
Poznan University of Technology
Faculty of Computing Science
Institute of Computing Science

Doctoral dissertation

BLOCK-BASED AND ONLINE ENSEMBLES FOR
CONCEPT-DRIFTING DATA STREAMS

Dariusz Brzeziński

Supervisor
Jerzy Stefanowski, PhD Dr Habil.

Poznań, 2015

To my loving wife, Katarzyna,
for her patience and support

Acknowledgements

This thesis encapsulates my research carried out between October 2010 and February
2015 at the Faculty of Computing Science, Poznan University of Technology. My warmest
gratitude goes to all the people who inspired me and helped me complete this dissertation.

I am extremely grateful to my supervisor, Professor Jerzy Stefanowski, for his time,
patience, and challenging discussions throughout my scientific journey. His encouragement
and constructive comments are what made this thesis possible. I would also like to thank
Professor Tadeusz Morzy for the invaluable freedom I had in my research.

Furthermore, I am grateful to my family whose unconditional love and support have
always motivated me to work hard and pursue my goals. I would also like to thank Maciej
Piernik, Andrzej Stroiński, Dariusz Dwornikowski, Piotr Zierhoffer, and Mateusz Hołenko
for making this endeavor a pleasant one.

Finally, I would like to acknowledge the financial support of the Polish National Science
Center under Grant No. DEC-2011/03/N/ST6/00360.

Dariusz Brzeziński
Poznan, Poland
March 9, 2015

v

Contents

Notation III

Acronyms V

1 Introduction 1
1.1 Motivation and Problem Statement . 2
1.2 Main Contributions . 4
1.3 Thesis Structure . 5

2 Data Stream Classification 7
2.1 Definitions and Terminology . 7
2.2 Concept Drift . 11
2.3 Classifiers for Concept-drifting Data Streams 14

2.3.1 Single Classifiers . 15
2.3.2 Windowing Techniques . 20
2.3.3 Drift Detectors . 24
2.3.4 Ensemble Approaches . 28

3 The Accuracy Updated Ensemble 41
3.1 Classification in Block-based Environments 41
3.2 The Accuracy Updated Ensemble . 42
3.3 Experimental Evaluation . 45

3.3.1 Datasets . 46
3.3.2 Experimental Setup . 48
3.3.3 Component Analysis of the Proposed Algorithm 49
3.3.4 Comparative Study of Classifiers . 53
3.3.5 Statistical Analysis of Results . 62

3.4 Conclusions . 64

4 Strategies for Transforming Block-based Ensembles into Online Learners 67
4.1 Generalization of Block-based Ensembles . 67
4.2 Strategy I: Online Evaluation of Components 68
4.3 Strategy II: Introducing an Additional Incremental Learner 69
4.4 Strategy III: Using a Drift Detector . 70
4.5 Experimental Evaluation . 71

I

II Contents

4.5.1 Experimental Setup . 71
4.5.2 Datasets . 72
4.5.3 Analysis of Ensemble Transformation Strategies 73

4.6 Conclusions . 78

5 The Online Accuracy Updated Ensemble 79
5.1 Block-based Weighting in Online Environments 79
5.2 The Online Accuracy Updated Ensemble . 80
5.3 Experimental Evaluation . 83

5.3.1 Experimental Setup . 84
5.3.2 Analysis of OAUE Components . 85
5.3.3 Comparison of OAUE and Other Ensembles 88

5.4 Conclusions . 93

6 Classifier Evaluation Methods for Imbalanced Streams with Class Dis-
tribution Changes 95
6.1 Classifier Evaluation Methods in the Context of Concept Drift 96

6.1.1 Evaluation Measures . 96
6.1.2 Error-estimation Procedures . 100

6.2 Prequential Area Under the ROC Curve . 101
6.3 Properties of Prequential AUC . 105

6.3.1 AUC Visualizations Over Time . 105
6.3.2 Prequential AUC Averaged Over Entire Streams 107

6.4 Experimental Analysis . 120
6.4.1 Experimental Setup . 120
6.4.2 Datasets . 121
6.4.3 Prequential AUC Evaluation Time 122
6.4.4 Drift Detection Using Prequential AUC 123
6.4.5 Classifier Comparison . 124

6.5 Conclusions . 128

7 Conclusions and Future Work 129

A Experiment scripts 133
A.1 Accuracy Updated Ensemble . 133
A.2 Transformation strategies . 136
A.3 Online Accuracy Updated Ensemble . 136
A.4 Prequential AUC . 137

B List of publications 141

Bibliography 143

Notation

Bj the jth block of examples
C degree of consistency
Ci classifier (the ith ensemble member)
C ′ candidate classifier
D degree of discriminancy
d block or window size
δ split confidence
E ensemble of classifiers
FF Friedman test statistic
fiy(x) the probability given by classifier Ci that x is an instance of class y
G(·) split evaluation function
Kc class label (the cth class)
k number of ensemble members
κ Cohen’s Kappa
L decision tree leaf
m memory limit
ψ tie threshold for Hoeffding Tree splits
Q(·) classifier quality measure; weighting function
S stream of examples
t timestamp/example number
τi time at which classifier Ci was created
W window of examples
wi the weight of the ith ensemble member
X attribute set
Xi the ith attribute
xt the tth example
yt label of xt

III

Acronyms

ACE Adaptive Classifier Ensemble
ADWIN Adaptive Windowing algorithm
AOC Area Over the ROC Curve
ASHT Adaptive-Size Hoeffding Trees
AUC Area Under the ROC Curve
AUE Accuracy Updated Ensemble
AWE Accuracy Weighted Ensemble
Bag Online Bagging
BWE Batch Weighted Ensemble
CD Critical Difference
CUSUM Cumulative Sum
DDM Drift Detection Method
DWM Dynamic Weighted Majority
ECDD EWMA for Concept Drift Detection
EDDM Early Drift Detection Method
EWMA Exponentially Weighted Moving Average
GMA Geometric Moving Average
HOT Hoeffding Option Tree
IFN Information Network algorithm
Lev Leveraging Bagging
MOA Massive Online Analysis framework
MSE Mean Square Error
MSRT Multiple Semi-Random decision Trees
NB Naive Bayes
NIP Numerical Interleave Pruning
NSE Learn++.NSE
OAUE Online Accuracy Updated Ensemble
PH Page-Hinkley test
ROC Receiver Operating Characteristic
ROI Return Of Interest
SEA Streaming Ensemble Algorithm
UFFT Ultra Fast Forest of Trees
VFDT Very Fast Decision Tree
WWH Weighted Windows with follow the leading History

V

Chapter 1

Introduction

Due to the growing number of applications of computer systems, vast amounts of digital
data related to almost all facets of life are gathered for storage and processing purposes.
From traffic control to stock indexes, from microblog posts to supermarket checkouts, mod-
ern societies record massive datasets which may contain hidden knowledge. However, due
to the volume of the gathered data, that knowledge cannot be extracted manually. That
is why, data mining methods have been proposed to automatically discover interesting,
non-trivial patterns from very large datasets [56, 74, 157, 27]. Typical data mining tasks
include association mining, classification, and clustering, all of which have been perfected
for over two decades. Nevertheless, data mining algorithms are usually applied to static,
complete datasets, while in many new applications one faces the problem of processing
massive data volumes in the form of transient data streams.

A data stream can be viewed as a potentially unbounded sequence of instances (e.g.,
call records, web page visits, sensor readings) which arrive continuously with time-varying
intensity. Due to the speed and size of data streams, it is often impossible to store in-
stances permanently or process them more than once [3, 81, 62]. Examples of application
domains where data needs to be processed in streams include: network monitoring [35],
banking [163], traffic control [10], sensor networks [63], disaster management [113], ecol-
ogy [156], sentiment analysis [152], object tracking [3], and robot vision [139]. The presence
of streaming data in this new class of applications has opened an interesting line of research
problems, including novel approaches to data mining, called data stream mining.

Learning from data streams faces three principal challenges [98]: speed, size, and
variability. The speed and size of data streams force algorithms to process data us-
ing limited amounts of time and memory, while analyzing each incoming instance only
once [49, 155, 99]. Variability, on the other hand, means learning in dynamic environ-
ments with changing patterns. The most commonly studied reason of variability in data
streams is concept drift, i.e., changes in distributions and definitions of learned concepts
over time [62]. Such unpredictable changes are reflected in the incoming learning instances
and deteriorate the accuracy of algorithms trained from past instances. For example, con-
sider the problem of analyzing a stream of microblog posts concerning a movie in pro-
duction. Upon changing the actor responsible for the main role, the stream of opinions
concerning the movie can quickly become unfavorable. This situation can be considered

1

2 Introduction

as a concept drift of the sentiment of several groups of people. An algorithm trained on all
available posts will suggest an overly optimistic average opinion about the movie [92, 47].
Therefore, data mining methods that deal with concept drifts are forced to implement
forgetting, adaptation, or drift detection mechanisms in order to adjust to changing en-
vironments. Moreover, depending on the rate of these changes, concept drifts are usually
divided into sudden, gradual, incremental, and recurring ones, all of which require different
reactions [159].

Out of several data mining tasks studied in the field of data stream processing [3, 63],
classification has received probably the most research attention. The goal of classification
is to generalize known facts, presented in the form of learning examples, and apply these
generalizations to new data [56]. A classification algorithm produces a classifier (model)
that can predict the class of new unlabeled instances, by training on instances whose class
label is supplied. Although classification has been studied for several decades in the fields
of statistics, pattern recognition, machine learning, and data mining [24, 27, 74, 82, 127],
streaming applications require new, dedicated, learning techniques. This is caused by
the aforementioned speed, size, and variability of data streams, with variability requiring
special measures in the context of classification. To tackle these challenges, classifiers for
evolving data streams make use of sliding windows, sampling methods, drift detection
techniques, and adaptive ensembles [62].

Classifier ensembles are a common technique of enhancing prediction accuracy in static
data mining, but were found additionally useful for evolving data. Ensemble algorithms are
sets of single classifiers whose predictions are aggregated to produce a final decision [46].
However, due to their modularity, ensembles also provide a natural way of adapting to
changes by modifying their structure [100, 101]. Notably, depending on whether they
process the stream one example at a time or using larger portions of examples, adaptive
ensembles can be divided into online and block-based approaches [62]. The properties,
performance, and relation between block-based and online ensembles are the main topic
of this thesis.

1.1 Motivation and Problem Statement

There are several real-world applications where data needs to be classified using limited
resources. In many cases, this involves processing data incrementally rather than using
the entire dataset at once. However, depending on the setting, class labels are available
directly after each example or only in larger portions. For example, in traffic control
true labels concerning information about congestion are available shortly after making
predictions [128]. On the other hand, in the classification of combustion processes in cement
plants, samples are accumulated throughout some time, sent to a laboratory, and labeled
in blocks [154]. This distinction defines two common trends in data stream classification:
one in which algorithms are optimized to work online, and another in which classifiers
utilize the block-based nature of the processing environment.

Adaptive ensembles are among the most studied classifiers for both block-based and
online environments. However, the way in which they are designed for each of these two

1.1. Motivation and Problem Statement 3

settings differs. Most block-based ensembles periodically evaluate their component classi-
fiers and substitute the weakest ensemble member with a new (candidate) classifier after
each block of examples [155, 163]. Such approaches are designed to cope mainly with
gradual concept drifts, as they passively forget old concepts rather than actively detect
new ones. Furthermore, when training their components, block-based classifiers often take
advantage of batch algorithms known from static classification. The main drawback of
block-based ensembles is their delay in reactions to sudden concept drifts caused by an-
alyzing true labels only after each full block of examples. Another disadvantage is the
difficulty of tuning the block size to offer a compromise between fast reactions to drifts
and high accuracy in periods of concept stability.

In contrast to block-based approaches, online ensembles are designed to learn in envi-
ronments where class labels are available after each incoming example. With labels arriving
online, algorithms have the possibility of reacting to concept drifts much faster than in en-
vironments where processing is performed in larger blocks of data. Many researchers tackle
this problem by designing new online ensemble methods, which are incrementally trained
after each instance and try to actively detect concept changes [16, 91, 132]. Most of these
newly proposed ensembles are characterized by higher computational costs than block-
based methods and the used drift adaptation mechanisms often require problem-specific
parameter tuning [34]. Furthermore, online ensembles ignore weighting mechanisms known
from block-based algorithms and do not introduce new components periodically and, thus,
require specific strategies for frequent updates of incrementally trained components.

The conclusion which can be drawn from analyzing the available stream mining liter-
ature is that for both block-based and online settings we still lack classifiers capable of
reacting simultaneously to various types of drifts. Algorithms developed for evolving data
streams usually concentrate on a single type of change, e.g., only sudden or only gradual
drift. Moreover, a clear separation can be noticed — classifiers developed for online envi-
ronments concentrate on sudden drifts, while methods for reacting to gradual changes are
predominant in algorithms for block-based environments.

In order to develop classifiers capable of reacting to several types of drift, factors re-
sponsible for the success of particular methods in both settings should be studied. Such an
analysis could showcase the possibility of combining the most beneficial properties of each
group of algorithms in a single classification method. Adaptive ensembles provide a natu-
ral ground for this kind of research, as they are among the most popular classifiers both
in block-based and online settings. Furthermore, ensembles in both settings share several
architectural similarities, which could facilitate the consolidation of learning mechanisms
from different algorithms. To the best of our knowledge, there has been no systematic
analysis of relations between block-based and online ensembles in scientific literature.

Based on the above analysis, we formulate the following hypothesis:

Hypothesis. Novel methods for constructing adaptive data stream ensembles that react
to several types of concept drift can be proposed. Such methods can work in block-based
as well as online environments and perform comparably to state-of-the-art algorithms, in
terms of accuracy, memory usage, and processing time.

4 Introduction

The hypothesis will be verified under the following assumptions. In the block-based
setting, we consider each block of examples as a time step. The labels of all examples
in a block are available directly after predictions are made. In the online setting, every
new testing instance is a time step, the label is not delayed and becomes available after
a prediction is made. Where not stated otherwise, we assume equal costs of errors in
classification.

Apart from several types of concept drifts that are reflected by changes in class labels,
we will also analyze drifts that do not involve modifications of class definitions. Such
drifts, often called virtual, are connected with distribution changes rather than evolving
class-label or attribute-value assignments. A special case of virtual drift involves class
distribution changes, i.e., changes in the proportions of examples of each class. In the case
of highly imbalanced class distributions, such changes can negatively affect the predictive
performance of classifiers.

The problems of distribution changes and class imbalance have already been partially
analyzed in traditional data mining. However, the speed and volume of data streams
prohibit the use of many algorithms known from batch processing, which makes learning
classifiers from imbalanced streams one of the most important challenges in data stream
mining. In particular, the number of measures which can be currently used to evaluate
classifiers on imbalanced streams is very limited and equivalents of the most popular batch
metrics are unavailable. Notably, the area under the Receiver Operating Characteristic
(ROC) curve, one of the most popular classifier evaluation measures in traditional data
mining, cannot be used on large data streams due to time and memory requirements.

To verify the predictive performance of adaptive ensembles on streams with class dis-
tribution changes, we will survey available classifier evaluation methods for data streams.
We will also propose and assess an algorithm for calculating the area under the ROC curve
online with a forgetting mechanism. Consequently, the proposed algorithm will help verify
the hypothesis of this dissertation for class ratio changes as a special case of virtual drift.

1.2 Main Contributions

The main contributions of this thesis to the field of data stream classification are:
1. The thesis advances methods for introducing elements of incremental learning in

block-based ensembles. As a result, the Accuracy Updated Ensemble (AUE) algo-
rithm is developed and experimentally validated. The proposed algorithm presents
higher average predictive performance under sudden, gradual, incremental, recur-
ring, and no drifts, as compared to competitive adaptive learning algorithms.

2. The thesis contributes to the understanding of adaptive block-based and online en-
sembles in general and the relations between their concept drift reaction mechanisms
in particular. We verify if it is possible to transform block-based ensembles into on-
line learners and propose three general strategies to achieve this goal:

a) the use of a windowing technique which updates component weights after each
example,

1.3. Thesis Structure 5

b) the extension of the ensemble by an incremental classifier which is trained
between component reweighting,

c) and the use of an online drift detector which allows to shorten drift reaction
times.

3. Based on the analysis of ensemble transformation strategies, we introduce a new
error-based weighting function, which evaluates component classifiers online as they
classify incoming examples. Furthermore, we put forward the Online Accuracy Up-
dated Ensemble (OAUE), an algorithm which uses the proposed function to incre-
mentally train and weight component classifiers. The OAUE algorithm is experimen-
tally compared with selected online ensembles on several real and synthetic datasets
simulating environments containing sudden, gradual, incremental, and mixed drifts.

4. We survey existing methods for evaluating data stream classifiers. The study high-
lights problems in applicability of existing evaluation measures in the event of class
distribution changes, which can be regarded as a special case of virtual concept drift.
In this context, we propose an efficient algorithm for computing a time-oriented area
under the Receiver Operating Characteristic curve, called Prequential AUC. Finally,
we analyze the properties of Prequential AUC as a new performance metric and use
it as a complementary measure for evaluating the predictions of adaptive ensembles
on drifting class-imbalanced streams.

Several of the contributions presented in this thesis have already been published in
scientific journals. The author’s publications related to this dissertation are listed in Ap-
pendix B.

1.3 Thesis Structure

The chapters that build the thesis are organized as follows.
Chapter 2 introduces basic definitions and terminology. We define the notion of classi-

fication, block-based and online processing, data streams, and concept drift. Moreover, we
discuss related works in the field of drift reaction strategies and data stream classification,
in particular ensemble classifiers for concept-drifting data streams.

Chapter 3 focuses on block-based processing of data streams and discusses limitations
of existing ensemble classification algorithms. We propose a new data stream classifier,
called the Accuracy Updated Ensemble, which aims at reacting equally well to several
types of drift. The proposed algorithm is experimentally compared with state-of-the-art
stream methods in different drift scenarios.

Chapter 4 analyzes if and how the characteristics of block and incremental processing
can be combined to produce accurate ensemble classifiers. We propose and experimentally
evaluate three strategies to transforming a block-based ensemble into an online learner:
the use of a sliding window, an additional incrementally trained ensemble member, and a
drift detector.

Chapter 5 focuses on online classification using adaptive ensembles. We analyze possi-
ble online component weighting schemes and their influence on drift reaction. As a result,

6 Introduction

we introduce and experimentally evaluate a new incremental ensemble classifier, called
Online Accuracy Updated Ensemble, which uses an efficient weighting function based on
the mean square error of components.

Chapter 6 analyzes the predictive performance of adaptive ensembles in the context
of class distribution changes as special case of virtual concept drift. We highlight problems
with existing evaluation methods used for streams with such changes and, more generally,
streams with class imbalance. As a result, we suggest a complementary measure for scoring
classifiers learning from class-imbalanced data, called Prequential AUC, which is later used
to evaluate adaptive ensembles on streams with changing class distributions.

Chapter 7 summarizes the contributions of this thesis and concludes with a discussion
on lines of future research in the field of data stream classification.

Chapter 2

Data Stream Classification

In recent years, a lot of research attention has been given to data streams and the prob-
lem of concept drift. Scientists have categorized concept changes based on their frequency,
speed, and severity, and proposed several drift detection mechanisms. Furthermore, re-
search on concept drift combined with efficient stream processing methods have led to the
development of several classification algorithms designed to cope with evolving data, such
as: sliding window approaches, online algorithms, drift detection techniques, and adaptive
ensembles.

This chapter aims at providing basic definitions and reviewing existing works related
to the field of data stream classification. The subsequent sections are organized as follows.
Section 2.1 introduces basic terminology concerning classification, data streams, and online
processing. In Section 2.2, we formally define the problem of concept drift, provide a
taxonomy of drifts, and give real world examples of concept changes. Finally, in Section 2.3
we discuss state-of-the-art works in the field of drift reaction strategies and data stream
classifiers.

2.1 Definitions and Terminology

The data mining task analyzed in this thesis is supervised classification, which can be
described as the problem of assigning objects to one of several predefined classes. The
input data for classification is a collection of objects, also called examples or instances.
Each example is characterized by a tuple {x, y}, where x is a set of attributes describing
an object and y is the object’s class label, i.e., a special attribute which falls into one of
several categorical values (y ∈ {K1, . . . ,Kc}, where c is the number of predefined classes).
More formally, classification can be defined as follows [157]:

Definition 2.1. Classification is the task of learning a target function C that maps each
attribute set x to one of the predefined class labels y.

Classification tasks are solved by means of induction using classification algorithms,
also called learning algorithms or learners. In this thesis, we will discuss classification in
the context of predictive modeling, where the discovered target function (also called a
model or classifier) is used to predict class labels of unknown objects. Furthermore, we

7

8 Data Stream Classification

will use the term concept as a synonym of a description of a class that distinguishes it
from other classes.

Real-world classification tasks include, for example, spam detection based on email
text [43], hand movement predictions based on EEG signals [114], and anticipating flight
delay based on the time of day, airline company, and route [22]. An illustrative dataset
concerning this last example is presented in Table 2.1.

Table 2.1: Sample from the airlines dataset

Airline Flight From To Day of week Time Length Delayed?

CO 269 SFO IAH Wednesday 15 205 yes
US 1558 PHX CLT Wednesday 15 222 yes
AA 2400 LAX DFW Wednesday 20 165 yes
AA 2466 SFO DFW Wednesday 20 195 yes
AS 108 ANC SEA Wednesday 30 202 no
CO 1094 LAX IAH Wednesday 30 181 yes
DL 1768 LAX MSP Wednesday 30 220 no
DL 2722 PHX DTW Wednesday 30 228 no
DL 2606 SFO MSP Wednesday 35 216 yes
AA 2538 LAS ORD Wednesday 40 200 yes
CO 223 ANC SEA Wednesday 49 201 yes
DL 1646 PHX ATL Wednesday 50 212 yes
DL 2055 SLC ATL Wednesday 50 210 no
AA 2408 LAX DFW Wednesday 55 170 no
AS 132 ANC PDX Wednesday 55 215 no
US 498 DEN CLT Wednesday 55 179 no
B6 98 DEN JFK Wednesday 59 213 no

In the presented data, the attribute set includes seven properties of a flight: its number,
departure and arrival port, day of week, travel time, and distance. The class label is a
discrete attribute stating if a given flight was delayed. The aim of the learning algorithm
here is to find a function that is consistent with the presented dataset (usually called
the training or learning dataset) and can also be used to provide a delayed/not-delayed
prediction for future flights. By consistent we mean that the discovered function should, in
most cases, agree with the flight status, given the attribute values provided in the training
dataset.

From the learning dataset, the classification algorithm could infer that “any flight
managed by CO airlines is delayed”. Such a function can then be applied to any new flight
described by the same seven attributes as those present in the training dataset. However,
it is worth noticing that there are many different functions that could be inferred from the
given data. Moreover, the discovered functions can be represented in many forms, such as:
rules, decision trees, associations, linear and nonlinear functions, conditional probabilities,
or neural networks [127, 24, 74, 115]. The discovered functions can be used to describe
knowledge hidden in the data, but, as mentioned earlier, we will focus on predictive mod-
eling where they are used to classify unseen examples.

