance of k-means and DBSCAN.

3 http://www.cs.put.poznan.pl/dbrzezinski/software/MinorityAnalysis.html

http://www.cs.put.poznan.pl/dbrzezinski/software/MinorityAnalysis.html
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Ground truth ImKmeans ImScan ImGrid

Ground truth ImKmeans ImScan ImGrid

Ground truth ImKmeans ImScan ImGrid

Fig. 2: Comparison of clustering results (upper panel of each pair) and minority
type identification (lower panels) on the cloveru, disb, and rothypr datasets.
Clusters in upper panels are differentiated using shapes and colors. Types of
minority class examples in lower panels are color-coded as follows: safe - green,
borderline - orange, rare - red, outlier - black. Figure should be read in color.
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Table 2: Clustering and categorization results for three selected datasets:
cloveru, disb, and rothypr. Napierala added for comparison on categorization.

G-mean0.001 AMI Time Clusters Safe Border Rare Outlier

cloveru

ImKmeans 0.006 0.038 0.640 2 0 0 250 0
ImScan 0.150 0.613 0.483 11 0 235 8 7
ImGrid 0.530 0.486 0.142 9 140 58 44 8
Napierala 0.758 - 0.032 - 105 117 23 5

disb

ImKmeans 0.002 0.980 0.699 4 0 0 500 0
ImScan 0.032 0.577 0.438 2 0 250 0 0
ImGrid 0.526 0.577 0.156 2 66 121 57 6
Napierala 0.526 - 0.031 - 60 123 66 1

rothypr

ImKmeans 0.117 0.167 2.183 9 111 0 82 57
ImScan 0.106 0.183 0.428 43 82 10 123 35
ImGrid 0.134 0.000 0.165 1 134 8 59 49
Napierala 0.171 - 0.024 - 127 6 61 56

4.4 Minority example categorization

We also compared the ability of the algorithms to detect difficulty types of
minority examples. Lower panels of Figure 2 show example categorization cor-
responding to clusterings from the upper panels.

One can notice that ImScan and ImGrid obtain quite accurate difficulty
type predictions. It is worth noting, however, that on the presented plots ImGrid
produces more accurate predictions. This is due to the fact that the plots present
best models in terms of the clustering performance (AMI). Contrary to ImGrid,
ImScan’s results are not robust to the change of parameters, hence its best
parametrization for clustering did not usually correspond with the best model
for categorization. It is also worth noting that ImGrid achieves G-mean0.001

values fairly close to those obtained by Napierala, which is an algorithm designed
strictly for detecting example difficulty types and has no clustering capabilities.

As it was done for clustering performance, we also performed the Friedman
test to assess the significance of differences in performance for best and mean
models. However, in this comparison we additionally analyze the performance
of the algorithm of Napierala and Stefanowski. As Figure 3 shows, in terms
of G-mean0.001, Napierala is the best categorization algorithm, but it is not
significantly better than ImGrid when looking at mean models. Moreover, once
again it can be noticed that ImScan is highly sensitive to parameter tuning.
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1 2 3 4

CD

Napierala
ImScan

ImGrid
ImKmeans

(a) Best model

1 2 3 4

CD

Napierala
ImGrid

ImScan
ImKmeans

(b) Average performance

Fig. 3: Performance ranking using G-mean0.001. Algorithms that are not signifi-
cantly different according to the Nemenyi test (at α = 0.05) are connected.

4.5 Balancing clustering and categorization

Our final view on the performance of the algorithms involved assessing the trade-
off between clustering and categorization performance. For this purpose, we
decided to evaluate the algorithm using a linear combination of AMI and G-
mean0.001, as follows: βAMI + (1− β)Gmean0.001. By varying the parameter β,
one can control which aspect of the task, clustering or categorization, is more
important. Figure 4 shows mean ranks of the Friedman test with varying β, for
both the best and mean models.

(a) Best model (b) Average performance

Fig. 4: Mean Friedman test ranks when evaluating the algorithms according to:
βAMI + (1− β)Gmean0.001

For β = 0 and β = 1, the mean ranks in Figure 4 correspond to results pre-
sented for categorization and clustering, respectively. Nonetheless, in the range
β ∈ (0, 1) one can analyze the trade-off offered by each algorithm. Looking at
best models, it can be seen that ImScan can be successfully tuned to any value of
β, with ImGrid being usually second. However, when comparing mean models, it
can be noticed that on average ImGrid produces better results, suggesting that
is much less prone to parameter tuning. This is an important finding, as the
goal of this study was to simultaneously detect minority sub-clusters and data
difficulty factors, without prior knowledge about how to cluster examples.

Furthermore, we measured the running time of each algorithm and performed
a Friedman test (Fig. 5). One can notice that Napierala is the fastest approach,
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however, it is an algorithm for the recognition of difficulty types only. Among
algorithms which provide information about both minority sub-concepts and
examples difficulty, ImGrid is significantly the fastest method. In terms of con-
crete values, ImGrid is on average almost two times faster than ImScan, its best
competitor.

Fig. 5: Running time ranking. Algorithms that are not significantly different
according to the Nemenyi test (at α = 0.05) are connected.

5 Conclusions and Future Research

The main aim of this study was to find novel ways of discovering local data
difficulty factors from imbalanced data. Up till now, efforts in this field have
concentrated, separately, on detecting sub-concepts of the minority class and
detecting local relationships between minority and majority examples. We argue
that existing approaches to identifying minority sub-concepts are impractical as
they heavily rely on non-trivial parameter tuning and are sensitive to outliers
and other difficulty factors.

In this paper, we put forward ImGrid, an algorithm that simultaneously de-
tects minority sub-clusters, outliers, rare cases, and class overlapping in imbal-
anced data. Additionally, we proposed two extensions to popular clustering algo-
rithms, ImKmeans and ImScan, that incorporate knowledge about relationships
between minority and majority examples. A comprehensive series of experiments
characterized the strengths and weaknesses of each algorithm, showing that, de-
pending on parameter tuning, each of the proposed algorithms is capable of suc-
cessfully detecting sub-concept or characterizing difficulty types. However, the
results highlighted ImGrid as a fast and easily parametrized trade-off between
minority class clustering and example categorization.

Due to its small dependency on parameter tuning, ImGrid could be used to
analyze real world datasets. Nevertheless, as future work the topic of defining
its grid space for real data may be revisited, as more flexible approaches to
dividing the attribute space can still be proposed. Moreover, the combination of
clustering and example categorization gives the user two layers of information
about an imbalanced dataset. These layers could be combined in a data difficulty
metric, which would inform the user about the main difficulties in the dataset
and suggest possible actions. Finally, it would be very interesting to use the
gathered information to improve specialized algorithms for imbalanced data.

Acknowledgments. The authors’ research was partly funded by the Polish Na-
tional Science Center under Grant No. DEC-2013/11/B/ST6/00963. D. Brzezin-
ski acknowledges the support Institute of Computing Science Statutory Funds.



Discovering Minority Class Characteristics from Imbalanced Data 15

References

1. Barnard, G.: A new test for 2× 2 tables. Nature 156, 177 (1945)
2. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced

domains. ACM Comput. Surv. 49(2), 31:1–31:50 (2016)
3. Cheng, W., Wang, W., Batista, S.: Grid-based clustering. In: Data Clustering:

Algorithms and Applications, pp. 127–148. CRC Press (2013)
4. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering

clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad,
U.M. (eds.) Proc. 2nd Int. Conf. Knowl. Disc. Data Mining. pp. 226–231 (1996)
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