2.1. Definitions and Terminology 9

With many learning algorithms and many possible output functions at hand, an eval-
uation criterion is needed to choose the best possible model for a given classification task.
The main factor considered while choosing a classifier is its predictive performance. Pre-
dictive performance can be analyzed by a simple empirical error-rate, i.e. the fraction of
misclassified examples, or its complement called accuracy, i.e., the fraction of correctly
classified examples.

Accuracy can be measured directly on the training data, by verifying the number of
examples for which the classifier output matches the true class label. For example, if we
were to use the rule “any flight managed by CO airlines is delayed” and assume all flights
that do not match this rule are on time, we would get 11 matches for 17 instances in
Table 2.1, which would yield 64.7% accuracy. However, in order to avoid overfitting to the
learning data, classifiers are usually evaluated on examples other than those on which they
where trained. This involves separating the dataset into training and testing instances [82].

Traditionally, classification tasks are analyzed in the context of static datasets, where
all training and testing examples are available at once, and can be analyzed multiple times.
In contrast to such batch processing, in this thesis we will consider examples arriving in
the form of a data stream.

Definition 2.2. A data stream S is an ordered, potentially infinite, sequence of instances
xt (t = 1, 2, . . . , T) that arrive at a rate that does not permit their permanent storage in
memory.

We will consider a completely supervised framework, where an incoming example xt is
classified by a classifier C which predicts its class label. We assume that after some time the
true class yt of this example is available and the classifier can use it as additional learning
information. Thus, we do not consider other forms of learning as, e.g., a semi-supervised
framework where labels are not available for all incoming examples [120, 54, 89].

Due to their speed and size, data streams imply several constraints on classification
algorithms [87, 11, 62]:

1. It is impossible to store all the data from the data stream in memory. Only small
summaries of data streams can be computed and stored, and the rest of the infor-
mation is disposed of.

2. The arrival speed of data stream examples forces each particular instance to be
processed only once, in real time, and then discarded.

3. The distribution generating the examples can change over time, thus, data from the
past may become irrelevant or even harmful for the current summary.

Constraint 1 limits the amount of memory that algorithms operating on data streams
can use, while constraint 2 limits the time in which an item can be processed. The first
two constraints led to the development of windowing and summarization techniques. On
the other hand, constraint 3 is crucial primarily for learning algorithms, as they need to
predict future examples, and outdated information deteriorates the accuracy of classifiers.
Many of the first data stream mining approaches ignored this characteristic and formed the
group of stationary data stream learning algorithms [3]. Other studies acknowledged the

10 Data Stream Classification

third constraint as a key feature and devoted their work to evolving data stream learning.
In this thesis, we consider concept changes as a key characteristic of data streams and will
focus mainly on algorithms and techniques designed for evolving data streams.

Examples can be read from a data stream either incrementally (online) or in portions
(blocks). In the first approach, algorithms process single examples appearing one by one in
consecutive moments in time, while in the second approach, examples are available only in
larger sets called data blocks (or data chunks). Blocks B1, B2, . . . , Bj are usually of equal
size and the construction, evaluation, or updating of classifiers is done when all examples
from a new block are available.

In this thesis, we will assume that in online processing the true label yt for example
xt is available before the arrival of xt+1. Conversely, in block processing, we will assume
that instances are labeled in blocks and true labels for examples in Bj are available before
the subsequent block Bj+1 arrives. Online processing is sometimes called instance incre-
mental processing, while block-based approaches can also be denoted as batch incremental.
Figures 2.1 and 2.2 present the workflow of both processing schemes.

x0
. . .

Test model on x

Update model with xTrain model with x0

1

1

x1

Test model on x

Update model with x

2

2

x2

Test model on x

Update model with x

t

t

xt

Figure 2.1: Online processing

B0

. . .
B1 B2 Bn

Test model on B

Update model with BTrain model with B

Test model on B

Update model with B

Test model on B

Update model with B0

1 n

1 2

2

n

Figure 2.2: Block processing

Definition 2.3. A data stream S is processed online by a classifier C, iff, for each example
xt ∈ S, C classifies example xt and updates its model before example xt+1 arrives.

Definition 2.4. A data stream S is processed in blocks by a classifier C, iff, for each
block of examples Bj ∈ S, C classifies all examples in Bj and updates its model before
block Bj+1 arrives.

Online processing can be regarded as a special case of block processing where the size
of each block |Bj | = 1. However, it is worth noticing that contrary to online processing, in
block processing several instances are available at the same time, thus, allowing to identify
patterns in groups of consecutive examples.

2.2. Concept Drift 11

2.2 Concept Drift

Standard batch classification algorithms assume that examples are generated at random
according to some stationary probability distribution. However, one of the most important
properties of data streams is that they can change over time. Therefore, classifiers for data
streams need to be capable of predicting, detecting, and adapting to concept changes. In
order to do so, the nature of changes needs to be studied, including their rate, cause,
predictability and severity [70].

According to the Bayesian Decision Theory [51], a classification model can be de-
scribed by the prior probabilities of classes p(y) and class conditional probabilities p(y|x),
for all classes y ∈ {K1, . . . ,Kc}, where c is the number of predefined classes. The dynamic
nature of data streams is reflected by changes in these probability distributions in an
event called concept drift. In practical terms, concept drift means that the concept about
which data is being collected may shift from time to time after some minimal stability
period [62]. Depending on the research area, concept drift can sometimes be referred to
as temporal evolution, population drift, covariate shift, or non-stationarity. Most stud-
ies assume that concept drifts occur unexpectedly and are unpredictable, in contrast to
seasonal changes. However, concept drift adaptation mechanisms often entail solutions for
cases where changes can be anticipated in correlation with environmental events. Formally,
concept drift can be defined as follows [70]:

Definition 2.5. For a given data stream S, we say that concept drift occurs between two
distinct points in time, t and t + ∆, iff ∃x : pt(x, y) 6= pt+∆(x, y), where pt denotes the
joint distribution at time t between the set of input attributes and the class label.

Using this definition, changes in data can be characterized by changes in components
of the above relation [86, 71]:
• prior probabilities of classes p(y) can change,

• class conditional probabilities p(x|y) can change,

• as a result, posterior probabilities of classes p(y|x) may (or may not) change.

Based on the cause and effect of these changes, two types of drift are distinguished: real
drift and virtual drift [70].

Real drift is defined as changes in p(y|x). It is worth noticing that such changes can
occur with or without changes in p(x), therefore, they may or may not be visible from
the data distribution without knowing the true class labels. Such a distinction is crucial,
as some methods attempt to detect concept drifts using solely attribute values [54]. Real
drift has also been referred to as concept shift [148] and conditional change [71].

Virtual drift is usually defined as changes in the attribute-value p(x) or class p(y) dis-
tributions that do not affect p(y|x) [44, 159, 167]. However, the source and therefore the
interpretation of such changes differs among authors. Widmer and Kubat [167] attributed
virtual drift to incomplete data representation rather than true changes in concepts. Tsym-
bal [159] on the other hand defined virtual drift as changes in the data distribution that
change the decision boundary, while Delany [44] described it as a drift that does not affect

12 Data Stream Classification

the target concept. Furthermore, virtual drifts have also been called temporary drifts [106],
sampling shifts [148], and feature changes [71].

To illustrate the difference between real and virtual drifts, let us recall the example
classification problem from Table 2.1, where the task was to determine whether a given
flight will be delayed or not. If an airline company changes flight hours, but it does not
affect their delay, such a change is regarded as virtual drift. Similarly, if due to a crisis
companies change the frequency of certain flights without any effect on their delays, this
would also correspond to a virtual drift. However, if some flights become regularly delayed
even though they used to be on time, real drift is occurring. It may happen that all of the
aforementioned types of changes take place at the same time.

The difference between real and virtual drifts is also illustrated in Figure 2.3. The plot
shows that only real concept drifts change the class boundary making any previously cre-
ated model obsolete. The illustrated real drift occurs without any changes in the attribute
space, however, in practice changes in prior probabilities may appear in combination with
real drift.

real concept drift

p(y|x) changes
original data

virtual concept drift

p(x) changes, but not p(y|x)

Figure 2.3: Types of drift [70]. Circles represent examples in a two-dimensional attribute
space, different colors represent different classes.

As we will be mostly interested in the effect of concept drift on classification, we will
focus on methods that use true class labels to detect drift. We will, therefore, concentrate
mainly on real drifts regardless of whether they are visible from the input data distribution
p(x). However, we will also study classifier reactions to class distribution changes, as a
special case of virtual drift. Specialized methods for tracking changes using solely attribute
values are analyzed more thoroughly in the fields of novelty detection [116, 118, 119] and
semi-supervised learning from data streams [2, 89, 120].

Apart from differences in the cause and effect of concept changes, researchers dis-
tinguish between several ways of how such changes occur. In this aspect, drifts can be
further characterized, for example, by their permanence, severity, predictability, and fre-
quency [106, 125, 97]. However, the most analyzed aspect of drifts is the way they manifest
themselves over time [62, 99, 159, 166, 175].

Figure 2.4 shows six basic structural types of changes that may occur over time. The
first plot shows a sudden (also called abrupt) drift that instantly and irreversibly changes
the variable’s class assignment. A sudden drift occurs when at a moment in time t the
source distribution pt is suddenly replaced by a different distribution in t+1. Abrupt drifts
directly deteriorate the classification abilities of a classifier, as a once generated classifier

2.2. Concept Drift 13

Time

c1

c2

C
la
ss

Time

c1

c2

C
la
ss

Time

c1

c2

C
la
ss

Time

c1

c2

C
la
ss

Time

c1

c2

C
la
ss

Time

c1

c2

C
la
ss

Sudden Incremental Gradual

Recurring Outlier Noise

Figure 2.4: Types of changes over time [174]

has been trained on a different class distribution. Gradual drifts are not so radical and
are connected with a slower rate of changes. More formally, gradual drift refers to a
transition phase where examples from two different distributions pt and pt+∆ are mixed.
As time goes on, the probability of observing examples from pt decreases, while that
of examples from pt+∆ increases. A different type of moderate changes, which we will
refer to as incremental, includes more than two sources, however the difference between
them is small and the change is noticed only after a longer period of time [175, 125]. Yet
another type of drift concerns recurrent concepts, i.e., previously active concepts that may
reappear after some time. Moreover, some authors distinguish outliers (or blips), which
represent “rare events” in a stable distribution. Outliers as well as noise are examples of
anomalies, which are not considered as concept drift and should be ignored as the change
they represent is random. Therefore, a good data stream classifier should be capable of
combining robustness to noise with sensitivity to drifts.

It is important to note that the presented types of drift are not exhaustive and that
in real life situations concept drifts are a complex combination of many types of drift. If a
data stream of length t has just two data generating sources with distributions p and p′,
the number of possible change patterns is 2t. Since data streams are possibly unbounded,
the number of source distribution changes can be infinite. Nevertheless, it is important
to identify structural types of drift, since assumptions about the nature of changes are
crucial for designing adaptation strategies.

The problem of concept drift has not only been analyzed theoretically, but has also
been recognized and addressed in multiple application areas. For example, concept drift is
a common problem in monitoring systems, which need to distinguish unwanted situations
from “normal behavior”. This includes the detection of unwanted computer access, also
called intrusion detection, where adversary actions taken by the intruder evolve with time,
to surpass the also evolving security systems [102, 121, 135]. Similar systems are required
in telecommunication [123, 77] and finance [50]. Drift detection techniques can also be
employed to monitor and forecast traffic states and public transportation. Human driver

14 Data Stream Classification

factors and traffic patterns can evolve seasonally as well as permanently, thus the systems
have to be able to handle concept drift [124]. Furthermore, there are several applications
in the area of sensor monitoring where large numbers of sensors are distributed in the
physical world and generate streams of data that need to be combined, tracked, and
analyzed [5, 63, 9]. Such systems are used to control the work of machine operators and
to detect system faults. In the first case, human factors are the main source of concept
drift, while in the second, the change of the system’s context [136, 61, 161].

Apart from monitoring applications, concept drift affects many personal assistance
systems. This includes, for example, classifying news feeds, where drifting user interests can
be a cause of reoccurring contexts in such systems [85, 23]. Similarly, spam filters need to
evolve according to seasonality, adaptive adversaries, and changes in user preferences [111].
Although not strictly connected to data stream processing, modern recommender systems
also suffer from drift, mainly due to the change of product popularity over time, the drift
of users’ rating scale, and changes in user preferences [8, 93]. Moreover, different types of
changes affect the task of sentiment classification, where customer feedback is analyzed
online based on streams of opinions posted on social media [12, 152, 18].

Finally, concept drifts occur in many decision support and artificial intelligence sys-
tems. Bankruptcy prediction or individual credit scoring are examples of applications
where drift occurs due to hidden context [163]. Biomedical applications present another
interesting field of concept drift research due to the adaptive nature of microorganisms. For
example, as microorganisms mutate, their resistance to antibiotics changes [160]. Other
medical applications include changes in disease progression, discovering emerging resis-
tance, and monitoring nonsomnical infections [153, 164]. Concept drift also occurs in
robot vision and image recognition applications, such as biometric authentication, road
image classification, and robot navigation [158, 104]. Furthermore, intelligent household
appliances need to be adaptive to changing environments and user needs [175]. Lastly,
virtual reality requires mechanisms to take concept drift into account. Computer games
and flight simulators should adapt to the skills of different users and prevent adversary
actions like cheating [36].

The number of real-world applications that need to deal with concept drift showcases
the demand for adaptive classification algorithms. The following section presents a review
of classifiers designed to tackle concept-drifting data streams.

2.3 Classifiers for Concept-drifting Data Streams

Various categorizations of methods for handling concept drift in data streams have been
proposed [62, 99, 159, 175, 70]. For the purposes of this thesis, we will discuss four cate-
gories most related to our research:
• single classifiers,

• windowing techniques,

• drift detectors,

• and ensemble methods.

2.3. Classifiers for Concept-drifting Data Streams 15

Single classifiers are algorithms known from static learning that can be adapted to
cope with evolving data streams. Windowing techniques provide a simple forgetting mech-
anism by selecting examples introduced to the learning algorithm, thus eliminating those
examples that come from old concept distributions. A different idea stands behind trigger
approaches, which are based on drift detectors that react to concept changes and alarm
when the classifier should be rebuilt or updated. Lastly, classifier ensembles provide a way
of adapting to changes by modifying ensemble components or their aggregation method.
In the following sections, we discuss algorithms falling into all four categories.

2.3.1 Single Classifiers

Some of the popular classifiers proposed for stationary data fulfill basic stream mining
requirements, i.e., they have the qualities of an online learner and some sort of forgetting
mechanism. Moreover, some algorithms that are capable of processing data sequentially,
but do not adapt, can be easily modified to react to changes. Below, we discuss fives types
of learners that fall into these groups: neural networks, Naive Bayes, nearest neighbor
methods, rule learners, and decision trees.

Neural networks

In static (batch) data mining applications, neural networks are incrementally trained using
the epoch protocol. The entire set of examples is sequentially passed through the network
a defined number of times (epochs) causing neuron weights to be updated; in the most
popular multilayer network according to the backpropagation algorithm [168]. Presenting
the data in several epochs allows the neural network to adjust to the presented concept
and gradually improve classification accuracy.

By abandoning the epoch protocol, and presenting examples in a single pass, neural
networks can be adapted to data stream environments. Because each example is seen only
once and neuron weights are updated usually in constant time, such a modification fulfills
time requirements set by data streams. Most neural networks are fixed, meaning they do
not alter their number of neurons or architecture, thus the amount of memory necessary
to use the learner is also constant. Furthermore, forgetting is a natural consequence of
abandoning the epoch protocol. When not presenting the same examples multiple times,
the network will change according to the incoming examples, thus reacting to concept
drift. The rate of this reaction can be adjusted by the learning rate of the backpropagation
algorithm. Examples of neural networks specialized for data streams include cluster-based
neural networks [68] and evolving granular neural networks [107, 108].

Naive Bayes

The Naive Bayes algorithm is based on Bayes’ theorem and computes class-conditional
probabilities for each new example. Bayesian methods can learn incrementally and require
constant memory. However, Naive Bayes is a lossless classifier, meaning it “produces a clas-
sifier functionally equivalent to the corresponding classifier trained on the batch data” [99].

16 Data Stream Classification

To add a forgetting mechanism, sliding windows are usually employed to “unlearn” the
oldest examples.

A single Naive Bayes model will generally not be as accurate as more complex mod-
els [34]. However, Bayesian networks, which are more sophisticated and give better results,
are also suited to the data stream setting; it is only necessary to dynamically learn their
structure [26]. Finally, the Naive Bayes algorithm is often a subcomponent of more complex
methods such as decision trees for data streams [67, 66, 87].

Nearest neighbor classifiers

Nearest neighbor classifiers, also called instance-based learners or lazy learners, provide a
natural way of learning data incrementally. Each processed example is stored and serves as
a reference for new data points. Classification is based on the labels of the nearest historical
examples. In this, lossless, version of the nearest neighbor algorithm called IB1 [4], the
reference set grows with each example increasing memory requirements and classification
time. A different method from this family called IB3 [4], limits the number of stored
historical data points only to the most “usefull” for the classification process. Apart from
reducing time and memory requirements, the size limitation of the reference set provides
a forgetting mechanism as it removes outdated examples from the model.

A more recent example of using the nearest neighbor strategy to classify streaming
data is the ANNCAD algorithm [105]. In ANNCAD, the authors propose to divide the
feature space several times to create a multi-resolution data representation, where finer
levels contain more training points than coarser levels. Predictions are made according
to the majority of nearest neighbors starting at finer levels. If the finer levels give an
inconclusive predictions, coarser levels are used. Concept drift is addressed by using a
fading factor, which decreases the weight of older training examples.

Rule learners

Rule-based algorithms can also be adjusted to data stream environments. Decision rule
classifiers consist of rules, i.e., disjoint components of the model that can be evaluated
in isolation and removed from the model without major disruption. However, rules may
be computationally expensive to maintain, as a drift of a single class can affect many
decision rules. These observations served as a basis for developing complex data stream
mining systems like FLORA [166], SCALLOP [57], and FACIL [63]. These systems learn
rules incrementally and employ dynamic windows to provide a forgetting mechanism [40].
A different approach to creating classification rules from evolving data streams is the
Adaptive Very Fast Decision Rules algorithm [94, 95, 96], which uses a structure similar to
a decision tree to create rules, and rule-specific drift detectors to react to changes. Finally,
one of the most recent rule-based learners called RILL [42], groups examples similarly to
instance-based learners and generalizes these groups into rules which can evolve over time.

2.3. Classifiers for Concept-drifting Data Streams 17

Decision trees

Decision trees were one of the first classical static learning algorithms to be adapted to
data stream mining by using the Hoeffding bound. The Hoeffding bound states that with
probability 1− δ, the true mean of a random variable of range R will not differ from the
estimated mean after n independent observations by more than:

ε =

√
R2ln(1/δ)

2n . (2.1)

Using this bound, Domingos and Hulten [49] proposed a classifier called Very Fast
Decision Tree (VFDT). Although the VFDT algorithm is among the most cited works in
data stream mining, recent studies have shown that the Hoeffding bound in VFDT was
used incorrectly [147, 122]. As a result, the number of samples required to make a proper
split in the Hoeffding Tree (and several similar algorithms [80, 67, 94, 83]) is estimated
imprecisely. However, the correct formulas for calculating split points, depending on the
split function, can produce values close to the Hoeffding bound, which explains its practical
efficiency despite its incorrectness [147].

In the following paragraphs, we will refer to the classical VFDT and its modifications,
as these were the first algorithms used to adapt decision trees to data stream processing.
However, it is important to remember that formulas for calculating the split criterion in
these algorithms are imprecise and there are currently more accurate ways of creating
decision trees from data streams [147, 122, 146, 145].

Algorithm 2.1 presents the pseudo-code for VFDT. As in this thesis we discuss al-
gorithms that have the property of any-time learning, the pseudo-codes do not contain
explicit return statements. We assume that the output classifier is available at any moment
of the input stream and is able to provide a prediction after each example.

The algorithm induces a decision tree from a data stream incrementally, without the
need for storing examples after they have been used to update the tree. It works similarly
to the classic tree induction algorithm [141, 28, 142] and differs mainly in the selection of
the split attribute. Instead of selecting the best attribute (in terms of a split evaluation
function G(·)) after viewing all the examples, it uses the Hoeffding bound (in more recent
versions the McDiarmid bound [147]) to calculate the number of examples necessary to
select the right split-node with probability 1− δ.

Many enhancements to the basic VFDT algorithm have been proposed. Domingos and
Hulten [49] introduced a method of limiting memory usage. They proposed to eliminate
the statistics held by the “least promising” leaves. The least promising nodes are defined
to be the ones with the lowest values of pLeL, where pL is the probability that examples
will reach a particular leaf L, and eL is the observed error rate at L. To reduce memory
usage even more, they also suggested the removal of statistics of the poorest performing
attributes in each leaf.

The Hoeffding (and McDiarmid) bound holds true for any type of distribution. A dis-
advantage of being so general is that it is more conservative than a distribution-dependent
bound and, thus, requires more examples than really necessary. Jin and Agrawal [83] pro-

18 Data Stream Classification

Algorithm 2.1 The Hoeffding Tree algorithm [49]
Input: S: data stream of examples

X : set of discrete attributes
G(·): split evaluation function
δ: split confidence

Output: HT : Hoeffding Tree

1: HT ← a tree with a single leaf L1 (the root);
2: X1 ← X ∪ {X0}; // where X0 is the tree root
3: G1(X0)← G obtained by predicting the most frequent class in S;
4: for all classes Kk ∈ {K1, . . . ,Kc} do
5: for all values xij of each attribute Xi ∈ X do
6: nijk(l1)← 0; // j-th discrete value of i-th attribute
7: end for
8: end for
9: for all examples xt ∈ S do

10: Sort {xt, yt} into a leaf L using HT ;
11: for all attribute values xij ∈ x such that Xi ∈ XL do
12: nijk(L)← nijk(L) + 1;
13: end for
14: label L with the majority class among the examples seen so far at L;
15: if the examples seen so far at L are not all of the same class then
16: compute GL(Xi) for each Xi ∈ XL − {X0} using the counts nijk(L);
17: Xa ← the attribute with the highest GL;
18: Xb ← the attribute with the second-highest GL;
19: compute Hoeffding bound ε using (2.1);
20: if GL(Xa)−GL(Xb) > ε and Xa 6= X0 then
21: replace L by an internal node that splits on Xa;
22: for all branches of the split do
23: add a new leaf Lm;
24: Xm ← X − {Xa};
25: Gm(X0)← the G obtained by predicting the most frequent class at Lm;
26: for all classes Kk ∈ {K1, . . . ,Kc} do
27: for all values xij of each attribute Xi ∈ Xm − {X0} do
28: nijk(Lm)← 0;
29: end for
30: end for
31: end for
32: end if
33: end if
34: end for

posed the use of an alternative bound which requires less examples for each split node.
They also proposed a way of handling numerical attributes, which VFDT originally does
not support, called Numerical Interleave Pruning (NIP). NIP creates structures similar to
histograms for numerical attributes with many distinct values. With time, the number of
bins in such histograms can be pruned allowing memory usage to remain constant.

A different approach to dealing with numerical attributes was proposed by Gama
et al. [67]. The authors use binary trees as a way of dynamically discretizing numerical

2.3. Classifiers for Concept-drifting Data Streams 19

values. The same paper also investigates the use of an additional classifier at leaf nodes,
namely Naive Bayes. Other performance enhancements to Hoeffding Trees include the
use of grace periods, tie-breaking, and skewed split prevention [80, 20, 67]. Because it is
costly to compute the split evaluation function for each example, it is sensible to wait for
more examples before re-evaluating a split node. After each example, leaf statistics are
still updated, but the split nodes are evaluated after a larger number of examples dictated
by a grace period parameter. Tie breaking involves adding a new parameter ψ, which is
used in an additional condition ε < ψ in line 20 of the presented VFDT pseudo-code. This
condition prevents the algorithm form waiting too long before choosing one of two, almost
identically useful split attributes. To prevent skewed splits, Gama proposed a rule stating
that “a split is only allowed if there are at least two branches where more than pmin of
the total proportion of examples are estimated to follow the branch” [20].

The originally proposed VFDT algorithm was designed for stationary data streams
and provided no forgetting mechanism. The problem of classifying time changing data
streams with Hoeffding Trees was first tackled by Hulten et al. [80]. The authors proposed
a new algorithm called CVFDT, which used a fixed-size window to determine which nodes
are aging and may need updating. For fragments of the Hoeffding Tree that become old
and inaccurate, alternative subtrees are grown that later replace the outdated nodes. It is
worth noting, that the whole process does not require model retraining. Outdated examples
are forgotten by updating node statistics and necessary model changes are performed on
subtrees rather than the whole classifier.

Other approaches to adding a forgetting mechanism to the Hoeffding Tree include
using the Exponentially Weighted Moving Average (EWMA) [143] or ADWIN as drift
detectors [11]. The latter, gives performance guarantees concerning the obtained error
rate and both mentioned methods are more accurate and less memory consuming than
CVFDT. However, the EWMA and ADWIN tree extensions are more expensive in terms
of average time required to process a single example.

Hoeffding Trees represent state-of-the-art in single classifiers for large-scale data
streams. They fulfill all the requirements of an online learner presented in Section 2.1 and
provide good interpretability. Their performance has been compared several times with tra-
ditional decision trees, Naive Bayes, kNN, and batch ensemble methods [49, 19, 67, 80, 83]
and they proved to be much faster and less memory consuming while handling extremely
large datasets.

It is worth mentioning that apart from algorithms based on the Hoeffding bound, a
different approach to creating a decision tree for data streams was also put froward. Cohen
et al. proposed to repeatedly apply the Information Network (IFN) algorithm [103] to a
sliding window of examples and dynamically adjust the window size depending on the rate
of concept changes. The resulting algorithm, called OLIN [38], produces a new decision
tree with each fresh window of examples and does not use any error bounds to determine
split nodes. The characteristic feature of trees produced by OLIN is that they aim at
minimizing the total number of predicting attributes.

20 Data Stream Classification

2.3.2 Windowing Techniques

Many popular approaches to dealing with time changing data involve the use of sliding
windows [172, 88, 160, 13, 14, 67, 80]. Sliding windows provide a way of limiting the
amount of examples introduced to the learner, thus eliminating those examples that come
from an old concept. An important property of sliding windows is that they can trans-
form traditional batch algorithms, known from static environments, into classifiers for
concept-drifting data streams. The basic procedure of using sliding windows is presented
in Algorithm 2.2.

Algorithm 2.2 Basic windowing algorithm
Input: S: data stream of examples

W : window of examples
Output: C: a classifier built on examples in window W

1: initialize window W ;
2: for all examples xt ∈ S do
3: W ←W ∪ {xt};
4: if necessary remove outdated examples from W ;
5: rebuild/update C using W ;
6: end for

The basic windowing algorithm is straightforward. Each example updates the window
and later the classifier is updated by that window. The key part of this algorithm lies in the
definition of the window, i.e., in the way it models the forgetting process. In the simplest
approach, sliding windows are of fixed size and include only the most recent examples from
the data stream. With each new data point the oldest example that does not fit in the
window is discarded. Unfortunately, when using windows of fixed size the user is caught in
a trade-off. A classifier built on a small window of examples will react quickly to changes,
but may lose on accuracy in periods of stability. On the other hand, a classifier built on a
large window of examples will fail to adapt to rapidly changing concepts. For this reason,
more dynamic ways of modeling the forgetting process, such as heuristic adjusting of the
window size [166, 14, 88, 160, 172] or decay functions [37, 62], have been proposed. In the
following paragraphs, we present algorithms that use dynamic sliding windows.

Weighted windows

A simple way of making the forgetting process more dynamic is providing the window with
a decay function that assigns a weight to each example. Older examples receive smaller
weights and are treated as less important by the base classifier. Cohen and Strauss [37]
analyzed the use of different decay functions for calculating data stream aggregates. Equa-
tions 2.2 through 2.4 present the proposed functions.

wexp(τ) = e−λτ , λ > 0 (2.2)

wpoly(τ) = 1
τα
, α > 0 (2.3)

2.3. Classifiers for Concept-drifting Data Streams 21

wchord(τ) = 1− τ

|W |
(2.4)

Equation 2.2 presents an exponential decay function, 2.3 a polynomial function, and 2.4
a chordal function. For each of the functions, τ represents the age of an example. A new
example will have τ = 0 whilst the last example that fits chronologically in a window will
have τ = |W | − 1. The use of decay functions allows to gradually weight the examples
offering a compromise between large and small fixed windows. Algorithm 2.3 presents the
process of obtaining a window with decaying weights.

Algorithm 2.3 Weighted windows
Input: S: a data stream of examples

d: window size
w(·): weight function

Output: W : a window of examples

1: for all examples xt ∈ S do
2: if |W | = d then
3: remove the oldest example from W ;
4: end if
5: W ←W ∪ {xt};
6: for all examples xi ∈W do
7: calculate example’s weight w(xi);
8: end for
9: end for

FISH

Žliobaitė proposed a family of algorithms called FISH [173, 172, 175], that use time and
space similarities between examples as a way of dynamically creating a window. To explain
this approach, let us consider an illustrative example presented in Figure 2.5. A binary
classification problem is represented by black and white dots. The data generating sources
change with time, gradually rotating the optimal classification hyperplane. For a given
fixed area in the attribute space, depicted with a red circle, the true class of examples
changes as the optimal boundary rotates.

optimal boundary:

Figure 2.5: Rotating hyperplane example [172]: (left) initial source S1, (center) source S2
after 45◦ rotation, (right) source S3 after 90◦ rotation. Black and white dots represent the
two classes.

22 Data Stream Classification

As the example shows, concept definitions can change with time, but within a certain
time frame examples from a given concept should be close to each other in the attribute
space. Following this observation, the author proposed a method for selecting training
examples based on a distance measure Dij defined as follows:

Dij = a1d
(s)
ij + a2d

(t)
ij (2.5)

where d(s) indicates distance in attribute space, d(t) indicates distance in time, and a1, a2
are weight coefficients. In order to manage the balance between time and space distances,
d(s) and d(t) need to be normalized. For two examples xi, xj described by p attributes, the
author proposes to use the Eucledian distance (d(s)

ij =
√∑ p

k=1|xik − xjk|2) as distance in
space and the difference between example numbers (d(t)

ij = |i− j|) as distance in time. It
is worth noticing that if a2 = 0 then the measure Dij turns into instance selection, and if
a1 = 0 then we have a simple window with linearly time decaying weights. Having discussed
the proposed distance measure, we present the pseudo-code of FISH3 in Algorithm 2.4.

Algorithm 2.4 FISH3 [175]
Input: S: a data stream of examples

k: neighborhood size
windowStep: optimal window size search step
proportionStep: optimal time/space proportion search step
b: backward search size

Output: W : window of selected examples

1: for all examples xt ∈ S do
2: for α← 0; α ≤ 1; α← α+ proportionStep do
3: a1 ← α;
4: a2 ← 1− α;
5: for all remembered historical examples xj ∈ {xt−b, ...,xt−1} do
6: calculate distance Dtj using (2.5);
7: end for
8: sort the distances from minimum to maximum;
9: for s = k; s ≤ b; s← s+ windowStep do

10: select s instances having the smallest distance D;
11: using leave-one-out cross-validation build a classifier Cs using instances indexed

{t1, . . . , ts} and test it on the k nearest neighbors indexed {t1, . . . , tk};
12: record the acquired testing error es;
13: end for
14: end for
15: find the minimum error classifier Cm, where m = arg min

m=k,...,b
(em);

16: W ← instances indexed t1, ..., tm;
17: end for

For each new example xt in the data stream, FISH3 evaluates different time/space
proportions and window sizes. For each tested time/space proportion it calculates the
similarities between target observation xt and the past b instances, and sorts those dis-
tances from minimum to maximum. Next, the closest k instances to the target observation
are selected as a validation set. This set is used to evaluate different window sizes from

2.3. Classifiers for Concept-drifting Data Streams 23

k to b. FISH3 selects the training size m, which has given the best accuracy on the val-
idation set. For window testing, leave-one-out cross-validation is employed to reduce the
risk of overfitting. Without cross-validation the training set of size k is likely to give the
best accuracy, because in that case the training set is equal to the validation set. The
algorithm returns a window of m selected training examples that can be used to learn any
base classifier.

FISH3 allows to dynamically establish the size of the training window and the pro-
portion between time and space weights. The algorithm’s previous version FISH2 [172]
takes the time/space proportion as a parameter, while the first algorithm from the family,
FISH1 [173], uses a fixed window of the nearest instances. To implement a variable sample
size, FISH2 and FISH3 incorporated principles from two windowing methods proposed by
Klinkenberg et al. [88] and Tsymbal et al. [160].

FISH3 is an algorithm that needs to iterate through many window sizes and time/space
proportions, each time performing leave-one-out cross-validation. This is a costly process
and may be unfeasible for rapid data streams. That is why the definition of parameters k,
b, proportionStep, windowStep is very important. It is also worth noticing that although
the algorithm can be used with any base classifier, due to the way it selects instances, it
will work best with nearest neighbor type methods.

ADWIN

Bifet [13, 14] proposed an adapting sliding window algorithm called ADWIN suitable
for data streams with sudden drift. The algorithm keeps a sliding window W containing
the most recently read examples. The main idea of ADWIN is as follows: whenever two
“large enough” subwindows of W exhibit “distinct enough” averages, one can conclude
that the corresponding expected values are different, and the older portion of the window
is dropped. This involves answering a statistical hypothesis: “Has the average µ remained
constant in W with confidence δ”? The pseudo-code of ADWIN is listed in Algorithm 2.5.

Algorithm 2.5 Adaptive windowing algorithm [14]
Input: S: data stream of examples

δ: confidence level
Output: W : window of examples

1: initialize window W ;
2: for all xt ∈ S do
3: W ←W ∪ {xt};
4: repeat
5: drop the oldest element from W ;
6: until | ˆµW0 − ˆµW1 | < εcut holds for every split of W into W = W0 ∪W1;
7: end for

The key part of the algorithm lies in the definition of εcut and the test used to determine
if a window should be split. The authors state that different statistical tests can be used
for this purpose, but propose only one specific implementation which is based on the
Hoeffding bound. Let d denote the size of W , and d0 and d1 the sizes of W0 and W1

24 Data Stream Classification

consequently, so that d = d0 + d1. Let ˆµW0 and ˆµW1 be the averages of the values in W0

and W1, and µW0 and µW1 their expected values. The value of εcut is proposed as follows:

εcut =
√

1
2m ·

4
δ′
, (2.6)

where
m = 1

1/d0 + 1/d1
, and δ′ = δ

d
.

The statistical test in line 6 of the pseudo-code checks if the observed average in
both subwindows differs by more than threshold εcut. The threshold value is based on the
Hoeffding bound, thus gives formal guarantees of the base classifier’s performance. The
phrase “holds for every split of W into W = W0 ∪W1” means that we need to check all
pairs of subwindows W0 and W1 created by splitting W in two. The verification of all
subwindows is very costly due to the number of possible split points. That is why, the
authors proposed an improvement to the algorithm that allows to find a good cut point
quickly [14].

The originally proposed ADWIN algorithm is also a lossless learner, thus, the window
size W can grow infinitely if no drift occurs. This can be easily improved by adding a
parameter that limits the window’s maximal size. It is also worth noticing that in its
original form, ADWIN works only for 1-dimensional data, e.g., the running error. For
this method to be used for n-dimensional raw data, for example to track attribute value
changes, a separate window should be maintained for each dimension.

2.3.3 Drift Detectors

Apart from sliding windows, another group of techniques that allow to transform almost
any learner into an adaptive data stream classifier are drift detectors [70]. Their task
is to detect concept drift and alarm a base learner that its model should be rebuilt or
updated. This is usually done by a statistical test that verifies if the running error or class
distribution remain constant over time.

For streams of numbers the first proposed tests where the Cumulative Sum (CUSUM)
[133] and Geometric Moving Average (GMA) [143]. The CUSUM test raises an alarm if
the mean of the input data is significantly different from zero, while GMA checks if the
weighted average of examples in a window is higher than a given threshold. For popula-
tions more complex than numeric sequences statistical tests like the Kolmogorov-Smirnov
test [117] have been proposed. Below, we discuss five recently proposed change detectors
designed for drifting data streams.

DDM

Gama et al. [65] based their Drift Detection Method (DDM) on the fact, that in each
iteration an online classifier predicts the decision class of an example. That prediction can
be either true or false, thus, for a set of examples the error is a random variable from
Bernoulli trials. Following this observation, the authors model the number of classification
errors with a Binomial distribution.

2.3. Classifiers for Concept-drifting Data Streams 25

Let us denote pi as the probability of a false prediction and si as its standard deviation
calculated using Equation 2.7.

si =

√
pi(1− pi)

i
(2.7)

For a sufficiently large number of examples (n > 30), the Binomial distribution can be
approximated by a Gaussian distribution with the same mean and variance. Using ideas
from statistical process control [62], the authors propose to track the error rate of a
classifier by updating two registers: pmin and smin. These values are used to calculate a
warning level condition presented in Equation 2.8 and an alarm level condition presented
in Equation 2.9.

Algorithm 2.6 The Drift Detection Method [65]
Input: S: a data stream of examples

C: classifier
Output: drift ∈ {TRUE,FALSE}

1: Initialize(i, pi, si, psmin, pmin, smin);
2: newConcept← FALSE;
3: W ′ ← ∅;
4: for all examples xt ∈ S do
5: drift← FALSE;
6: if prediction C(xt) is incorrect then
7: pi ← pi + (1.0− pi)/i;
8: else
9: pi ← pi − (pi)/i;

10: end if
11: compute si using (2.7);
12: i← i+ 1;
13: if i > 30 (approximated normal distribution) then
14: if pi + si ≤ psmin then
15: pmin ← pi;
16: smin ← si;
17: psmin ← pi + si;
18: end if
19: if drift detected (2.9) then
20: drift← TRUE;
21: Initialize(i, pi, si, psmin, pmin, smin);
22: W ′ ← ∅;
23: else if warning level reached (2.8) then
24: if newConcept = TRUE then
25: W ′ ← ∅;
26: newConcept← FALSE
27: end if
28: W ′ ←W ′ ∪ {xi}
29: else
30: newConcept← TRUE;
31: end if
32: end if
33: end for

26 Data Stream Classification

Algorithm 2.7 DDM: Initialize()
Input: i, pi, si, psmin, pmin, smin: window statistics
Output: initialized values of input parameters

1: i← 1;
2: pi ← 1;
3: si ← 0;
4: psmin ←∞;
5: pmin ←∞;
6: smin ←∞;

Each time a warning level is reached, examples are remembered in a separate window.
If afterwards the error rate falls below the warning threshold, the warning is treated as a
false alarm and the separate window is dropped. However, if the alarm level is reached,
the previously taught base learner is dropped and a new one is created, but only from the
examples stored in the separate “warning” window.

pi + si ≥ pmin + α · smin (2.8)

pi + si ≥ pmin + β · smin (2.9)

The values α and β in the above conditions decide about the confidence levels at which
the warning and alarm signals are triggered. The authors proposed α = 2 and β = 3, giving
approximately 95% confidence of warning and 99% confidence of drift. Algorithm 2.6 shows
the steps of the Drift Detection Method.

DDM works best on data streams with sudden drift, as gradually changing concepts can
pass without triggering the alarm level. In its original form, when no changes are detected
DDM works like a lossless learner, constantly training the base classifier. Therefore, for
streams were drifts are rare or uncertain, it is advised to limit the maximum number of
examples presented to a classifier or periodically rebuild classifiers even when no drifts are
detected.

EDDM

Baena-García et al. [6] proposed a modification of DDM called EDDM. The authors use
the same warning-alarm mechanism that was proposed by Gama, but instead of using the
classifier’s error rate, they propose the distance error rate. They denote p′i as the average
distance between two consecutive misclassifications and s′i as its standard deviation. Using
these values the new warning and alarm conditions are given by Equations 2.10 and 2.11.

p′i + 2 · s′i
p′max + 2 · s′max

< α (2.10)

p′i + 3 · s′i
p′max + 3 · s′max

< β (2.11)

2.3. Classifiers for Concept-drifting Data Streams 27

EDDM is designed to work better than DDM for slow gradual drift, but is more
sensitive to noise. Another drawback of this method is that it searches for concept drift
when a minimum of 30 errors have occurred (as opposed to a minimum of 30 examples).
This is necessary to approximate the Binomial distribution by a Normal distribution, but
can cause a significant delay in change detection.

ADWIN

Some of the algorithms that are used as sliding windows can also be used as drift detectors.
For example, the ADWIN algorithm [13, 14] described in Section 2.3.2, apart from being
a method for dynamically selecting a window of examples, can be used to predict concept
changes. In ADWIN, a window of examples W grows until there has been a change in the
average value inside the window. Therefore, when the algorithm succeeds at finding two
distinct subwindows, the split point can be considered as a concept change.

ECDD

Recently, another popular windowing technique has been employed to detect drifts in
an algorithm called ECDD (EWMA for Concept Drift Detection) [144]. The Exponen-
tially Weighted Moving Average (EWMA) [143], apart from being a popular forgetting
mechanism [20, 21], can be used to detect an increase in the mean of a sequence of ran-
dom variables. ECDD calculates two estimators of the probability of misclassifying an
example, one using EWMA and giving more weight to recent examples, and another with
similar emphasis on recent and old data. Both estimations are compared and, when the
difference between the two estimates exceeds a predefined threshold, a drift is signaled.
Similarly to DDM, the authors also describe a warning level triggered when estimations
are approaching drift level.

Page-Hinkley Test

The Page-Hinkley test (PH) [133] is a variant of CUSUM. Although originally used as a
sequential analysis technique for change detection in signal processing [129], it has recently
been proposed as a drift detector by Gama et al. [69]. It allows efficient detection of changes
in the normal behavior of a process established by a model. The test variable mt used in
PH is defined as the cumulative difference between the observed values ei and their mean
up until the current moment in time:

mt =
t∑
i=1

(ei − êt − δ) (2.12)

where êt = 1/t
∑t
i=1 e

i and δ corresponds to the magnitude of changes that are allowed [69].
For drift detection, Gama et al. propose to treat the classifier’s error rate as the observed
value. Additionally, the minimal mt is defined as M t = min(mi; i = 1 . . . t). The PH test
calculates the difference between M t and mt (PHt = mt −M t), and if this difference is
higher than a user specified threshold (λ), a change is flagged.

28 Data Stream Classification

As an alternative to tracking the classifier’s mean error over time, Gama et al. propose
to perform the PH test with the ratio between two error estimates: a long term error
estimate (using a large window of examples or weak fading factor) and a short term error
estimate (using a short window or strong fading factor). If the short term error estimator
is significantly greater than the long term error estimator, a drift is signaled. For sliding
windows, the procedure involves two windows of different sizes W1 = {ei|i ∈ (t − d1, t]}
and W2 = {ei|i ∈ (t − d2, t]} (with d2 < d1) and computing the moving average w.r.t.
both: MW1(t) = 1/d1

∑t
i=t−d1 e

i and MW2(t) = 1/d1
∑t
i=t−d2 e

i. The PH test monitors
the ratio R(t) between both moving averages, as presented in Algorithm 2.8. It is worth
noting that this test is designed to detect mainly abrupt drifts, with higher λ entailing
fewer false alarms, but possibly causing to miss some changes [70].

Algorithm 2.8 Page-Hinkley Test [69]
Input: δ: admissible change

λ: drift threshold
e(·): loss function

Output: drift ∈ {TRUE,FALSE}

1: SR(0)← 0;mt(0)← 0;M t ← 1;
2: for all examples xt ∈ S do
3: update moving averages MW1 and MW2 using error e(xt);
4: R(t) = MW2

MW1
;

5: SR(t)← SR(t− 1) +R(t);
6: mT (t)← mT (t− 1) +R(t)− SR(t)

t − δ;
7: MT ← min(MT ,mT (t));
8: if mT (t)−MT ≥ λ then
9: drift← TRUE;

10: else
11: drift← FALSE;
12: end if
13: end for

2.3.4 Ensemble Approaches

Classifier ensembles (also called multiple classifiers or committees) are a common way of
improving classification accuracy, which has been studied in static data mining for many
years [100]. Due to their modularity, they also provide a natural way of adapting to change
by modifying ensemble members. In this section, we discuss the use of ensemble classifiers
to mine evolving data streams.

Ensemble algorithms are sets of single classifiers, called component classifiers or ensem-
ble members, whose decisions are aggregated into a final prediction. The combined decision
of many single classifiers is usually more accurate than that given by a single component.
However, in order to obtain this improvement in predictive performance, components have
to be diversified. Components can differ due to the examples they have been trained on, the
attributes they use, or the classification algorithm they use. The most common approach
to aggregating decisions of component classifiers is by majority voting. A commonly used

2.3. Classifiers for Concept-drifting Data Streams 29

generic ensemble training scheme, based on selecting training examples for components,
is presented in Algorithm 2.9.

Algorithm 2.9 Generic ensemble training algorithm [87]
Input: S: set of examples

k: number of classifiers in ensemble
Output: E : an ensemble of classifiers

1: E ← k classifiers;
2: for all classifiers Ci in ensemble E do
3: select a subset of examples Di from S;
4: build Ci using Di;
5: end for

In a data stream setting, the entire set of examples cannot be analyzed as a whole, and
the presented ensemble training scheme needs to be modified. Furthermore, when concept
drift is anticipated, a forgetting mechanism needs to be added to the process. There are
many ways of achieving these goals, such as, adding a new classifier after each block of ex-
amples, changing component weights (vote importance), or replacing the weakest ensemble
member. A comprehensive taxonomy of ensemble strategies for changing environments has
been presented in [99, 62], however, for the purpose of this thesis, we will distinguish two
general groups of ensembles:
• online ensembles which learn incrementally after processing single examples,

• block-based ensembles which process blocks of data.

In the following paragraphs, we describe ensemble methods most related to this thesis.
We will start by analyzing four block-based algorithms: the Streaming Ensemble Algo-
rithm, the Accuracy Weighted Ensemble, Learn++.NSE, and the Adaptive Classifier En-
semble. After block-based ensembles, we will discuss online ensembles focusing on Online
Bagging, the Dynamic Weighted Majority, and Hoeffding Option Trees. During the de-
scription of each algorithm, we will shortly mention classifiers, which are either wrappers
or modifications of the aforementioned ensemble methods.

Streaming Ensemble Algorithm

Street and Kim [155] proposed an ensemble method called Streaming Ensemble Algorithm
(SEA) that changes its structure to react to drifts. The authors propose a heuristic re-
placement strategy of the weakest component classifier based on two factors: accuracy and
diversity. Accuracy is considered important because, as the authors suggest, an ensemble
should correctly classify the most recent examples to adapt to drift. On the other hand,
diversity is often desirable in such ensemble methods like bagging or boosting in static
environments. The pseudo-code of SEA is listed in Algorithm 2.10.

The algorithm processes the stream in blocks of examples. Each data block is used to
train a new (candidate) classifier, which is later compared with existing ensemble members.
If any ensemble member is weaker than the candidate classifier, it is dropped and the
candidate classifier takes its place. To select the classifiers, Street and Kim propose to use

30 Data Stream Classification

Algorithm 2.10 The Streaming Ensemble Algorithm [155]
Input: S: stream of examples

d: size of each data block Bj
Q(·): classifier quality measure
k: number of classifiers in an ensemble

Output: E : ensemble of k classifiers

1: for all blocks Bj ∈ S do
2: build classifier Cj using Bj ;
3: evaluate classifier Cj−1 on Bj ;
4: evaluate all classifiers Ci ∈ E on Bj ;
5: if |E| < k then
6: E ← E ∪ {Cj−1};
7: else if ∃i : Ci ∈ E and Q(Cj−1) > Q(Ci) then
8: replace member Ci with Cj−1;
9: end if

10: end for

classification accuracy obtained on the most recent data block. They assign quality scores
to components according to their accuracy and diversity as follows:
• if both the evaluated component Ci and the ensemble E are correct, then the score

of Ci is increased by 1− |P1 − P2|;

• if Ci is correct and E incorrect, the score of Ci is increased by 1− |P1 − Pcorrect|;

• if Ci is incorrect, the score of Ci is decreased by 1− |Pcorrect − PCi |,

where P1 and P2 denote the percentages of votes gained by two highest-voted decision
classes by E , Pcorrect the percentage of votes of the correct decision class, and PCi the
percentage of votes gained by the class predicted by the candidate classifier. Based on the
obtained quality scores, the weakest component classifier is removed from the ensemble.

In the paper introducing SEA, the authors used C4.5 decision trees as base classifiers
and compared the ensemble’s accuracy with a pruned and unpruned decision tree. SEA
performed almost as well as a pruned tree on static datasets and much better on datasets
with concept drift. The authors also performed a series of experiments varying the number
of operational parameters. They showed that SEA performed best when no more than 25
components were used, base classifiers were unpruned, and simple majority voting was
used to combine member decisions.

Accuracy Weighted Ensemble

A similar way of restructuring an ensemble was proposed by Wang et al. [163]. In their
algorithm, called Accuracy Weighted Ensemble (AWE), the authors also propose to train
a new classifier C ′ on each incoming block of examples. Furthermore, the most recent
block is also used to evaluate all of the existing ensemble members to select the best
component classifiers. The difference between SEA and AWE lies in the way components
are evaluated, selected, and combined. Wang et al. stated and proved that for an ensemble

2.3. Classifiers for Concept-drifting Data Streams 31

Ek built from the k most recent data blocks and a single classifier Gk built using all of the
examples in these k blocks, the following theorem stands:

Theorem 2.1. Ek produces a smaller classification error than Gk, if classifiers in Ek are
weighted by their expected classification accuracy on the test data.

To explain the intuition behind this theorem, the authors discuss an illustrative ex-
ample that presents the importance of accurate component weighting.

Let us assume a stream of 2-dimensional data partitioned into sequential blocks ac-
cording to their arrival time. Let Bj be the data that came in between time tj and tj+1.
Figure 2.6 shows the data distribution and optimum decision boundary during each time
interval. Because the distributions in the data blocks differ, there is a problem in deter-
mining the blocks that should remain influential to accurately classify incoming data.

optimum boundary:

overfitting:

positive:

negative:

B0 B1 B2

Figure 2.6: Example data distribution

optimum boundary:

S2 S1 S0+ S2 S1+ S2 S0++B2 B1 B0+ B2 B1+ B2 B0++

Figure 2.7: Training set selection

Figure 2.7 shows the possible block sets that can be selected for ensemble training. The
best set consists of blocks B0 and B2, which have similar class distributions. This shows
that decisions based on example class distributions are bound to be better than those
based solely on data arrival time. Historical data whose class distributions are similar to
that of current data can reduce the variance of the current model and increase classification
accuracy.

It is worth noticing that the similarity of distributions in blocks largely depends on the
size of the blocks. Bigger blocks will build more accurate classifiers, but can contain more
than one change. On the other hand, smaller blocks are better at separating changes, but
usually lead to poorer classifiers. The definition of block sizes is crucial to the performance
of this algorithm.

According to Theorem 2.1, to properly weight the members of an ensemble we need
to know the actual function being learned, which is unavailable. That is why the authors

32 Data Stream Classification

propose to derive weights by estimating the error rate on the most recent data block Bj ,
as shown in Equations 2.13–2.15.

MSEij = 1
|Bj |

∑
{x,y}∈Bj

(1− fiy(x))2 (2.13)

MSEr =
∑
y

p(y)(1− p(y))2 (2.14)

wij = MSEr −MSEij , (2.15)

Function fiy(x) denotes the probability given by classifier Ci that x is an instance of
class y. This is an interesting feature, as most weighting functions use only the component’s
prediction rather than the probability of all possible classes. It is also important to note,
that for the candidate classifier C ′ the error rate is calculated using cross-validation on
the current block to avoid overfitting. Other ensemble members are evaluated on all the
examples of the current block. The value ofMSEr is the mean square error of a randomly
predicting classifier and is used to exclude components that do not contain any useful
knowledge about the data. The pseudo-code of AWE is listed in Algorithm 2.11.

Algorithm 2.11 Accuracy Weighted Ensemble [163]
Input: S: stream of examples

d: size of each data block Bj
k: number of classifiers in the ensemble
C: set of previously trained classifiers (optional)

Output: E : set of k classifiers with updated weights

1: for all blocks Bj ∈ S do
2: train classifier C ′ on Bj ;
3: compute error rate of C ′ via cross-validation on Bj ;
4: derive weight w′ for C ′ using (2.15);
5: for all classifiers Ci ∈ C do
6: apply Ci on Bj to derive MSEij ;
7: compute wij based on (2.15);
8: end for
9: E ← k of the top weighted classifiers in C ∪ {C ′}

10: C ← C ∪ {C ′}
11: end for

For the first k data blocks the algorithm outputs a set of all available classifiers, but
when processing further blocks it selects only the k best components to form the ensemble.
Wang et al. discussed that for a large data stream it is impossible to remember all the
classifiers created during the ensemble’s lifetime and the selection cannot be performed
on an unbounded set of classifiers. That is why, for dynamic data streams it is necessary
to introduce an additional parameter that limits the number of classifiers available for
selection.

The AWE algorithm works well on data streams with recurring concepts, however, as
with SEA it is crucial to properly define the data block size as it determines the ensemble’s

2.3. Classifiers for Concept-drifting Data Streams 33

flexibility. It is also worth noticing, that AWE will improve its performance gradually over
time and is best suited for large data streams.

Adaptive Classifier Ensemble

Both, SEA and AWE, are highly dependent on the data block size. Larger blocks promote
more accurate ensemble members, but extend the period in which these algorithms cannot
respond to sudden concept drifts. Small blocks, however, worsen the performance of each
component classifier and in result the entire ensemble. To overcome these drawbacks,
Nishida et al. proposed an online learning system, called Adaptive Classifier Ensemble
(ACE) [130], which uses an online learner alongside an ensemble of batch classifiers. The
basic concept of ACE is shown in Figure 2.8 and the full pseudo-code is presented in
Algorithm 2.12.

Online classifier

Batch classifier 1

Batch classifier 2

Batch classifier J

...

input

aggregated

prediction

w0

w1

w2

wJ

drift

detector

data

block

Figure 2.8: Basic architecture of ACE

ACE consists of one online classifier, many batch classifiers, and a drift detector.
With each incoming example, the online classifier is incrementally trained and the block
is extended. Furthermore, the drift detector checks the average accuracy of each batch
classifier (calculated on the current block), and if the best performing component falls
outside a 100(1−α)% confidence interval, where α is a user-specified parameter, a change
is signaled. When concept drift is detected or the number of buffered examples exceeds
the block size, a new batch classifier is created and the online learner is reset. ACE forms
its final hypothesis by aggregating the predictions of the online learner and batch learners
using a weighted majority vote, with each classifier Ci receiving at time t a weight wti
defined as:

wti =
(

1
1−Ati

)µ
(2.16)

where Ati is the accuracy of the i-th classifier calculated on the current block of examples
and µ is a normalization factor.

One of the characteristic features of ACE is that it does not limit the number of
ensemble members. This property allows the algorithm to accurately react to recurring
concepts by reusing previously trained classifiers. Furthermore, the addition of an online
learner and drift detector offer quicker reactions to sudden concept changes compared

34 Data Stream Classification

Algorithm 2.12 Adaptive Classifier Ensemble [130]
Input: S: stream of examples

a: short term memory size
d: data block size (> a)
α: confidence level
µ: ensemble adjustment factor

Output: E : set of classifiers with updated weights

1: for all examples xt ∈ S do
2: B ← B ∪ {xt};
3: for all classifiers Ci ∈ E ∪ {C ′} do
4: compute average accuracy of Ci on B limited to a examples;
5: compute confidence intervals for Ci;
6: compute weight wti based on (2.16);
7: end for
8: update (incrementally train) classifier C ′ using xt;
9: if |B| ≥ d or driftDetected (best batch classifier exceeds confidence interval) then

10: create batch learner Cnew from examples in B;
11: if Cnew is more accurate than a random classifier on B then
12: E ← E ∪ {Cnew}
13: end if
14: reset online classifier C ′;
15: B ← ∅;
16: end if
17: end for

to most block-based ensembles. Finally, it is worth noticing that ACE detects changes
based on the performance of a single batch classifier instead of the entire ensemble and
uses a custom drift detection method. It is worth noting that the problem of quicker drift
detections in block-based ensembles was also tackled in the Batch Weighted Ensemble
algorithm, proposed by Magdalena Deckert [39].

Learn++.NSE

Learn++.NSE [52] is a block-based ensemble inspired by human learning theory. Several
components of this algorithm relate to schema theory [59], which is a psychological model
that describes the process of human knowledge acquisition and memory organization. For
example, Learn++.NSE retains, constructs, or temporarily discards knowledge depending
on the nature of changes in the stream. Furthermore, the algorithm weights examples
depending on their difficulty measured in terms of ensemble performance. The pseudo-
code for Learn++.NSE is given in Algorithm 2.13.

The training of Learn++.NSE starts with evaluating the ensemble on a block of new
examples. Next, the algorithm identifies which examples are correctly predicted by the
existing ensemble and gives lower weights to these examples, as they are less difficult.
Using the block of examples with updated weights, a new classifier is created and added
to the ensemble. Later, all of the ensemble members are evaluated and their weights are
calculated as log-normalized multiplicative inverses of their weighted errors. The weighting

2.3. Classifiers for Concept-drifting Data Streams 35

Algorithm 2.13 Learn++.NSE [52]
Input: S: stream of examples

a: sigmoid slope
b: sigmoid infliction point

Output: E : set of classifiers with updated weights

1: for all blocks Bj ∈ S do
2: compute error Ej of E on Bj ;
3: for all examples xt ∈ Bj do
4: if xt was predicted correctly by E then
5: wtj ← Ej ;
6: end if
7: end for
8: create classifier Cj using Bj ;
9: E ← E ∪ Cj ;

10: for all classifiers Ci ∈ E do
11: compute error εij of Ci on Bj (with updated example weights);
12: if εij > 1/2 and i = j then
13: create new classifier Cj ;
14: else if εij > 1/2 then
15: εij ← 1/2;
16: end if
17: βij ← εij/(1− εij);
18: ωij ← 1/(1 + e−a(j−i−b));
19: ωij ← ωij/

∑j−i
k=0 ωi,j−k;

20: β̄ij ←
∑j−i
k=0 ωi,j−kβi,j−k;

21: Wij ← log(1/β̄ij);
22: end for
23: end for

function is designed to temporarily block votes from component classifiers that do not
match the current environment.

Learn++.NSE has an interesting psychological inspiration, which is apparent mainly
in the training and weighting of component classifiers. First of all, the algorithm tries to
detect new concepts by analyzing the performance of the ensemble on new data, which
can be connected to the process of problematizing known from tutoring theory [52]. Fur-
thermore, the algorithm weights ensemble members using a sigmoid-based function, which
takes into account recent performance of a given component classifier and draws inspira-
tions from the human process of memory tuning. Finally, it is also worth mentioning that
Learn++.NSE does not permanently discard any component classifiers and is therefore
particularly suitable for streams with recurring drifts.

Online bagging and boosting

Within the group of online ensembles, generalizations of static solutions are often consid-
ered. For example, Oza and Russel introduced an online version of bagging [132], where
component classifiers are incremental learners that combine their decisions using a simple
unweighted majority vote. The sampling, crucial to batch bagging, is performed incre-

36 Data Stream Classification

mentally by presenting each example to a component k times, where k is defined by the
Poisson(1) distribution. The authors have proven that, under certain conditions, the clas-
sification function returned by online bagging converges to that returned by batch bagging
as the number of base models and the number of training examples tends to infinity [131].
The pseudo-code of online bagging is given in Algorithm 2.14.

Algorithm 2.14 Online Bagging [131]
Input: S: stream of examples

k: number of classifiers in the ensemble
Output: E : ensemble of classifiers

1: E ← k incremental classifiers;
2: for all example xt ∈ S do
3: for all classifiers Ci ∈ E do
4: set l according to Poisson(1);
5: for 1 to l do
6: update Ci using xt;
7: end for
8: end for
9: end for

Recently, Bifet et al. introduced two modifications of Oza’s algorithm called Adaptive-
Size Hoeffding Trees (ASHT) [17] and Leveraging Bagging [16], which aim at adding more
randomization to the input and output of the base classifiers. More precisely, ASHT syn-
chronously grows trees of different sizes, whereas Leveraging Bagging increases resampling
from Poisson(1) to Poisson(λ) (where λ is a user-defined parameter) and uses output
detection codes [16].

Furthermore, Oza and Russell also generalized the weighting procedure of boost-
ing [132]. The authors noted that the AdaBoost algorithm actually divides the total ex-
ample weight into two halves, i.e., half of the weight is assigned to the correctly classified
examples, while the other half goes to the misclassified examples. To perform instance
weighting online, the Poisson distribution is used once again, but with the parameter
changing according to the boosting weight of the example as it is passed through each
model in sequence. More recently, Pelossof et al. presented Online Coordinate Boost-
ing [137], an online boosting algorithm, which yields a closer approximation to the Ad-
aBoost algorithm. In this algorithm, the weight update procedure is derived by minimizing
AdaBoost’s loss when viewed in an incremental form.

Dynamic Weighted Majority

Another popular online ensemble is an algorithm called Dynamic Weighted Majority
(DWM) [91]. In DWM a set of incremental classifiers is weighted according to their accu-
racy after each incoming example. With each mistake made by one of DWM’s component
classifiers, its weight is decreased by a user-specified factor β. Furthermore, after a period
of predictions p the entire ensemble is evaluated and, if needed, a new classifier is added to
the ensemble. If learned on a large stream, DWM can potentially generate extensive num-

2.3. Classifiers for Concept-drifting Data Streams 37

bers of components, therefore, ensemble pruning is often considered as an extension [62].
The pseudo-code of the Dynamic Weighted Majority is given in Algorithm 2.14.

Algorithm 2.15 Dynamic Weighted Majority [91]
Input: S: stream of examples

β: factor for decreasing weights (0 ≤ β < 1)
θ: threshold for deleting component classifiers
p: period between expert removal, creation and weight update

Output: E : ensemble of weighted classifiers

1: k ← 1;
2: E ← new incremental classifier C1;
3: w1 ← 1;
4: for all example xt ∈ S do
5: for all classifiers Ci ∈ E do
6: λ← class predicted by Ci for example xt;
7: if λ 6= yt and t mod p = 0 then
8: wi ← βwi;
9: end if

10: σλ ← σλ + wi;
11: end for
12: Λ← arg maxi σi; // global prediction
13: if t mod p = 0 then
14: normalize weights wi, i = 1, 2, . . . , k;
15: remove classifiers with weight lower than θ;
16: if Λ 6= yt then
17: k ← k + 1;
18: E ← new incremental classifier Ck;
19: wk ← 1;
20: end if
21: end if
22: for all classifiers Ci ∈ E do
23: train classifier Ci with example xt;
24: end for
25: end for

DWM is an extension of the Weighted Majority Algorithm [112] known from the field
of online learning. However, DWM takes into account the dynamic nature of data streams
and is designed to track concept drift. In contrast to its predecessor, DWM adds and
removes component classifiers in response to global performance of the entire ensemble
and local performances of individual components.

Hoeffding option trees

Kirkby [138, 87] proposed an Option Tree similar to that of Kohavi and Kunz [90] that
allows each training example to update a set of option nodes rather than just a single
leaf. Option nodes work like standard decision tree nodes with the difference that they
can split the decision paths into several subtrees. Making a decision with an option tree
involves combining the predictions of all applicable leaves into a single result.

38 Data Stream Classification

Hoeffding Option Trees (HOT) provide a compact structure that works like a set of
weighted classifiers, and just like regular Hoeffding Trees, they are built in an incremen-
tal fashion. The detailed pseudo-code for the Hoeffding Option Tree is listed below in
Algorithm 2.16.

Algorithm 2.16 Hoeffding option tree [87]
Input: S: a data stream of examples

Gl(·): a split evaluation function
δ: split confidence
δ′: confidence for additional splits
ψ: tie threshold
k: maximum number of options that should be reachable by any single example

Output: HOT : a Hoeffding option tree

1: HOT ← a tree with a single leaf l1 (the root);
2: for all examples xt ∈ S do
3: Sort xt into a leaf/option L using HOT ;
4: for all option nodes l of the set L do
5: update sufficient statistics in l;
6: nl ← the number of examples seen at l;
7: if nl mod nmin = 0 and examples seen at l not all of same class then
8: if l has no children then
9: compute Gl() for each attribute of xt;

10: Xa ← the attribute with the highest Gl;
11: Xb ← the attribute with the second-highest Gl;
12: compute Hoeffding bound ε using (2.1);
13: if Xa 6= X∅ and (Gl(Xa)−Gl(Xb) > ε or ε < ψ) then
14: add a node below l that splits on Xa;
15: for all branches of the split do
16: add a new option leaf with initialized sufficient statistics;
17: end for
18: end if
19: else
20: if optionCountl < k then
21: compute Gl() for existing splits and (non-used) attributes;
22: s← existing child split with highest Gl
23: Xs ← (non-used) attribute with highest Gl
24: compute Hoeffding bound (2.1) using δ′ instead of δ;
25: if Gl(Xs)−Gl(s) > ε then
26: add an additional child option to l that splits on Xs;
27: for all branches of the split do
28: add a new option leaf with initialized sufficient statistics;
29: end for
30: end if
31: else
32: remove attribute statistics stored at l;
33: end if
34: end if
35: end if
36: end for
37: end for

2.3. Classifiers for Concept-drifting Data Streams 39

The algorithm works similarly to the Hoeffding Tree listed in Algorithm 2.1. The differ-
ences show from line 20 where a new option is created. Like in most ensemble approaches,
there is a limit to the number of ensemble members denoted as k. If this limit has not been
exceeded for a given leaf, a new option path can be trained. Option creation is similar to
adding a leaf to a Hoeffding Tree with one minor difference concerning the split condition.
For the initial split (line 13) the decision process searches for the best attribute overall,
but for subsequent splits (line 25) the search is for attributes that are superior to existing
splits. It is very unlikely that any other attribute could compete so well with the best
attribute already chosen that it could beat it by the same initial margin (the Hoeffding
bound practically insures that). For this reason, a new parameter δ′, which should be
much “looser”, is used for the secondary split.

Other ensemble approaches

In the preceding sections, we describe ensemble methods most related to this thesis. How-
ever, there are many other approaches worth mentioning.

A set of several online bagging ensembles is used in the DDD algorithm proposed by
Minku et al. [126]. DDD is a meta-classifier based on the analysis of levels of ensemble
diversities. When a drift occurs, DDD tries to substitute pairs of differently diversified
ensembles depending on the type of drift that occurred.

The WWH algorithm, from Yoshida et al. [171], builds component classifiers on over-
lapping windows to select the best learning examples and aggregates component predic-
tions similarly to the Weighted Majority Algorithm. Therefore, WWH can be seen as a
combination of an instance selection windowing technique with an adaptive ensemble.

Finally, several algorithms are dedicated to creating ensembles strictly from decision
trees. For example, the Ultra Fast Forest of Trees (UFFT) [64] is an incremental algo-
rithm that learns a forest of binary trees from data streams. Moreover, algorithms such as
Multiple Semi-Random decision Trees (MSRT) [109] and Streaming Random Forests [1]
create ensembles from decision trees built on randomized sets of attributes.

Although other adaptive data stream ensemble algorithms may exist, to the best of
our knowledge, they are not directly related to the topic of this thesis.

Chapter 3

The Accuracy Updated Ensemble

Block-based ensembles are among the most popular classifiers for concept-drifting data
streams. The popularity of ensembles, in general, is by virtue of their modularity, which
allows them to achieve higher accuracy than single classifiers and facilitates their paral-
lelization. Block-based ensembles additionally have the advantage that they can utilize
static learners known from traditional data mining. Moreover, in many practical scenarios
examples have to be processed in blocks, as incoming examples cannot be labeled online.

In this chapter, we propose a new block-based ensemble, called the Accuracy Updated
Ensemble, which aims at reacting equally well to several types of drift. The proposed
algorithm is experimentally compared with 11 state-of-the-art stream methods, including
single classifiers, block-based and online ensembles, and hybrid approaches in different drift
scenarios. The evaluation study shows that the Accuracy Updated Ensemble outperforms
competitive algorithms in terms of average classification accuracy, while proving to be less
memory consuming than other ensemble approaches.

3.1 Classification in Block-based Environments

As it was discussed in Section 2.3.4, block-based ensembles sequentially generate new com-
ponent classifiers from consecutive fixed-size blocks of learning examples. Because several
examples are available during the creation of component classifiers, standard algorithms
known from static learning, such as, e.g., C4.5 decision trees, can be used during training.
This feature differentiates block-based ensembles from online ensembles, which can only
use incremental classifiers as ensemble members.

After a new classifier is learned from the most recent block of examples it is added to
the ensemble, usually replacing the weakest of existing component classifiers. To decide
which ensemble members should be kept and which should be discarded, each component
is evaluated, commonly according to its predictive performance. This is possible due to the
fact that each block of labeled examples constitutes a test set for existing ensemble mem-
bers. Additionally, most block-based ensembles use the results of this evaluation not only
to determine current ensemble members, but also to assign weights to each component.
These weights are later used while making a combined prediction based on all compo-
nents [155, 163, 130, 91, 52]. As mentioned in Section 2.3.4, the SEA algorithm [155] was

41

42 The Accuracy Updated Ensemble

the first of such adaptive ensembles and was soon followed by the Accuracy Weighted
Ensemble [163], which is presently the most representative method of this type.

However, depending on the occurrence of concept drifts within a block of examples,
the mentioned block-based ensembles may not react sufficiently to changes. In particular,
for sudden drifts they may react too slowly, as classifiers generated from outdated blocks
still remain valid components even though they have inaccurate weights. This situation
is connected with the problem of proper tuning of the data block size. Using small-sized
blocks can partly help in reacting to sudden changes, but doing so will damage the per-
formance of the ensemble in periods of stability and increase computational costs. An
unsatisfactory reaction of block-based ensembles to other types of drifts has already been
noticed in several studies [130, 30, 52].

On the other hand, most online ensembles can react faster to sudden drifts and all their
components evolve over time. This is in direct contrast to block-based ensembles, which
often use static component classifiers that, once trained, never change. However, online
ensembles do not take advantage of periodical component evaluations and do not weight or
replace ensemble members [132, 16, 87, 137]. As a result, on data streams with gradual or
incremental changes, online ensembles are often less accurate than block-based approaches.
Furthermore, online ensembles are often characterized by higher computational costs than
block-based methods. Such observations suggest that it could be profitable to combine
characteristic features from both groups of approaches in order to sufficiently adapt to
various types of changes.

Following these critical motivations, we propose a new hybrid algorithm, called Ac-
curacy Updated Ensemble (AUE), which should react to various types of concept drift
much better than related block-based ensembles. Our goal is to retain the simple schema
of substituting component classifiers and weighting their predictions, characteristic for
block-based algorithms, while adding elements known from online methods.

The main novel contribution of AUE is the introduction of incremental updating of
component classifiers, which improves the ensemble’s reactions to concept drifts, as well as
reduces the impact of block sizes on the predictive performance of the ensemble. Incremen-
tal updates allow all ensemble members to adapt to the most recent concept simultaneously
and, therefore, change the basic idea behind existing block-based algorithms. Addition-
ally, we have performed an analysis of several component weighting procedures, which
has led to interesting findings concerning incremental training of adaptive ensembles. In
the following section, we discuss the details of the proposed algorithm and highlight its
characteristic features.

3.2 The Accuracy Updated Ensemble

The Accuracy Updated Ensemble maintains a weighted pool of component classifiers and
predicts the class of incoming examples by aggregating the predictions of components
using a weighted voting rule. After each block of examples a new classifier is created.
This new candidate classifier substitutes the poorest performing ensemble member. The
performance of each component classifier is evaluated by estimating its expected predic-

3.2. The Accuracy Updated Ensemble 43

tion error on examples from the most recent data block. After substituting the poorest
performing component, the remaining ensemble members are updated, i.e., incrementally
trained, and their weights are adjusted according to their predictive performance. In this
thesis, we will analyze the use of Hoeffding Trees as component classifiers, since they per-
formed favorably compared to Naive Bayes in preliminary experiments. Nevertheless, the
presented algorithm can be considered a general method, and in principle, one could use
other online algorithms as base learners.

Let S be a data stream partitioned into evenly sized blocks B1, B2, . . . , Bj , each con-
taining d examples. For every incoming block Bj , the weight wij of each component clas-
sifier Ci ∈ E (i = 1, 2, . . . , k) is calculated by estimating the error rate on data block Bj ,
as presented in Equations 3.1–3.3.

MSEij = 1
|Bj |

∑
{x,y}∈Bj

(1− fiy(x))2, (3.1)

MSEr =
∑
y

p(y)(1− p(y))2, (3.2)

wij = 1
MSEr +MSEij + ε

(3.3)

Function fiy(x) denotes the probability given by classifier Ci that x is an instance
of class y. Following inspirations from the AWE algorithm [163], instead of single class
predictions, probabilities of all classes are considered. The value of MSEij estimates the
prediction error of classifier Ci on block Bj , while MSEr is the mean square error of
a randomly predicting classifier and is used as a reference point to the current class
distribution (approximated on Bj). When changes occur in the class distribution, e.g.,
due to an ongoing concept drift, MSEr rises causing component weights wij to have
lower values and hindering the domination of single ensemble members during voting.
Additionally, a very small positive value ε is added to the equation to ensure that wij can
be calculated even when MSEij and MSEr are equal to zero.

The weighting formula presented in Equation 3.3 aims at combining information about
the classifier’s accuracy and the current class distribution. Furthermore, by using a non-
linear function, compared to the linear one used in AWE, we highly differentiate component
classifiers. The final version of the component weighting function (as well as the candidate
weighting function discussed further in this section) was chosen after performing a com-
parative study of several alternative approaches which will be discussed in Section 3.3.3.

Apart from assigning new weights to ensemble members, with each data block Bj a
candidate classifier C ′ is created from examples within the most recent block of examples.
As C ′ is trained on the most recent data, it is treated as a “perfect” classifier and assigned
a weight according to Equation 3.4.

wC′ = 1
MSEr + ε

(3.4)

Compared to the function used to weight existing ensemble members, the weight of
the candidate classifier wC′ does not take into account the prediction error of C ′ on Bj .

44 The Accuracy Updated Ensemble

Such an approach is based on the assumption that the most recent block provides the best
representation of the current and near-future data distribution. Since C ′ is trained on the
most recent data it should be treated as the best possible classifier. Additionally, such an
approach is computationally much cheaper than candidate cross-validation used in AWE.

If the ensemble E contains less than k components, the candidate classifier C ′ is simply
added to the ensemble. Otherwise, out of the k existing ensemble members Ci ∈ E , the
poorest performing classifier, i.e., the component with the lowest weight, is substituted
with the candidate classifier C ′. After the substitution, remaining ensemble members are
incrementally trained by presenting examples from the most recent data block Bj .

Our experiments (discussed in more detail in Section 3.3.3) have shown that for
datasets which do not contain any drift, the incremental training of component classi-
fiers in AUE can cause non-constant memory usage. For this reason, after each block the
size of the ensemble is compared with a user-specified memory limit. If the memory limit is
exceeded, then the least recently used leaves of component Hoeffding Trees are pruned to
match the memory restriction. After pruning, the ensemble is ready to classify examples
from the next incoming data block. The pseudocode of AUE is presented in Algorithm 3.1.

Algorithm 3.1 Accuracy Updated Ensemble (AUE)
Input: S: stream of examples

d: size of each data block Bj
k: number of classifiers in an ensemble
m: memory limit

Output: E : ensemble of k weighted incremental classifiers

1: E ← ∅;
2: for all blocks Bj ∈ S do
3: C ′ ← new component classifier built on Bj ;
4: wC′ ← 1

MSEr+ε (3.4);
5: for all classifiers Ci ∈ E do
6: apply Ci on Bj to calculate MSEij ;
7: compute weight wij based on (3.3);
8: end for
9: if |E| < k then

10: E ← E ∪ {C ′};
11: else
12: substitute classifier with lowest weight in E with C ′;
13: end if
14: for all classifiers Ci ∈ E \ {C ′} do
15: incrementally train classifier Ci with Bj ;
16: end for
17: if memory_usage(E) > m then
18: prune (decrease size of) component classifiers;
19: end if
20: end for

In contrast to earlier proposed block-based ensembles, such as AWE or SEA, the AUE
algorithm is not designed to use static batch learners but, instead, incrementally updates
component classifiers. In our opinion, this leads to better classification accuracy in the

3.3. Experimental Evaluation 45

presence of slow gradual drifts and periods of stability. Additionally, since the components
can be retrained, the algorithm should be less dependent on the block size and can use
smaller blocks without deteriorating its accuracy [29, 30]. Compared to its predecessor
AWE, AUE introduces several improvements (analyzed in detail in Section 3.3.3). In
particular, AUE uses a new weighting function, does not require cross-validation of the
candidate classifier, does not keep a classifier buffer, prunes its base learners, and always
updates its components. That last property may be considered a costly modification since
several classifiers need to be updated after each data block, however, as it will be shown
in the experiments, this issue is mitigated by efficient candidate weighting.

The Accuracy Updated Ensemble also differs from other adaptive ensembles. AUE’s
component classifiers are weighted and can be removed, unlike in Online Bagging. Com-
pared to VFDT-based ensembles like ASHT and HOT, we do not limit base classifier size
and do not use any windows. Compared to Learn++.NSE, the proposed algorithm incre-
mentally trains existing component classifiers, retains only k of all the created components,
and uses a different weighting function which ensures that components will have non-zero
weights. In contrast to DWM, AUE processes the stream in blocks, weights components
solely based on their prediction error, treats the candidate classifier as a perfect learner,
and its weighting function does not require any user-specified parameters.

In a way, AUE can be considered as a hybrid approach — it can react to sudden drifts
and it can gradually evolve with slow changing concepts. The relatively rapid adaptation
after sudden drifts is achieved by repeatedly training and weighting components accord-
ing to their prediction error, as well as giving the highest possible weight to the newest
classifier. On the other hand, because components are updated after every block, they can
react to gradual drifts. Additionally, the modular structure of AUE should protect the
classifier from drastic accuracy losses in the presence of random blips, as a single “outlier”
component can be outvoted when the target concept stabilizes. The performance of AUE
in scenarios involving different types of drifts, as well as no drift, will be examined in the
following section.

3.3 Experimental Evaluation

The proposed AUE algorithm was evaluated in several experiments to simulate scenarios
involving various types of changes. We experimentally evaluated the main components of
AUE, as well as compared its performance with that of related classifiers. In the following
subsections, we describe all of the used datasets, discuss experimental setup, and analyze
experiment results.

It is important to note that all of the experiments discussed in this thesis were per-
formed using the MOA framework1. Massive Online Analysis (MOA) is a software environ-
ment for implementing algorithms and running experiments for online learning [15, 21, 20].
It is implemented in Java and contains a collection of data stream generators, online
learning algorithms, and evaluation procedures. MOA is capable of reading ARFF dataset

1http://moa.cms.waikato.ac.nz/

http://moa.cms.waikato.ac.nz/

46 The Accuracy Updated Ensemble

files, which are commonly used in machine learning [165, 73]. It also allows to create data
streams on the fly using generators, such as the Random Tree Generator [49], SEA [155],
STAGGER [149], Hyperplane [163, 53, 54], Random RBF, LED [67], and Waveform [67].
Finally, the framework also allows users to add concept drift to stationary data streams.
MOA uses the sigmoid function to model a drift as a weighted combination of two pure
distributions that characterize the target concepts before and after the drift.

By implementing our algorithms and experiments using an open-source framework,
we aim to ease the verification and dissemination of our work. Appendix A contains
implementation details concerning source code, test scripts, and datasets used during
experiments discussed in this thesis.

3.3.1 Datasets

Most of the common benchmarks for machine learning algorithms, e.g. gathered in the
UCI Machine Learning Repository [60], contain too few examples to be considered suitable
for evaluating data stream classification methods, especially in terms of processing time
and memory usage. Furthermore, datasets used to test algorithms designed for static
environments usually do not contain any type of concept drift. In terms of real-world
data there is still a shortage of suitable and publicly available benchmark datasets. Some
researchers have used private or confidential data that cannot be reproduced by others [49,
163, 53, 54]. For this reason, data stream classification algorithms are tested mostly on
synthetic datasets, in which concept drifts are introduced in a controlled manner.

Following this evaluation approach, the AUE algorithm is compared with other classi-
fiers on 11 synthetic and 4 real datasets. Artificial datasets were generated using the MOA
framework and the real datasets are publicly available. A brief description of each dataset
is provided below. Additionally, Table 3.1 summarizes the main dataset characteristics
(detailed scripts are listed in Appendix A).

Table 3.1: Characteristic of datasets

Dataset Instances Attributes Classes Noise Drifts Drift type

HypS 1M 10 2 5% 1 incremental
HypF 1M 10 2 5% 1 incremental
RBFB 1M 20 4 0% 2 blips
RBFGR 1M 20 4 0% 4 gradual
RBFND 1M 20 2 0% 0 none
SEAS 1M 3 4 10% 3 sudden
SEAF 2M 3 4 10% 9 sudden
TreeS 1M 10 4 0% 4 sudden recurring
TreeF 100k 10 6 0% 15 sudden recurring
LEDM 1M 24 10 10% 3 mixed
LEDND 10M 24 10 20% 0 none
Elec 45k 7 2 - - unknown
CovType 581k 53 7 - - unknown
Poker 1M 10 10 - - unknown
Airlines 539k 7 2 - - unknown

3.3. Experimental Evaluation 47

Hyp: Hyperplane is a popular dataset generator utilized in many stream classification
experiments [54, 163, 172]. It assigns randomly generated examples to one of two classes
divided by a hyperplane. Incremental concept drift is introduced by slightly rotating this
hyperplane (the decision boundary) with each consecutive example, starting from the first
instance. We set the hyperplane generator to create two datasets, each containing 1,000,000
instances described by 10 features. The first dataset (HypS) contains incremental drift with
the modification weight wi changing by 0.001 with each example. The second dataset
(HypF) is similar to the first one but the change is more rapid with the weight changing
by 0.1 with each example. Additionally, both datasets contain 5% of noise added to the
concepts to randomly differentiate the instances. In this thesis, if not stated otherwise, by
noise we shall refer to class noise, i.e., errors artificially introduced to class labels.

RBF: The RBF generator creates a user specified number of drifting centroids of radial
basis functions. Each centroid is defined by a class label, position, weight, and standard
deviation. With each example, the generator can force each centroid to slightly change its
position in the attribute space creating a gradual drift. We use this generator to create
three datasets, each conaining 1,000,000 examples described by 20 numeric attributes. The
RBFND dataset has two decision classes (two centroids) and no drift. The RBFB dataset
contains 4 decision classes and 4 very short, sudden drifts (2 blips), which should be
ignored by the tested classifier. The last dataset from this group, RBFGR, is designed to
contain 4 gradual recurring drifts with each concept containing 4 decision classes.

SEA: The SEA generator [155] is used to create two datasets with sudden concept drifts.
Each concept is defined by a sum of two linear functions, which outputs a point belonging
to one of four possible decision classes. Sudden drift is introduced by abruptly changing the
function definitions at selected points in the stream. For our tests, we generate 1,000,000
instances with drifts occurring every 250,000 examples (SEAS) and 2,000,000 instances
with drifts occurring every 200,000 examples (SEAF), with 10% class noise.

Tree: We use the Random Tree Generator to create two drifting datasets, each de-
scribed by 5 nominal and 5 numerical attributes. The TreeS dataset contains 4 sudden
recurring drifts evenly distributed over 1,000,000 examples. The TreeF dataset contains
only 100,000 instances but is the fastest changing dataset with 15 sudden drifts. In both
cases, drift is introduced by abruptly changing the concept (randomly generated tree)
after a given number of examples.

LED: LED [28] is a popular artificial dataset, which consists of a stream of 24 binary
attributes that define the digit presented on a seven-segment LED display. We use this
generator to acquire two datasets. The first dataset, called LEDM , contains 1,000,000 in-
stances with two gradually drifting concepts suddenly switching after 500,000 examples.
Such a mixed type of drift is particularly difficult to learn. The second dataset (LEDND)
contains no drift but instead it is the largest and noisiest dataset with 10,000,000 examples
and 20% of noise.

Elec, CovType, Poker, Airlines: The first of four utilized real datasets, called Elec-
tricity (Elec) [75], is one of the most widely used in data stream classification. It consists
of energy prices from the electricity market, which were affected by market demand, sup-
ply, season, weather and time of day. Elec contains 45,312 instances each described by

48 The Accuracy Updated Ensemble

7 features. The second real dataset, Covertype (CovType), contains cover type informa-
tion about four wilderness areas. Examples are defined by 53 cartographic variables that
describe one of seven possible forest cover types. The whole dataset consists of 581,012
instances and has been used in several papers on data stream classification [132, 19]. The
third real benchmark dataset is Poker [19], which consists of 1,000,000 examples describ-
ing the suits and ranks of a hand of five playing cards. This gives a total of 10 predictive
attributes per instance (5 cards × 2 attributes — suit and rank) with an additional class
attribute that describes one of ten poker hands. Finally, Airlines is a real dataset con-
taining 539,383 examples described by 7 attributes. Airlines encapsulates the task of
predicting whether a given flight will be delayed, given the information of the scheduled
departure.

The described synthetic datasets were chosen to evaluate all of the analyzed algorithms
in different scenarios. As for the real datasets, we share the common assumption that we
cannot unequivocally state when drifts occur or if there is any drift. The real datasets serve
to compare the algorithms in a real-life scenario rather than a concrete drift situation.
Furthermore, the real world datasets used in our experiments are publicly available and
were used in several studies concerning data stream classification [132, 19, 177, 94, 126, 96].

3.3.2 Experimental Setup

The experiments involved AUE and 11 competitive data stream classifiers, whose selection
will be discussed in more detail in Section 3.3.4. All of the tested algorithms were imple-
mented in Java as part of the MOA framework. In particular, AUE was implemented for
this study, the source codes of the Adaptive Classifier Ensemble and Learn++.NSE were
provided courtesy of Dr. Kyosuke Nishida and Dr. Paulo Gonçalves respectively, while all
the remaining classifiers were already a part of MOA. The experiments were conducted on
a machine equipped with two 12-core AMD Opteron 6172, 2.1Ghz processors and 64 GB
of RAM.

To make the comparison more meaningful, we set the same parameter values for all
the algorithms. For ensemble methods we set the number of component classifiers to
k = 10: AUE, AWE, DWM, ACE, Online Bagging, and Leveraging Bagging use ten
Hoeffding Trees, while HOT has ten options. We decided to use ten component classifiers
as, according to our preliminary study, using more classifiers (tested from 2 up to 40)
linearly increased processing time and memory, but did not notably improve classification
accuracy of the analyzed ensemble methods. The data block size used for block-based
ensembles was equal d = 500 for all the datasets, as this size was considered the minimal
suitable size for block-based ensembles such as AWE [155, 163], and lower values would
drastically decrease AWE’s accuracy. We set the static window size of Win to 10 × d to
make the number of examples seen by the windowed classifier similar to that seen by
ensemble methods.

The parameters of the Hoeffding Tree used with the static window were the same
as those of the option tree and the component classifiers (also Hoeffding Trees) of all
the ensemble methods. More precisely, we used Hoeffding Trees enhanced with adaptive

3.3. Experimental Evaluation 49

Naive Bayes leaf predictions with a grace period nmin = 100, split confidence δ = 0.01,
and tie-threshold ψ = 0.05 [49]. Due to the fact that the only available implementation
of ACE could not be fully adjusted to use classifiers from the MOA framework, we used
ACE (as originally proposed by Nishida [130]) with ten C4.5 trees as batch learners and
Naive Bayes as an online learner. As suggested in [52], Learn++.NSE does not use any
pruning mechanism and has a sigmoid slope a = 0.5 and sigmoid crossing point b = 10.

According to the main characteristics of data streams [101, 155, 15], we evaluate the
performance of algorithms with respect to time efficiency, memory usage, and classifica-
tion accuracy. All the performance measures were calculated using the block evaluation
method [29, 30], which works similarly to the test-then-train paradigm [87, 15, 11] with the
difference that it uses blocks instead of single examples [29]. This method reads incoming
examples without processing them, until they form a data block of size d. Each new data
block is first used to evaluate the existing classifier, then it updates the classifier, and fi-
nally it is disposed. Such an approach allows to measure average block training and testing
times and is less pessimistic than the test-then-train method. Moreover, since this evalu-
ation method probes algorithm performance over time, it is suitable for evolving streams
and provides a natural method of reducing result storage requirements. Where appropri-
ate, apart from averaged metrics, we will also analyze plots of performance measures in
time.

3.3.3 Component Analysis of the Proposed Algorithm

While constructing the AUE algorithm we decided to analyze the properties of AWE
in search of improvements. In the following paragraphs, we summarize experiments con-
ducted to investigate:

• the role of an additional classifier buffer,

• candidate classifier weighting schemes,

• the overall weighting function,

• refraining from component classifier updates.

One of the first analyzed properties was the use of a classifier buffer. With each block
of examples, AWE creates a new classifier, but uses only k best classifiers to form an
ensemble. To reduce memory usage, only n of all the constructed classifiers are stored
until the next block is processed. The assumption behind such an approach is that a
buffer of additional, out-of-ensemble, classifiers can prove profitable in the presence of
recurring drifts. In the design phase of AUE, we decided to verify this assumption by
analyzing the pros and cons of maintaining a buffer. Table 3.2 presents the results of
comparing AUE with a buffer (k = 10 and n = 30) and AUE without one (k = n = 10).

As Table 3.2 shows, in terms of accuracy, AUE with a buffer appears to perform
marginally better than AUE without one. Nevertheless, the difference in accuracy is mi-
nor or even negligible compared to the training time and memory cost. In the analyzed
scenarios, using a buffer of 20 additional classifiers requires, on an average, over five times

50 The Accuracy Updated Ensemble

Table 3.2: Comparison of AUE with and without a buffer in terms of average classification
accuracy [%], average memory usage [MB], average block training and testing time [s]

AUE with a buffer AUE without a buffer

Acc. Mem. Train. Test. Acc. Mem. Train. Test.

HypS 88.59 1.86 0.23 0.02 88.64 0.58 0.07 0.02
RBFB 94.07 2.73 0.66 0.06 94.06 2.15 0.19 0.06
RBFGR 93.37 4.30 0.82 0.06 93.30 3.91 0.19 0.06
RBFND 92.42 121.51 1.33 0.02 92.41 11.91 0.07 0.02
SEAS 89.00 1.46 0.16 0.01 89.02 0.88 0.03 0.01
Elec 70.86 0.39 0.05 0.01 70.76 0.09 0.03 0.01
CovType 81.24 1.56 0.78 0.12 81.19 0.78 0.30 0.11
Poker 60.57 0.29 0.13 0.03 59.86 0.09 0.06 0.02

more training time and twice as much memory compared to not using any buffer. For this
reason, the buffer was excluded from AUE.

These results led to an additional conclusion. Although AUE does not require any
pruning to restrict memory usage on datasets with drift [30], by testing the algorithm on
a dataset without any drift (RBFND) we noticed that it requires such a mechanism in static
environments. For this reason, AUE comes with a pruning mechanism that removes the
least used leaves of each component Hoeffding Tree to fit a user specified memory limit.

Another costly property of AWE was the weighting of each newly created component
classifier. AWE uses expensive 10-fold cross-validation (10cv) to weight the candidate
classifier on the most recent block of examples [163]. We analyzed the impact of using
other weighting schemes starting with other cross-validations, such as 4-fold (4cv) and 2-
fold (2cv) cross-validation. We also considered the candidate’s weight as a function of the
remaining classifier weights. We investigated the performance of the candidate classifier
with a weight equal to the maximum (Max), average (Mean), and minimum (Min) weight
of the remaining classifiers, half of the sum of remaining classifier weights (Half), and half
of the sum of remaining classifier weights minus a small positive value ε (Halfε).

Additionally, we experimented not only with the candidate weight but with the
overall weight definition itself. We analyzed linear and non-linear functions, such as
wL = max (MSEr − MSEij , 0) + ε and wN = 1

MSEr+MSEij+ε . By using MSEij and
MSEr, we associate the component classifier’s weight with its accuracy and the current
class distribution. The ε in these functions is used to ensure that the ensemble will always
be able to give a non-zero prediction.

In reference to functions wL and wN , we decided to treat the candidate component
classifier C ′ as a “perfect classifier”, i.e., one for which MSEij = 0. Such an approach is
based on the implicit assumption that the most recent data block provides the best rep-
resentation of the near-future data distribution. The resulting candidate weight functions
for these methods are wCL = MSEr + ε and wCN = 1

MSEr+ε . It is worth noticing that
the calculation of wCL and wCN does not require any cross-validation nor the analysis of
remaining classifier weights and can be performed in constant time.

3.3. Experimental Evaluation 51

Table 3.3: Average classification accuracy of AUE with different candidate classifier weight-
ing functions [%]

10cv 4cv 2cv Max Mean Min Half Halfε wCL wCN

HypS 88.64 88.70 88.44 88.36 88.30 84.99 88.58 88.49 88.52 88.43
RBFB 94.06 94.64 94.81 94.82 94.84 95.87 92.61 93.09 94.78 94.77
RBFGR 93.30 93.98 94.10 94.21 94.23 74.73 63.38 63.64 94.15 94.43
RBFND 92.41 93.08 92.58 93.22 93.27 93.40 91.33 91.65 93.12 93.33
SEAS 89.02 89.20 89.21 89.20 89.20 87.65 89.03 89.02 89.21 89.19
Elec 70.76 71.16 71.83 62.66 61.88 43.99 51.10 49.69 69.35 77.32
CovType 81.19 84.03 84.79 84.70 84.72 75.03 81.10 81.50 84.46 85.20
Poker 59.86 60.39 60.77 60.20 60.54 46.55 46.53 46.52 59.67 66.23

As Table 3.3 shows, treating the candidate classifier as a “perfect” classifier substan-
tially increases accuracy, especially when combined with a non-linear weighting function.
The most interesting results are achieved by wCN , which proves best on most datasets and
close to best on the remaining ones. The difference is especially visible on real datasets
(Elec, CovType, Poker) where wCN improves accuracy by a few percent compared to other
solutions. What is worth noticing is that, compared to using a linear function, by using a
non-linear weighting function more voting power is given to the candidate classifier. This
is especially important in the presence of concept drift when the candidate is the only
component of the ensemble with information about the incoming new concept. Giving
such voting power to the candidate can prove inconvenient in the presence of sudden noise
when the incoming concept should be treated as an outlier or when no drift occurs and
the more experienced components should be more important. The obtained results seem
to support this hypothesis, as for data with no drift (RBFND and RBFB) best results are
achieved by the weighting mechanism that gives the most voting power to older compo-
nents, i.e., the Min approach. Being the most accurate in different scenarios and much
more computationally effective than cross-validation, we chose the wCN function as the
candidate classifier weighting mechanism for AUE.

In an attempt to further decrease memory usage and possibly improve classification
accuracy via elements of diversification, we proposed and analyzed two alternative com-
ponent updating mechanisms.

The first mechanism selects only the b < k best weighted components for updating, i.e.,
for training with examples from the most recent block. We experimentally evaluated the
effect of updating b ∈ [4; 8] highest weighted components of an ensemble of 10 classifiers
and denoted the obtained results as b4–b8 in Table 3.4. Since the 10th classifier is always
the candidate classifier, updating 9 classifiers would actually mean updating all possible
components, an option denoted in the results table as All.

The second mechanism involved directly using the mean square error of each com-
ponent classifier. We proposed to stop updating a component classifier if the difference
between the mean square error of that component obtained on the most recent data block
(MSEij) and the error obtained on the previous block (MSEij−1) is greater than 0 and
less than a user-defined threshold θ. Therefore, in this strategy component Ci is not up-

52 The Accuracy Updated Ensemble

dated if 0 < MSEij −MSEij−1 < θ. We experimentally evaluated the effect of refraining
from updating a component for θ ∈ [0.005; 0.05] and denoted the obtained results as
θ0.5%–θ5% in Table 3.4.

Table 3.4: Average classification accuracy of AUE with different refraining rules for com-
ponent training [%]

All θ0.5% θ1% θ2% θ3% θ5% b4 b5 b6 b7 b8

HypS 88.44 88.51 88.58 88.43 87.74 89.49 87.72 87.96 88.23 88.39 88.48
RBFB 94.81 94.34 93.99 92.57 88.61 78.30 93.83 94.12 94.31 94.62 94.60
RBFGR 94.10 93.79 93.39 91.54 86.49 79.80 93.27 93.61 93.74 93.97 94.01
RBFND 92.58 92.99 92.59 91.55 89.40 77.08 92.03 92.49 92.82 92.97 93.12
SEAS 89.21 89.16 89.12 88.61 88.00 87.19 88.67 89.01 89.04 89.07 89.19
Elec 71.83 70.61 70.52 70.60 70.81 70.93 69.29 69.29 69.29 69.29 69.29
CovType 84.79 84.57 84.19 83.36 82.57 81.17 83.29 83.60 83.99 84.21 84.57
Poker 60.77 59.67 59.68 59.69 59.79 59.85 59.82 59.82 59.82 59.82 59.82

Table 3.5: Percentage of memory used compared to updating all classifiers

All θ0.5% θ1% θ2% θ3% θ5% b4 b5 b6 b7 b8

HypS 100% 74% 55% 27% 20% 16% 47% 59% 84% 90% 104%
RBFB 100% 81% 54% 32% 16% 7% 49% 60% 71% 79% 89%
RBFGR 100% 80% 55% 27% 11% 4% 45% 57% 67% 77% 89%
RBFND 100% 88% 66% 31% 12% 1% 44% 59% 73% 88% 102%
SEAS 100% 80% 60% 26% 14% 10% 43% 56% 68% 94% 96%
Elec 100% 100% 100% 96% 102% 99% 100% 100% 100% 100% 100%
CovType 100% 87% 75% 62% 53% 43% 56% 59% 69% 77% 82%
Poker 100% 100% 100% 100% 100% 99% 100% 100% 100% 100% 100%

The obtained results show that refraining from updating component classifiers is not
the best strategy for streams with drifts. Not only does updating All components give best
average accuracy, but one can clearly see that the less refraining was performed the better
the results were. On the other hand, Table 3.5 shows that substantial savings in terms
of memory can be achieved by not updating all of the component classifiers. Refraining
from updating when MSEij settles at 0.5% of what it was on the previous block requires
14% less memory than always updating all components. Since results obtained by θ0.5%

were very close to those achieved by All, this is a very interesting outcome if one needs to
minimize the classifier’s memory requirements.

In the tested scenarios, the proposed techniques allowed us to successfully reduce
memory requirements, but did not increase accuracy. Such an outcome may suggest that
the incremental creation of strong classifiers as ensemble members is of more value to the
prediction of the ensemble. These results may therefore be considered concordant with
the standpoint presented in [52], suggesting that drifting environments provide natural
diversity and the premise of weaklearnability does not apply to them. As the main aim of
the proposed algorithm is to react accurately to various types of drift, we decided to use
the All updating option in AUE.

3.3. Experimental Evaluation 53

3.3.4 Comparative Study of Classifiers

After establishing the properties of AUE, a set of experiments was conducted to compare
the newly proposed algorithm against 11 classifiers:
• the Hoeffding Option Tree (HOT),

• Adaptive Classifier Ensemble (ACE),

• a preliminary version of the AUE [30] that used a classifier buffer, weighting function
wij = 1/(MSEij + ε), and candidate cross-validation (AUEpre),

• the Accuracy Weighted Ensemble (AWE),

• Leveraging Bagging (Lev),

• Online Bagging (Bag),

• Dynamic Weighted Majority (DWM),

• Learn++.NSE (NSE),

• Drift Detection Method with a Hoeffding Tree (DDM),

• a single Hoeffding Tree with a static window (Win),

• and the Naive Bayes algorithm (NB).

We chose AWE and AUEpre as those are the classifiers we tried to improve upon. HOT
and ACE were selected as they can be considered hybrid ensemble algorithms, combin-
ing elements of incremental learning. Bag, Lev, NSE, and DWM were chosen as strong
representatives of online ensembles. The DDM algorithm and the windowed Hoeffding
Tree were chosen as representatives of single classifiers. Additionally, the Naive Bayes al-
gorithm is added to the comparison as a reference for using an algorithm without any
drift reaction mechanism. All the studied algorithms were evaluated in terms of classifica-
tion accuracy, memory usage, block training time and testing time. Average values of the
analyzed measures are given in Tables 3.6–3.9.

Apart from analyzing the average performance of algorithms, we generated four graph-
ical plots for each dataset depicting the algorithms’ functioning in terms of training time,
testing time, memory usage, and classification accuracy. By presenting the performance
measure calculated after each data block on the y-axis and the number of processed
training examples on the x-axis, one can examine the dynamics of a given classifier, in
particular, its reactions to concept drift. Such graphical plots are the most common way
of displaying results in data stream mining papers [6, 16, 49, 52, 65, 84, 91, 126, 130, 177].
In the following paragraphs, we will analyze the most interesting plots, which highlight
characteristic features of the studied algorithms.

Figure 3.1 reports accuracies of the analyzed algorithms on the RBFGR dataset, which
contains gradual recurring drifts. Looking at the plot one can see drops in accuracy around
examples number 125 k, 250 k, 375 k, and 500 k. The most severely malfunctioning
algorithm in the presence of gradual recurring drifts is NB, followed by Win, NSE, DWM
and AWE. The subsequent drops in accuracy of the Naive Bayes algorithm suggest that

54 The Accuracy Updated Ensemble

Ta
bl
e
3.
6:

Av
er
ag

e
cl
as
sifi

ca
tio

n
ac
cu

ra
ci
es

in
pe

rc
en
ta
ge

[%
]

A
C
E

A
U
E p

re
AW

E
A
U
E

H
O
T

D
D
M

W
in

Le
v

N
B

B
ag

D
W

M
N
SE

Hy
p S

80
.6
5

88
.5
9

90
.4
3

88
.4
3

83
.2
3

87
.9
2

87
.5
6

85
.3
6

81
.0
0

89
.8
9

71
.2
0

86
.8
3

Hy
p F

84
.5
6

88
.5
8

89
.2
1

89
.4
6

83
.3
2

86
.8
6

86
.9
2

87
.2
1

78
.0
5

89
.3
2

76
.6
9

85
.3
9

RB
F B

87
.3
4

94
.0
7

78
.8
2

94
.7
7

93
.7
9

88
.3
0

73
.0
7

95
.2
8

66
.9
7

93
.0
8

78
.1
1

73
.0
2

RB
F G

R
87

.5
4

93
.3
7

79
.7
4

94
.4
3

93
.2
4

87
.9
9

74
.6
7

94
.7
4

62
.0
1

92
.5
6

77
.8
0

74
.4
9

RB
F N

D
84

.7
4

92
.4
2

72
.6
3

93
.3
3

91
.2
0

87
.6
2

71
.1
2

92
.2
4

72
.0
0

91
.3
7

76
.0
6

71
.0
7

SE
A S

86
.3
9

89
.0
0

87
.7
3

89
.1
9

87
.0
7

88
.3
7

86
.8
5

87
.0
9

86
.1
8

88
.8
0

78
.3
0

86
.2
3

SE
A F

86
.2
2

88
.3
6

86
.4
0

88
.7
2

86
.2
5

87
.8
0

85
.5
5

86
.6
8

84
.9
8

88
.3
7

79
.3
3

85
.0
7

Tr
ee

S
65

.7
7

84
.3
5

63
.7
4

84
.9
4

69
.6
8

80
.5
8

50
.1
5

81
.6
9

47
.8
8

81
.6
7

51
.1
9

49
.3
7

Tr
ee

F
45

.9
7

52
.8
7

45
.3
5

45
.3
2

40
.3
4

42
.7
4

41
.5
4

33
.4
2

35
.0
2

43
.4
0

29
.3
0

33
.9
0

LE
D M

64
.7
0

67
.2
9

67
.1
1

67
.5
8

66
.9
2

67
.1
7

65
.5
2

66
.7
4

67
.1
5

67
.6
2

44
.4
3

62
.8
6

LE
D N

D
46

.3
3

50
.6
8

51
.2
7

51
.2
6

51
.1
7

51
.0
5

47
.0
7

50
.6
4

51
.2
7

51
.2
3

26
.8
6

47
.1
6

El
ec

75
.8
3

70
.8
6

69
.3
3

77
.3
2

78
.2
1

64
.4
5

70
.3
5

76
.0
8

73
.0
8

77
.3
4

72
.4
3

73
.3
4

Co
vT

yp
e

67
.0
5

81
.2
4

79
.3
4

85
.2
0

86
.4
8

58
.1
1

77
.1
9

81
.0
4

66
.0
2

80
.4
0

80
.8
4

77
.1
6

Po
ke

r
67

.3
8

60
.5
7

59
.9
9

66
.1
0

74
.7
7

60
.2
3

58
.2
6

82
.6
2

58
.0
9

61
.1
3

74
.4
9

59
.5
6

Ai
rl

in
es

66
.7
5

63
.9
2

63
.3
1

67
.3
7

66
.1
8

65
.7
9

64
.9
3

63
.1
0

66
.8
4

66
.3
9

61
.0
0

63
.8
3

3.3. Experimental Evaluation 55

Ta
bl
e
3.
7:

Av
er
ag

e
bl
oc
k
tr
ai
ni
ng

tim
e
in

ce
nt
ise

co
nd

s
[c
s]

A
C
E

A
U
E p

re
AW

E
A
U
E

H
O
T

D
D
M

W
in

Le
v

N
B

B
ag

D
W

M
N
SE

Hy
p S

26
.8
3

14
.8
2

12
.1
5

4.
41

0.
69

0.
33

0.
17

6.
04

0.
03

3.
94

7.
26

11
6.
20

Hy
p F

25
.7
8

14
.1
3

12
.1
1

4.
57

2.
39

0.
38

0.
20

5.
62

0.
03

3.
97

7.
77

17
3.
73

RB
F B

72
.2
7

47
.9
3

42
.4
6

13
.8
8

2.
72

0.
87

0.
29

13
.3
4

0.
05

9.
63

14
.2
2

62
8.
33

RB
F G

R
72

.7
2

54
.5
1

42
.6
3

14
.0
8

3.
45

0.
88

0.
29

13
.8
3

0.
04

9.
96

14
.5
7

67
9.
69

RB
F N

D
19

.9
4

44
.5
8

11
.8
0

4.
67

1.
40

0.
27

0.
17

6.
69

0.
03

4.
74

8.
35

18
6.
12

SE
A S

4.
95

7.
64

4.
36

1.
63

0.
37

0.
15

0.
13

2.
65

0.
01

2.
59

2.
58

66
.5
3

SE
A F

5.
06

5.
49

4.
24

1.
60

0.
28

0.
13

0.
13

2.
58

0.
01

2.
31

2.
76

64
.7
4

Tr
ee

S
20

.6
3

26
.9
9

15
.0
7

5.
24

0.
78

0.
37

0.
19

7.
00

0.
02

4.
79

7.
41

19
6.
91

Tr
ee

F
27

.9
8

20
.5
5

18
.2
0

7.
90

1.
73

0.
73

0.
51

8.
81

0.
02

5.
36

9.
19

32
.8
5

LE
D M

7.
75

31
.4
7

25
.4
8

8.
81

4.
44

0.
62

0.
26

9.
49

0.
03

7.
98

8.
21

40
2.
41

LE
D N

D
7.
73

27
.7
2

25
.3
0

8.
99

10
.1
1

1.
28

0.
22

10
.1
4

0.
03

11
.6
0

7.
98

93
2.
29

El
ec

4.
47

5.
00

5.
57

3.
26

1.
89

1.
00

1.
00

3.
75

0.
07

2.
70

5.
90

6.
74

Co
vT

yp
e

23
.3
5

40
.8
7

41
.2
9

14
.8
3

6.
64

1.
23

0.
38

10
.2
1

0.
09

9.
66

18
.2
4

42
5.
72

Po
ke

r
2.
78

9.
57

6.
56

4.
20

1.
91

0.
39

0.
18

3.
07

0.
02

2.
83

7.
69

10
8.
00

Ai
rl

in
es

4.
37

10
.4
5

14
.1
5

6.
79

1.
62

0.
58

0.
76

7.
01

0.
02

4.
78

32
.2
3

69
.0
5

56 The Accuracy Updated Ensemble

Ta
bl
e
3.
8:

Av
er
ag

e
bl
oc
k
te
st
in
g
tim

e
in

ce
nt
ise

co
nd

s
[c
s]

A
C
E

A
U
E p

re
AW

E
A
U
E

H
O
T

D
D
M

W
in

Le
v

N
B

B
ag

D
W

M
N
SE

Hy
p S

0.
60

1.
82

1.
72

1.
75

0.
33

0.
19

0.
18

2.
29

0.
18

1.
97

0.
80

7.
48

Hy
p F

0.
59

1.
82

1.
74

1.
73

1.
04

0.
20

0.
21

1.
99

0.
18

1.
99

0.
78

7.
40

RB
F B

1.
10

6.
15

6.
58

6.
06

1.
35

0.
66

0.
68

6.
45

0.
66

6.
78

2.
51

31
.8
0

RB
F G

R
1.
11

6.
44

6.
53

6.
29

1.
69

0.
70

0.
71

6.
81

0.
65

7.
11

2.
68

20
.1
0

RB
F N

D
0.
58

2.
47

1.
67

2.
23

0.
60

0.
20

0.
20

3.
22

0.
19

2.
57

0.
79

3.
44

SE
A S

0.
47

0.
76

0.
61

0.
67

0.
09

0.
07

0.
08

0.
73

0.
07

0.
82

0.
28

3.
70

SE
A F

0.
47

0.
66

0.
59

0.
65

0.
09

0.
07

0.
08

0.
71

0.
08

0.
73

0.
29

2.
87

Tr
ee

S
0.
82

2.
54

2.
32

2.
52

0.
36

0.
22

0.
22

3.
32

0.
23

2.
96

0.
73

1.
88

Tr
ee

F
0.
97

2.
93

2.
46

3.
31

0.
27

0.
36

0.
39

3.
70

0.
48

3.
43

0.
95

1.
25

LE
D M

2.
10

4.
92

4.
05

3.
83

0.
29

0.
48

0.
41

4.
58

0.
39

5.
62

2.
02

4.
49

LE
D N

D
2.
05

4.
15

4.
01

3.
90

0.
27

0.
97

0.
42

4.
95

0.
40

9.
28

2.
03

4.
08

El
ec

0.
62

0.
85

0.
40

1.
18

0.
73

0.
21

0.
27

1.
29

0.
35

1.
30

0.
46

2.
05

Co
vT

yp
e

0.
84

6.
17

6.
34

6.
74

4.
33

0.
55

0.
71

5.
22

1.
26

7.
45

2.
29

15
.3
6

Po
ke

r
0.
57

1.
79

0.
37

1.
92

1.
31

0.
22

0.
20

1.
09

0.
47

1.
68

0.
48

2.
69

Ai
rl

in
es

0.
30

0.
44

0.
22

2.
22

0.
36

0.
23

0.
21

1.
78

0.
19

2.
04

0.
35

1.
78

3.3. Experimental Evaluation 57

Ta
bl
e
3.
9:

Av
er
ag

e
cl
as
sifi

er
m
em

or
y
us
ag

e
in

m
eg
ab

yt
es

[M
B
]

A
C
E

A
U
E p

re
AW

E
A
U
E

H
O
T

D
D
M

W
in

Le
v

N
B

B
ag

D
W

M
N
SE

Hy
p S

0.
14

1.
97

0.
28

0.
63

2.
94

0.
24

0.
00

4.
30

0.
01

0.
71

0.
15

16
.8
5

Hy
p F

0.
13

1.
23

0.
31

0.
57

9.
57

0.
55

0.
00

1.
70

0.
01

0.
87

0.
20

36
.9
8

RB
F B

0.
18

2.
99

0.
45

2.
40

5.
38

0.
33

0.
01

5.
32

0.
01

1.
16

0.
35

36
.9
9

RB
F G

R
0.
19

4.
67

0.
43

4.
65

5.
94

0.
30

0.
01

6.
84

0.
01

1.
94

0.
33

36
.9
9

RB
F N

D
0.
14

13
.0
7

0.
25

12
.7
4

5.
88

0.
59

0.
00

38
.4
9

0.
01

5.
83

0.
22

36
.9
7

SE
A S

0.
10

1.
56

0.
20

0.
92

0.
71

0.
15

0.
00

0.
80

0.
00

1.
12

0.
07

36
.9
7

SE
A F

0.
10

1.
02

0.
20

0.
57

0.
71

0.
08

0.
00

0.
52

0.
00

0.
65

0.
08

36
.9
7

Tr
ee

S
0.
22

5.
22

0.
49

4.
95

4.
34

0.
59

0.
00

17
.2
8

0.
01

5.
75

0.
15

36
.9
8

Tr
ee

F
0.
22

1.
68

0.
35

0.
88

0.
52

0.
12

0.
01

0.
55

0.
01

0.
28

0.
07

0.
41

LE
D M

0.
27

0.
62

0.
61

0.
22

2.
06

0.
17

0.
01

0.
62

0.
03

1.
50

0.
04

36
.9
9

LE
D N

D
0.
27

0.
62

0.
61

0.
22

15
.7
4

4.
73

0.
01

0.
29

0.
03

6.
16

0.
03

18
0.
68

El
ec

0.
10

0.
39

0.
27

0.
46

0.
75

0.
03

0.
00

0.
34

0.
01

0.
14

0.
11

0.
10

Co
vT

yp
e

0.
20

1.
57

0.
68

0.
85

17
.1
7

0.
08

0.
02

0.
82

0.
05

0.
32

0.
48

12
.5
9

Po
ke

r
0.
14

0.
33

0.
27

0.
20

8.
05

0.
14

0.
00

1.
23

0.
01

0.
12

0.
31

25
.4
7

Ai
rl

in
es

0.
11

2.
35

5.
71

62
.3
4

65
.6
5

13
.4
7

0.
05

38
.9
5

0.
06

30
.8
0

1.
14

11
.1
0

58 The Accuracy Updated Ensemble

60 %

A
c
c
u
ra

c
y

NSE

pre

Figure 3.1: Classification accuracy on the RBFGR dataset

classifiers without any drift reaction mechanism fail to successfully learn from data with
gradual recurrent drifts. On the other hand, Win, NSE, DWM and AWE appear to react
too slowly. Additionally, DDM and ACE both use drift detectors which are designed to
work best with sudden changes and for this reason the performance of these algorithms
may not be as good as the performance of ensemble approaches. The two most accurate
algorithms on this dataset are AUE and Lev. Both of these algorithms require similar
training and testing time but Lev requires almost twice as much memory as AUE.

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

HOT
AUEpre

Lev

DWM
ACE
DDM

NB
Win

 AUE
AWE

Oza

30 %
0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

NSE

Figure 3.2: Classification accuracy on the TreeS dataset

3.3. Experimental Evaluation 59

0 B

5 MB

10 MB

15 MB

20 MB

25 MB

30 MB

35 MB

40 MB

45 MB

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

M
e
m

o
ry

Processed instances

HOT
AUE
AWE

AUE2
Lev
Oza

DWM
ACE
DDM

NB
Win

AUEpre

AWE
AUE
Lev
Oza

DWM
ACE
DDM

NB
Win

NSE

Figure 3.3: Memory usage on the TreeS dataset

Figures 3.2 and 3.3 show classification accuracy and memory usage on the TreeS
dataset, which was designed to test the algorithms’ reaction to recurring sudden drifts. The
drifts occurring every 200 k examples are clearly visible both on the accuracy and memory
plot. In the presence of sudden recurring drifts, AUEpre and AUE seem to perform best,
with only the first drift having a major impact on their accuracy. Compared to recurring
gradual drifts, the remaining algorithms are further behind in terms of accuracy. This is
especially apparent with the HOT algorithm, which appears to lose accuracy with every
consecutive drift. Looking at the memory plot in Figure 3.3, we can see that AUEpre and
AUE abruptly reduce their memory usage when a drift occurs. The drop in accuracy of
the previously learned components is reflected in their mean square error (MSEij), which
forces one of the previously learned base classifiers to be disposed. Algorithms that seem
not to have pruned their base classifiers after a sudden drift, such as HOT or Lev, lose
accuracy. Similar behavior was observed in figures for the SEAS and SEAF datasets, which
represent scenarios with sudden concept drifts.

It is worth noting that NSE requires much more time and memory than the remaining
algorithms. This is only due to the fact that, following [52], no pruning was used to limit
the number of NSE’s component classifiers. On small datasets, like Elec, we can see
that when only few components are created NSE uses less memory than other ensemble
methods.

Although on the TreeS dataset AUE performed slightly better than AUEpre, on the
TreeF dataset AUEpre is clearly the winning algorithm. The characteristic feature of the
TreeF dataset is the speed of recurring changes. The classifier buffer which was removed
from AUE is the attribute that most probably helped AUEpre outclass other data stream
learners on this dataset.

60 The Accuracy Updated Ensemble

NSE

50 %

55 %

60 %

65 %

70 %

75 %

80 %

85 %

90 %

95 %

100 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

HOT
AUEpre

AWE
 AUE

Oza
DWM
ACE
DDM

NB
Win

Lev

Figure 3.4: Classification accuracy on the RBFB dataset

0 B

2 MB

4 MB

6 MB

8 MB

10 MB

12 MB

14 MB

16 MB

18 MB

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

M
e
m

o
ry

Processed instances

HOT
AUE
AWE

AUE2
Lev
Oza

DWM
ACE
DDM

NB
Win

AUEpre

AWE
AUE
Lev
Oza

DWM
ACE
DDM

NB
Win

NSE

Figure 3.5: Memory usage on the RBFB dataset

3.3. Experimental Evaluation 61

A different experiment used the RBFB dataset, which incorporates very short, sudden
concept changes (blips). Blips should be treated as outliers and should not have any long-
term impact on the classifier’s functioning. As Figure 3.4 shows, apart from NB, Win,
NSE, DWM, and AWE, all the classifiers maintain stable accuracy throughout the entire
dataset. Analyzing the memory plot in Figure 3.5, one can see that AUEpre and AUE react
to blips just like they reacted to sudden changes. The capability of sustaining accuracy
by these two algorithms is possible due to the fact that only one ensemble component
is removed per block. Even when a single component is removed in the occurrence of an
outlier concept, AUEpre and AUE still perform well after the blip. It is also worth noticing
that the warning/alarm level mechanism used in DDM and ACE worked as expected and
allowed these algorithms to stay accurate even though their classification error reached a
warning level.

For datasets with incremental drifts, i.e., HypS and HypF , the best performing algo-
rithms are AWE, Bag, and AUE. AWE seems to perform particularly well on the HypS
dataset. It is also worth noting that the Win classifier, usually performing rather poorly
in terms of accuracy, reacts quite well to slow changes. The algorithms that perform
worst are NB, ACE, DWM, and HOT. The Naive Bayes classifier has no drift reaction
mechanism, the drift detector in ACE is not triggered, therefore, causing poor reaction
to gradual changes, while HOT and DWM appear to not be pruning outdated data, with
HOT additionally using too much memory.

When no drift is present, AUE and AUEpre are the most accurate classifiers. On the
RBFND dataset, AUE has the highest accuracy followed by AUEpre and Lev, while on
LEDND AUEpre, AUE, and NB achieve almost identical results.

40 %

45 %

50 %

55 %

60 %

65 %

70 %

75 %

80 %

85 %

90 %

0 100 k 200 k 300 k 400 k 500 k 600 k

A
c
c
u
ra

c
y

Processed instances

HOT
AUEpre

AUE
Lev
Oza

DWM
ACE
DDM

NB
Win

AWE

NSE

Figure 3.6: Classification accuracy on the CovType dataset

On real datasets (Elec, CovType, Poker, Airlines), HOT is the best performing
learning algorithm followed by AUE. Additionally, on the Poker dataset Lev clearly out-

62 The Accuracy Updated Ensemble

performs all the other classifiers. It is worth mentioning that the accuracy of HOT comes
at the price of high memory costs. It seems that for the analyzed real-world datasets
the pruning mechanism, present in most adaptive ensembles, is not as important as the
constant training of base classifiers, characteristic for HOT. The accuracy plot for the
CovType dataset is presented in Figure 3.6. By looking at the performance of NB, DDM,
and ACE, one can see that the analyzed dataset probably contains changes. The accuracy
plots for Elec, Poker, and Airlines also contain fluctuations which were not present in
the accuracy plots of artificial datasets without drift, i.e., RBFND and LEDND.

30 %

35 %

40 %

45 %

50 %

55 %

60 %

65 %

70 %

75 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

HOT
AUE
AWE

AUE2
Lev
Oza

DWM
ACE
DDM

NB
Win

AUEpre

AWE
AUE
Lev
Oza

DWM
ACE
DDM

NB
Win

NSE

Figure 3.7: Classification accuracy on the LEDM dataset

Finally, let us analyze the accuracy plot for the LEDM dataset presented in Figure 3.7. In
this dataset, we incorporated a complex change by joining two gradually drifting streams.
After 500 k examples the target concept is suddenly switched but the gradual changes
in the new concept prove to be very difficult to classify. Although Bag and AUE achieve
best average accuracies, all algorithms seem to fail in reacting to the change. This shows
that complex combinations of drifts can prove challenging for existing algorithms and
constitute an interesting topic for further research.

3.3.5 Statistical Analysis of Results

To extend the analysis provided in Section 3.3.4, we carry out statistical tests for compar-
ing multiple classifiers over multiple datasets [45, 82]. We use the non-parametric Fried-
man test combined with the Bonferroni-Dunn post-hoc test. The Friedman test is a non-
parametric procedure, which ranks algorithms for each dataset separately, the best per-
forming algorithm getting the rank of 1, the second best rank 2, etc. In case of ties average
ranks are assigned. The null-hypothesis for this test is that there is no difference between
the performance of all the tested algorithms. In case of rejecting this null-hypothesis, we
proceed with the Bonferroni-Dunn post-hoc test. This post-hoc test verifies whether the

3.3. Experimental Evaluation 63

ranked performance of AUE is statistically different from the remaining algorithms by
calculating a critical difference CD that defines how much AUE must outperform another
classifier.

Table 3.10: Average algorithm ranks used in the Friedman tests

ACE AUEpre AWE AUE HOT DDM Win Lev NB Bag DWM NSE

Acc. 7.33 4.00 6.40 2.20 5.40 6.47 8.80 5.27 9.07 3.67 9.80 9.60
Train. 8.73 10.33 9.40 6.33 4.20 2.80 2.13 7.13 1.00 5.73 8.13 12.00
Test. 5.13 9.07 7.07 8.53 4.53 2.27 2.33 9.93 2.13 10.80 5.33 10.80
Mem. 4.00 9.33 6.27 8.07 10.13 4.93 1.00 9.40 2.00 7.73 4.33 10.80

The average ranks of the analyzed algorithms are presented in Table 3.10, providing
a comparison in terms of accuracy, training and testing time, as well as memory usage.
First, we perform the Friedman test to verify the statistical significance of the differences
between accuracies of the algorithms. As the test statistic FF = 12.902 and the critical
value for α = 0.05 is 1.851, the null hypothesis is rejected. Considering accuracies, AUE
provides the best average achieving usually 1st or 2nd rank, regardless of the existence
or type of drift. To verify whether AUE performs better than the remaining algorithms,
we compute the critical difference (CD) chosen by the Bonferroni-Dunn test [45]. When
the difference between corresponding average ranks of two classifiers is greater or equal to
CD, one can state that they are significantly different.

As CD = 3.736, AUE performs significantly better than NSE, DDM, DWM, AWE,
ACE, Win, and NB. As for the difference between AUE and the remaining algorithms,
the test’s power for the number of considered datasets is not sufficient to reach such
a conclusion. Motivated by the fact that AUE has an accuracy rank much higher than
AUEpre, HOT, Lev, and Bag, we have decided to additionally perform the Wilcoxon
signed rank test to get a better insight into the comparison of pairs of classifiers [45]. In
contrast to the Friedmann test, in the Wilcoxon signed rank test the values of differences
in performance of a pair of classifiers are taken into account. The p-values resulting from
this test are: pAUEpre = 0.006, pHOT = 0.020, pLev = 0.009, pBag = 0.003 for AUEpre,
HOT, Lev, and Bag, respectively. All these p-values support our observation that AUE is
better in terms of accuracy than any of the compared algorithms.

We perform a similar analysis concerning average classifier training time, also presented
in Table 3.10. Computing the test statistic we obtain FF = 133.834. The null hypothesis
can be rejected and by comparing average algorithm ranks with CD and performing
additional Wilcoxon signed rank tests we can state that AUE is trained slower than Win,
NB, but significantly faster than NSE, AUEpre, Lev, ACE, AWE, and DWM (pLev = 0.023,
pACE = 0.004, pAWE = 0.001, pDWM = 0.002). This is a positive outcome, since Win and
NB are single classifiers, which are hard to compete against in terms of processing time,
while the remaining algorithms are ensemble methods just as AUE.

Analogously, comparing average testing time we also reject the null hypothesis (FF =
74.549) and state that AUE classifies slower than DDM, HOT, Win, and NB, but faster
than Bag and NSE (pBag = 0.003, pNSE = 0.004). Such an outcome is not surprising as

64 The Accuracy Updated Ensemble

Win, NB, HOT, and DDM are single classifiers, while the rest of the analyzed algorithms
are ensembles, each with 10 component classifiers.

Finally, we compare the average memory usage of each algorithm. The test value being
FF = 60.307, we reject the null hypothesis. By comparing average ranks we can state that
AUE uses more memory than Win, NB, and ACE, but is more memory efficient than
NSE, AUEpre, HOT, Lev (pNSE = 0.007, pAUEpre = 0.007, pHOT = 0.015, pLev = 0.050).

3.4 Conclusions

The Accuracy Updated Ensemble is a block-based ensemble classifier designed to react
to different types of concept drift. The main novelty of the proposed algorithm is the
combination of an AWE-inspired ensemble weighting mechanism with incremental training
of component classifiers. Such a hybrid approach allows AUE to react to various types
of concept changes, such as sudden, gradual, recurring, short-term, and mixed drifts.
Additional contributions of AUE include the proposal of a new component weighting
function and a cost-effective candidate weight. By treating the candidate classifier as a
“perfect” classifier, AUE ensures that the current concept is strongly reflected in the
ensemble’s prediction. The proposed algorithm is also optimized for memory usage by
restricting ensemble size and incorporating a simple inner-component pruning mechanism.

As part of this study, we investigated different strategies concerning component clas-
sifier updates. Our experiments have shown that, in terms of accuracy, all component
classifiers in AUE should be updated after each incoming data block. Such an approach
promotes the incremental creation of strong classifiers as ensemble members and provides
more accurate predictions of the ensemble. From this point of view, our results coincide
with those presented in [52], therefore, suggesting that drifting environments provide nat-
ural diversity and the premise of weaklearnability does not apply to them.

We have also carried out an experimental study comparing AUE with 11 additional
state-of-the-art data stream methods, including single classifiers, ensembles, and hybrid
approaches, in different scenarios. The obtained results confirm that classifiers without
any drift reaction mechanism fail to successfully learn from data with sudden, gradual,
or recurrent drifts. They also seem to confirm that ensemble approaches that use batch
classifiers, such as AWE, may suffer accuracy drops after sudden concept drifts [130], while
drift detectors are less accurate on gradually drifting streams [6]. Novel findings include
the reaction of algorithms to short random abrupt changes. The obtained results show that
ensemble methods are more robust to random blips than single classifiers, as previously
trained components allow them to recover from premature reactions. Furthermore, exper-
iments on datasets with fast recurring drifts have showcased that the speed of changes is
crucial to the decision whether a buffer of previously constructed component classifiers is
useful or not. If recurrent changes are very frequent a buffer can improve accuracy but in
other cases it only increases memory requirements and algorithm processing time.

Above all, the experimental study has demonstrated that AUE can offer very high
classification accuracy in environments with various types of drift as well as in static
environments. AUE provided best average classification accuracy out of all the tested

3.4. Conclusions 65

algorithms, while proving less memory consuming than other ensemble approaches, such
as Leveraging Bagging or Hoeffding Option Trees. It is worth noting that AUE’s predictive
performance was consistent among every dataset, achieving practically always the best or
second-best rank in terms of accuracy. Finally, AUE showcased faster average training
time compared to all the tested ensemble approaches.

Chapter 4

Strategies for Transforming
Block-based Ensembles into
Online Learners

In contrast to block-based approaches, online ensembles are designed to learn in envi-
ronments were labels are available after each example. With class labels arriving online,
algorithms have the possibility of adapting to changes as quickly as it is possible. Many
researchers tackle this problem by designing new online methods, ignoring weighting mech-
anisms known from block-based algorithms. However, we argue that these weighting mech-
anisms, as well as component evaluations and periodically created candidate classifiers,
could still be of much value in online ensembles. Experimental results presented in Chap-
ter 3 suggest that by modifying block-based ensembles towards incremental classifiers one
can improve classification accuracy on gradual and sudden drifts.

In this chapter, we examine existing block-based ensembles and seek ways of adapting
them to online environments. We put forward three general strategies for transforming
block-based ensembles into online learners:

I) a windowing technique which updates component weights after each example,

II) the extension of the ensemble by an incremental classifier which is trained between
component reweighting,

III) an online drift detector which allows to shorten drift reaction times.

Finally, we experimentally compare these modifications using popular block-based ensem-
bles and highlight the most important factors in transforming block-based ensembles into
online learners.

4.1 Generalization of Block-based Ensembles

Before discussing different approaches to converting block ensembles into online learners,
let us recall the basics of block-based processing and the generic ensemble training scheme,
which will help describe the proposed strategies.

67

68 Strategies for Transforming Block-based Ensembles into Online Learners

Let S be a data stream partitioned into evenly sized blocks B1, B2, . . . , Bj , each con-
taining d examples. For every incoming block Bj , the weights of component classifiers
Ci ∈ E are calculated by a classifier quality measure Q(·), often called a weighting func-
tion. The function behind Q(·) depends on the algorithm being analyzed. For example,
AWE calculates weights based on the mean square error of components, whereas SEA
scores ensemble members based on accuracy and diversity. In addition to component
reweighting, a candidate classifier is built from block Bj and added to the ensemble if the
ensemble’s size k is not exceeded. If the ensemble already contains k components, but the
candidate’s quality measure is higher than at least one member’s weight, the candidate
classifier substitutes the weakest ensemble member.

Algorithm 4.1 Generic block-based ensemble training scheme
Input: S: data stream of examples

d: size of each data block Bj
k: number of classifiers in the ensemble
Q(·): classifier quality measure

Output: E : ensemble of k weighted classifiers

1: for all data blocks Bj ∈ S do
2: build and weight candidate classifier C ′ using Bj and Q(·);
3: weight all classifiers Ci in ensemble E using Bj and Q(·);
4: if |E| < k then
5: E ← E ∪ {C ′};
6: else if ∃i : Q(C ′) > Q(Ci) then
7: replace weakest ensemble member with C ′;
8: end if
9: end for

The described training scheme, presented in Algorithm 4.1, can be used to generalize
most popular block-based ensemble classifiers, such as the Streaming Ensemble Algorithm
(SEA) [155], Accuracy Weighted Ensemble (AWE) [163], Learn++.NSE [52], or Batch
Weighted Ensemble [39, 41]. The following sections present three different strategies for
modifying this generic algorithm to suit online environments.

4.2 Strategy I: Online Evaluation of Components

The first strategy converts a data block into a sliding window. Instead of evaluating
component classifiers every d examples, ensemble members are weighted after each example
using the last d training instances. This way component weights are incrementally updated
and can follow changes in data faster. Because the creation of the candidate classifier
can be a costly process, especially in block-based ensembles which use batch component
classifiers, we propose to add new classifiers to the ensemble every d examples, just as in
the original block processing scheme. The described strategy is presented in Algorithm 4.2.

Although no direct drift detection mechanism is used, this strategy should enable
quicker reactions to sudden changes. Furthermore, since new classifiers are constantly
added to the ensemble, algorithms modified using this strategy should also remain accurate

4.3. Strategy II: Introducing an Additional Incremental Learner 69

Algorithm 4.2 Windowing strategy
Input: S: data stream of examples

k: number of ensemble members
W : window of examples
d: size of window
Q(·): classifier quality measure

Output: E : ensemble of k weighted classifiers

1: for all examples xt ∈ S do
2: if |W | < d then
3: W ←W ∪ {xt};
4: else
5: replace oldest example in W with xt;
6: end if
7: weight all classifiers Ci in ensemble E using W and Q(·);
8: if t > 0 and t mod d = 0 then
9: build and weight candidate classifier C ′ using W and Q(·);

10: if |E| < k then
11: E ← E ∪ {C ′};
12: else if ∃i : Q(C ′) > Q(Ci) then
13: replace weakest ensemble member with C ′;
14: end if
15: end if
16: end for

during gradual drifts. However, it is important to notice that component classifiers are
not incrementally trained and, therefore, the window size d is still a crucial parameter.

4.3 Strategy II: Introducing an Additional Incremental
Learner

The second strategy involves directly using an incremental classifier as an extension of a
block-based ensemble. The ensemble works exactly like in the original algorithm, except
that an additional online learner, which is trained with each incoming example, is taken
into account during component voting. Such a strategy ensures that the most recent data
is included in the final prediction.

Two factors are crucial for the incremental classifier to have an effect on the ensemble’s
performance: its weight and its accuracy. We propose to use the maximum weight of re-
maining ensemble members as the candidate’s weight. Using such a value ensures that this
strategy remains independent of the algorithm being modified and that the incremental
learner will have substantial voting power. As for accuracy, to ensure accurate predictions
in a time changing environment a classifier should be trained only on the most recent
data. On the other hand, using too few examples will make the classifier inaccurate. That
is why, we propose to initialize the incremental learner with the last full buffer of exam-
ples. Subsequently, the additional online classifier is incrementally trained for the next

70 Strategies for Transforming Block-based Ensembles into Online Learners

d examples, after which it is reinitialized. The pseudocode of Strategy II is presented in
Algorithm 4.3.

Algorithm 4.3 Additional incremental learner strategy
Input: S: data stream of examples

Co: online learner
k: number of ensemble members
B: example buffer of size d
Q(·): classifier quality measure

Output: E : ensemble of k weighted classifiers and one online learner

1: for all examples xt ∈ S do
2: incrementally train Co with xt
3: B ← B ∪ {xt}
4: if t > 0 and t mod d = 0 then
5: build and weight candidate classifier C ′ using B and Q(·);
6: weight all classifiers Ci in ensemble E using B and Q(·);
7: if |E| < k then
8: E ← E ∪ {C ′};
9: else if ∃i : Q(C ′) > Q(Ci) then

10: replace weakest ensemble member with C ′;
11: end if
12: reinitialize Co with B;
13: B ← ∅;
14: end if
15: end for

4.4 Strategy III: Using a Drift Detector

The last strategy uses a drift detector attached to an online learner. In periods of stability,
when no drifts occur, the algorithm works similarly to the second strategy, with an online
learner serving as an additional ensemble member. When a drift is detected the algorithm
creates an “early” data block, which consists of examples collected after the last period-
ical reweighting. Using this block, a candidate classifier is built, added to the ensemble,
and weighted according to Q(·) along with existing ensemble members being reweighted.
Finally, the online learner and drift detector are reinitialized. The complete pseudocode
for this strategy is presented in Algorithm 4.4.

Drift detectors are often a part of online classifiers that ensures quick reactions to
sudden changes. However, drift detectors are not capable of detecting gradual changes
and block-based algorithms can outperform online approaches in slowly drifting environ-
ments [34]. Strategy III aims at faster, online, reactions to sudden changes, while main-
taining properties responsible for accurate predictions during gradual drifts. Like with
previous strategies, d remains an important parameter responsible for the accuracy of
component classifiers.

The three presented strategies tackle different aspects of reacting to drifts in online
environments. Consequently, gradual updates using online weighting, faster training by

4.5. Experimental Evaluation 71

Algorithm 4.4 Drift detector strategy
Input: S: data stream of examples

D: drift detector
k: number of ensemble members
B: example buffer of size d
Q(·): classifier quality measure

Output: E : ensemble of k weighted classifiers and one classifier with a drift detector

1: for all examples xt ∈ S do
2: incrementally train D with xt
3: B ← B ∪ {xt}
4: if |B| = d or drift detected then
5: build and weight candidate classifier C ′ using B and Q(·);
6: weight all classifiers Ci in ensemble E using B and Q(·);
7: if |E| < k then
8: E ← E ∪ {C ′};
9: else if ∃i : Q(C ′) > Q(Ci) then

10: replace weakest ensemble member with C ′;
11: end if
12: reinitialize D;
13: B ← ∅;
14: end if
15: end for

using incremental learners, and instant reactions to detected changes, all have a different
impact on the modified block-based ensemble. The following section, provides an experi-
mental analysis of the proposed transformations in various drift scenarios, and highlights
the most interesting properties of each strategy.

4.5 Experimental Evaluation

The aim of combining mechanisms known from block-based ensembles with incremental
learners is to provide accurate reactions to different types of changes. In this section, we
verify if such a combination is profitable by evaluating the performance of three transfor-
mation strategies presented in Sections 4.2–4.4.

4.5.1 Experimental Setup

In our experiments, we evaluate four versions (the original algorithm and the three pro-
posed modifications) of two block-based ensembles: the Accuracy Weighted Ensemble
(AWE) and the preliminary version of the Accuracy Updated Ensemble (AUEpre) [30].
We chose AWE and AUEpre, because periodical component weighting is very important
to the performance of these algorithms. Moreover, both algorithms use similar processing
schemes, e.g., candidate classifier cross-validation, but different weighting functions. More
precisely, AWE uses a linear weighting function (wAWE = MSEr−MSEij), while AUEpre

uses a non-linear one (wAUEpre = 1/(MSEij+ε)). Finally, AWE uses batch decision trees,
whereas AUEpre has Hoeffding Trees as components. Both algorithms and all their mod-

72 Strategies for Transforming Block-based Ensembles into Online Learners

ifications were implemented in Java as part of the MOA framework. Experiments were
performed on a machine equipped with an Intel Core i7-2640M @ 2.80 GHz processor and
10.00 GB of RAM.

All the tested ensembles used k = 10 component classifiers; for AWE those classifiers
were J48 trees with default WEKA parameters, while AUEpre, used Hoeffding Trees with
adaptive Naive Bayes leaf predictions with a grace period nmin = 100, split confidence
δ = 0.01, and tie-threshold ψ = 0.05 [49]. We decided to use ten component classifiers
as using more classifiers (tested systematically from two up to forty) linearly increased
processing time and memory, but did not notably improve classification accuracy of any
of the analyzed ensemble methods. The AWE and AUE modifications which used drift
detectors utilized the Drift Detection Method [65] with a Hoeffding Tree. The data block
size used was equal d = 1000 for all the datasets, as this size was considered the best
suitable for block-based ensembles [155, 163].

The analyzed algorithms were evaluated with respect to time efficiency, memory usage,
and classification accuracy. Since in this chapter we analyze scenarios where examples
are labeled online (contrary to block processing discussed in Chapter 3), all performance
measures were periodically calculated using the prequential evaluation method [69, 15, 21].
In prequential evaluation, only the most recent examples are taken into account when
calculating performance measures. This way, performance values at a given moment in time
reflect only the most recent data, making them suitable for online algorithm evaluation
and drift detection [69]. In our experiments, we used an evaluation window of d = 1000
examples, which is the default value suggested in MOA.

4.5.2 Datasets

We used data stream generators available in the MOA framework to construct 11 synthetic
datasets. These datasets were created using the Hyperplane [54, 163, 172], SEA [155],
Random Tree, RBF, LED, and Waveform [15] generators and were designed to simulate
various drift scenarios; details concerning the functioning of each generator were discussed
in Section 3.3. We used the Hyperplane generator to create two datasets, called HyperS
and HyperF , with a continuous slow and fast incremental drift, respectively. Two datasets
created using the LED generator contained no drift (LEDND) and a mixed drift (LEDM)
involving gradually changing concept abruptly switched after 500 k examples. Further-
more, a similar set of changes was tested using the Waveform generator (Wave, WaveM).
Reactions to solely sudden changes were tested using the Tree (TreeSR) and SEA (SEAS)
generators. Moreover, we introduced gradual and gradual recurring changes to datasets
SEAG and RBFGR, respectively. Finally, using the RBF generator, we tested algorithm per-
formance in the presence of short concept blips by creating the RBFB dataset. Detailed
generator scripts are available in Appendix A.

Additionally, we considered five publicly available real datasets previously used to test
the related ensemble algorithms in several data stream mining papers [132, 19, 177, 134,
170]. The CovType and Poker, and Airlines datasets are commonly used benchmarks,
which were also utilized during the evaluation of the Accuracy Updated Ensemble, dis-

4.5. Experimental Evaluation 73

cussed in more detail in Section 3.3. For these three datasets it is difficult to precisely state
when drifts occur, however, for the remaining two more information is available. In partic-
ular, the PAKDD data was intentionally gathered to evaluate model robustness against per-
formance degradation caused by market gradual changes and was studied by many research
teams [134]. Similarly, the Power dataset contains hourly information about a company’s
power supply and contains several concepts with identified moments of changes [170]. The
main characteristics of all the datasets are given in Table 4.1.

Table 4.1: Characteristic of datasets used to test transformation strategies

Dataset #Inst #Attrs #Classes Noise #Drifts Drift type

Airlines 539 k 7 2 - - unknown
CovType 581 k 53 7 - - unknown
HyperF 1 M 10 2 5% 1 incremental
HyperS 1 M 10 2 5% 1 incremental
LEDM 1 M 24 10 30% 3 mixed
LEDND 250 k 24 10 20% 0 none
PAKDD 50 k 30 2 - - unknown
Poker 1 M 10 10 - - unknown
Power 30 k 2 24 - - mixed
RBFB 1 M 20 4 0% 2 blips
RBFGR 1 M 20 4 0% 4 gradual recurring
SEAG 1 M 3 4 10% 9 gradual
SEAS 1 M 3 4 10% 3 sudden
TreeSR 100 k 10 6 0% 15 sudden recurring
Wave 1 M 40 3 random 0 none
WaveM 500 k 40 3 random 3 mixed

4.5.3 Analysis of Ensemble Transformation Strategies

Tables 4.2–4.4 present average prequential accuracy, processing time, and memory usage
of the proposed transformation strategies applied on the analyzed ensemble methods.
Algorithms modified using the online evaluation, incremental candidate, and drift detector
strategies are denoted with subscripts: W , C , and D, respectively. Apart from tabular
summaries, we generated graphical plots depicting performance measures of all algorithms
in time. We will analyze the most interesting plots to highlight characteristic features of
each strategy.

Comparing the performance of AWE and its first modification, AWEW , we can see that
the windowing technique seems to improve classification accuracy on six out of sixteen
datasets. However, the improvement comes at the cost of much higher processing time,
which is a direct result of recalculating component weights after each processed instance.
In order to recalculate weights, the algorithm needs to know the accuracy of each ensemble
member, which is achieved by testing each component’s predictions on the entire window
of examples. The AWEC modification on the other hand, increases accuracy on practically
all the datasets and does not require that much additional processing time. Finally, the
classification accuracy of the AWED modification seems to show that a simple addition

74 Strategies for Transforming Block-based Ensembles into Online Learners

Table 4.2: Average prequential accuracy of different transformation strategies [%]

AWE AWEW AWEC AWED AUEpre AUEpreW AUEpreC AUEpreD

Airlines 63.64 63.26 63.44 59.53 61.80 66.72 62.57 63.15
CovType 85.70 79.92 87.34 41.97 82.97 87.57 84.60 56.45
HyperF 87.75 88.26 88.48 54.31 89.44 90.34 89.03 90.35
HyperS 77.36 84.70 80.03 74.41 86.55 88.73 86.34 88.76
LEDM 45.43 50.63 46.97 48.37 53.03 53.38 52.99 53.39
LEDND 38.46 46.42 44.13 44.94 51.42 51.42 51.42 51.44
PAKDD 80.28 80.28 79.78 79.76 80.26 80.24 80.21 80.27
Poker 79.36 74.02 80.87 51.89 60.34 75.67 67.14 62.88
Power 11.23 11.92 11.35 4.17 15.46 15.26 15.56 14.98
RBFB 95.53 95.27 95.77 64.54 97.00 97.68 96.19 97.23
RBFGR 94.81 94.25 95.08 32.30 96.19 97.26 95.54 97.22
SEAG 88.44 88.34 88.45 85.07 87.45 88.47 86.44 88.73
SEAS 88.60 88.58 88.58 83.92 88.39 89.06 87.03 89.11
TreeSR 58.62 43.49 59.15 54.04 43.05 42.26 44.88 42.21
Wave 81.61 81.71 82.82 76.09 83.06 85.46 81.78 85.55
WaveM 81.16 80.95 82.55 78.93 82.27 84.72 81.33 84.79

Table 4.3: Average time required to process d = 1000 examples by different transformation
strategies [s]

AWE AWEW AWEC AWED AUEpre AUEpreW AUEpreC AUEpreD

Airlines 1.47 2.22 2.94 0.49 0.41 21.46 0.66 0.63
CovType 0.50 9.17 0.70 0.25 0.42 101.40 0.46 0.51
HyperF 0.49 5.87 0.48 0.26 0.81 20.16 0.33 0.42
HyperS 0.45 8.63 0.51 0.13 0.76 24.83 0.24 0.28
LEDM 0.19 25.82 0.75 0.17 0.30 69.83 0.24 0.29
LEDND 0.44 20.45 0.90 0.20 0.78 87.33 0.25 0.29
PAKDD 6.43 45.66 6.51 3.93 0.48 8.23 0.39 0.33
Poker 0.41 20.08 0.46 0.05 0.07 25.89 0.09 0.12
Power 0.36 36.07 0.37 0.07 0.20 55.62 0.22 0.28
RBFB 0.58 7.69 0.70 0.09 0.56 78.58 0.58 0.59
RBFGR 0.65 9.97 0.73 0.10 0.70 75.19 0.73 0.82
SEAG 0.18 2.70 0.34 0.11 0.12 7.08 0.12 0.13
SEAS 0.31 2.73 0.31 0.10 0.31 5.90 0.20 0.23
TreeSR 0.48 14.77 0.56 0.16 0.37 43.63 0.27 0.40
Wave 0.79 5.84 1.02 0.49 7.45 107.05 2.81 3.28
WaveM 0.91 6.62 1.13 0.16 0.94 142.76 0.87 0.98

of a drift detector is not sufficient to improve reactions on sudden drifts without dete-
riorating the ensemble’s ability to react to gradual changes. This issue is clearly visible
on the accuracy plots for the RBFGR and SEAS datasets, presented in Figures 4.1 and 4.2,
respectively. We can see that in the presence of frequent gradual changes (RBFGR) the drift
detector forces AWE to, needlessly, dispose existing components, whereas during sudden
drifts (SEAS) AWE is rebuilding the ensemble too slowly because of having to train static
decision trees.

4.5. Experimental Evaluation 75

Table 4.4: Average ensemble memory usage for different strategies [MB]

AWE AWEW AWEC AWED AUEpre AUEpreW AUEpreC AUEpreD

Airlines 10.08 7.45 11.31 8.62 1.10 81.61 1.95 7.26
CovType 6.09 6.13 6.15 4.25 1.55 2.22 1.60 0.78
HyperF 2.43 2.47 2.50 6.59 1.85 1.99 1.88 6.39
HyperS 2.57 2.61 2.66 3.22 2.18 2.25 2.19 2.94
LEDM 5.44 5.48 5.83 4.90 0.25 0.49 0.29 1.84
LEDND 7.10 7.13 7.53 5.47 0.25 0.51 0.29 0.96
PAKDD 26.16 26.20 26.17 11.31 1.60 2.76 1.60 2.10
Poker 2.45 2.49 2.51 0.45 0.14 0.75 0.16 0.34
Power 10.01 10.01 11.03 0.19 0.10 0.16 0.11 0.19
RBFB 3.18 3.26 3.24 1.93 5.84 6.37 5.88 6.60
RBFGR 3.23 3.29 3.30 1.81 7.78 9.91 7.82 10.58
SEAG 1.52 1.55 1.55 1.81 1.62 1.70 1.63 1.88
SEAS 1.50 1.54 1.54 1.91 3.13 3.21 3.14 3.60
TreeSR 3.45 4.10 3.67 2.51 2.20 2.65 2.25 3.12
Wave 5.06 5.10 5.15 8.70 41.69 40.64 41.74 51.40
WaveM 5.05 5.08 5.13 4.01 6.69 6.78 6.74 9.26

75 %

80 %

85 %

90 %

95 %

100 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

AWE
AWEW
AWEC
AWED

Figure 4.1: Prequential accuracy of AWE and its modifications on the RBFGR dataset
containing gradual recurring drifts

The differences between accuracies of AWE and its modifications were verified to be
statistically significant by performing the Friedman test at α = 0.05. Furthermore, by
performing a series of Wilcoxon tests it was confirmed that AWEC increases (pC = 0.002)
while AWED deteriorates (pD = 0.002) the accuracy of AWE.

Looking at the results of AUEpre and its modifications, we can see trends slightly
different from those observed for AWE. The AUEpreW modification improves classification
accuracy much more than AWEW , but at higher processing costs. As AUEpreW updates

76 Strategies for Transforming Block-based Ensembles into Online Learners

76 %

78 %

80 %

82 %

84 %

86 %

88 %

90 %

92 %

94 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

AWE
AWEW
AWEC
AWED

Figure 4.2: Prequential accuracy of AWE and its modifications on the SEAS dataset con-
taining sudden changes

existing component classifiers, it can grow larger component Hoeffding Trees, which require
more time to test on a window of examples. Thus, the windowing technique is much more
time consuming when used to modify AUEpre than it was on AWE.

The additional incremental classifier, present in AUEpreC , allows to improve AUEpre’s
accuracy on fast changing datasets such as TreeSR, CovType, Poker, and Power, but
does not seem to be so useful on slower changing data. This is probably the effect of
using a static (maximum) weight for the incremental candidate; in AWE which uses a
linear weighting function it had a stronger impact than in AUEpre which uses a nonlinear
weighting function (the difference between using a linear and nonlinear function will be
analyzed in Chapter 5). Nevertheless, the use of an additional incremental component
gives comparable or better accuracy than the original AUEpre at very small time and
memory costs.

Finally, the use of a drift detector with AUEpre proves more rewarding than its ad-
dition to AWE. Since, AUEpre components can be incrementally updated after a drift is
detected, AUEpreD manages to build strong component classifiers, while AWE is left with
weak learners after each drift. This seems to show that when combined with periodical
incremental component updates a drift detector can enhance sudden drift reactions with-
out degrading performance on gradual changes. As Table 4.2 shows, accuracies of AUEpre

and its modifications are generally higher than AWE’s which could also be caused by
incremental updating of component classifiers.

Figures 4.3 and 4.4 present the performance of AUEpre and its modification on RBFGR
and SEAS datasets. By comparing these plots with Figures 4.1 and 4.2, we can see that
AUE achieves higher accuracy than AWE. Furthermore, AUEpreD performs well on these
datasets, which was not true for AWE. AUEpreC on the other hand seems to perform

4.5. Experimental Evaluation 77

75 %

80 %

85 %

90 %

95 %

100 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

AUEpre
AUEpreW
AUEpreC
AUEpreD

Figure 4.3: Prequential accuracy of AUE and its modifications on the RBFGR dataset
containing gradual recurring drifts

76 %

78 %

80 %

82 %

84 %

86 %

88 %

90 %

92 %

94 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

AUEpre
AUEpreW
AUEpreC
AUEpreD

Figure 4.4: Prequential accuracy of AUE and its modifications on the SEAS dataset con-
taining sudden changes

78 Strategies for Transforming Block-based Ensembles into Online Learners

worse than the original algorithm, both during drift and in times of stability. As mentioned
earlier, this is caused by using a static weight for the incremental candidate. Finally, it is
worth noting that AUEpreW is performing better than the original algorithm, especially
during gradual drifts. The trends visible in Figures 4.3 and 4.4 were common for most
accuracy plots of AUEpre and its modifications.

As with AWE, the differences between accuracies of AUEpre and its modifications
were verified to be statistically significant by performing the Friedman test at α = 0.05.
Additional Wilcoxon tests have shown that AUEpreW and AUEpreD significantly increase
(pW = 0.001, pD = 0.01) the accuracy of AUEpre.

4.6 Conclusions

In this chapter, we analyzed the problem of integrating weighting mechanisms and peri-
odical component evaluations, known from block-based ensembles, into online classifiers.
To verify the validity of such an approach, we proposed and evaluated three strategies
to transforming block-based classifiers into online learners: a windowing technique, the
use of an additional incremental learner, and the use of a drift detector. Experimental
results demonstrated that all three strategies can be beneficial to the performance of a
block-based ensemble using both static and incremental base classifiers.

However, not all strategies were equally effective. We have observed that online com-
ponent reweighting is the best transformation strategy in terms of average prequential
accuracy. Unfortunately, it is also the costliest strategy in terms of processing time, as it
requires estimating each component’s predictive performance after every example. More-
over, we have noticed that elements of incremental learning are crucial in improving clas-
sification accuracy — for an ensemble composed of static learners, adding an incremental
learner was the best strategy. Finally, we found that drift detectors can also be beneficial
in reacting to changes, but only for algorithms capable of quick ensemble training.

Above all, we have noticed that the transformation of a block-based ensemble to an
online learner should be tailored to a given algorithm. Although the proposed strategies
successfully introduced properties of online ensembles, they were too general to be com-
putationally efficient. In particular, the online reweighting strategy, although profitable in
terms of accuracy, drastically increased processing time. These findings were our motiva-
tion for creating an online ensemble, which tries to incorporate incremental learning with
online component reweighting in a time and memory efficient manner. In the following
chapter, we present a new algorithm called Online Accuracy Updated Ensemble, which
aims at fulfilling these goals.

Chapter 5

The Online Accuracy Updated
Ensemble

In environments where class labels are available after each example, ensembles which
process instances in blocks do not react to sudden changes sufficiently quickly. On the
other hand, ensembles which process streams online, do not take advantage of periodical
adaptation mechanisms known from block-based ensembles, which offer accurate reactions
to gradual changes.

In this chapter, we analyze whether the characteristics of block and online processing
can be combined to produce new types of ensemble classifiers. In particular, we investigate
the possibility of tailoring the strategies presented in Chapter 4 to a specific algorithm,
in an attempt to minimize the additional processing cost introduced by these strategies.
As a result, we put forward a new incremental ensemble classifier, called Online Accuracy
Updated Ensemble, which weights component classifiers based on their error, in constant
time and memory. The proposed algorithm is experimentally compared with four state-
of-the-art online ensembles, providing best average classification accuracy on 16 datasets
simulating various drift scenarios.

5.1 Block-based Weighting in Online Environments

In environments were examples arrive in portions, block-based ensembles offer the possibil-
ity of using batch algorithms and, if component classifiers are correctly weighted, achieve
higher accuracy than a single classifier trained on all available examples [163]. However, in
online environments batch algorithms can be too expensive in terms of required processing
time and memory.

Additionally, determining the block size of a block-based ensemble is a non-trivial task,
which requires finding a compromise between accurate predictions and fast reactions to
changes [172, 30]. Theoretically, one could even use blocks containing single examples, thus,
allowing a block-based ensemble to work online. However, component classifiers require
more than one example to give satisfactory predictions and more than one example is
also needed when evaluating the classification performance of a component. Therefore, in
practice it is impossible to correctly weight an ensemble of 1000 classifiers built on one

79

80 The Online Accuracy Updated Ensemble

example each, and require it to be more accurate than a single classifier built on 1000
examples.

Strategies proposed in Chapter 4, showcased alternative approaches to adapting block-
based ensembles to online processing. The analysis of these approaches has shown that
the use of incremental learners and online weighting are important aspects in converting
a block-based learner into an online ensemble. These results coincide with our experiences
with the Accuracy Updated Ensemble, where periodical incremental updates of compo-
nents using blocks of examples were a key factor in achieving high accuracy [30, 34].

However, the transformation strategies proposed in Chapter 4 were not tailored to any
specific algorithm and, for this reason, were not always computationally efficient. In partic-
ular, online component weighting, although effective in terms of enhancing the predictive
performance of the transformed algorithms, was found to be extremely costly in terms
of time and memory overhead. This issue motivated the following research question: Can
error-based weighting proposed for block-based methods be performed after each example,
without the need of dividing data into blocks? In the following section, we try to answer
this question by introducing a new ensemble classifier that uses incremental learners and
block-based weighting mechanisms, but in an online, time and memory efficient manner.

5.2 The Online Accuracy Updated Ensemble

The proposed algorithm, called Online Accuracy Updated Ensemble, maintains a weighted
set of component classifiers and predicts the class of incoming examples by aggregating
the predictions of ensemble members using a weighted voting rule. After processing a
new example, each component classifier is weighted according to its accuracy and incre-
mentally trained. We retain an approach common for block-based ensembles, where every
d examples a new candidate classifier is created which substitutes the poorest perform-
ing ensemble member. In our analysis and experiments, we will use Hoeffding Trees as
component classifiers, but it is important to note that one could use any online learning
algorithm as a base learner. The key novel element of the Online Accuracy Updated En-
semble, presented in Algorithm 5.1, is a block-based inspired weighting function, which
we discuss in more detail in the following paragraphs.

Let S be a data stream. For each incoming example xt, the weights wti of component
classifiers Ci ∈ E (i = 1, 2, . . . , k) are calculated by estimating the prediction error on the
last d examples as shown in Equations 5.1–5.5. Function f tiy(xt) denotes the probability
given by classifier Ci that xt is an instance of class yt. It is important to note that, instead
of single class predictions, probabilities of all classes are considered. MSEti estimates the
prediction error of classifier Ci on the last d examples, τi denotes the time at which clas-
sifier Ci was created, whereas MSEtr is the mean square error of a randomly predicting
classifier (also trained on the last d examples) which is used as a reference point to pre-
dictions made based on the current class distribution. Additionally, to ensure that each
component classifier always receives a positive weight, ε is added to wti . The described
formula resembles the non-linear weighting function of AUE (discussed in Chapter 3), but
aims at providing error estimates and weights after each example.

5.2. The Online Accuracy Updated Ensemble 81

Algorithm 5.1 Online Accuracy Updated Ensemble (OAUE)
Input: S: stream of examples

d: window size
k: number of ensemble members
m: memory limit

Output: E : ensemble of k weighted incremental classifiers

1: E ← ∅;
2: C ′ ← new candidate classifier;
3: for all examples xt ∈ S do
4: calculate the prediction error of all classifiers Ci ∈ E on xt;
5: if t > 0 and t mod d = 0 then
6: if |E| < k then
7: E ← E ∪ {C ′};
8: else
9: weight all classifiers Ci ∈ E and C ′ using (5.5);

10: substitute least accurate classifier in E with C ′;
11: end if
12: C ′ ← new candidate classifier;
13: if memory_usage(E) > m then
14: prune (decrease size of) component classifiers;
15: end if
16: else
17: incrementally train classifier C ′ with xt;
18: weight all classifiers Ci ∈ E using (5.5);
19: end if
20: for all classifiers Ci ∈ E do
21: incrementally train classifier Ci with xt;
22: end for
23: end for

MSEti =



MSEt−1
i + eti

d
− et−di

d
, t− τi > d

t− τi − 1
t− τi

·MSEt−1
i + eti

t− τi
, 1 ≤ t− τi ≤ d

0, t− τi = 0

(5.1)

eti = (1− f tiy(xt))2 (5.2)

MSEtr =


MSEt−1

r − rt−1(yt)− rt−1(yt−d) + rt(yt) + rt(yt−d), t > d∑
y

rt(y), t = d
(5.3)

rt(y) = pt(y)(1− pt(y))2 (5.4)

wti = 1
MSEtr +MSEti + ε

(5.5)

82 The Online Accuracy Updated Ensemble

The presented formulas for calculating MSEti and MSEtr are incremental versions of
evaluation measures used by Wang et al. to weight component classifiers of the Accuracy
Weighted Ensemble [163], which worked on blocks of examples Bj :

MSEij = 1
|Bj |

∑
{x,y}∈Bj

(1− f iy(x))2 (5.6)

MSEr =
∑
y

p(y)(1− p(y))2 (5.7)

Instead of remembering a block of last d examples and performing component evaluations
on the same instance multiple times (as described in the strategy presented in Section 4.2),
we derived an incremental versions of Equations 5.6 and 5.7.

A newly added classifier (t− τi = 0) is treated like an error-less classifier (MSEti = 0).
Such an approach is based on the assumption that the most recent block or window
provides the best representation of the current data distribution and is a direct inspiration
from our work concerning the Accuracy Updated Ensemble presented in Chapter 3. For
t− τi ≤ d we scale the mean-square error calculated on the previous example and add the
prediction error calculated on xt. When a component classifier has been trained on more
than d examples (t− τi > d), the prediction errors used for weight calculation are limited
to the last d, to evaluate only on the most recent data. The influence of different d values
as well as the possible use of a linear weighting function will be discussed in Section 5.3.

The equation for MSEtr was built analogously, with the difference that instead of
adding and removing errors, distributions (rt) of the class of the newest (yt) and oldest
(yt−d) example are updated, and that MSEtr is first calculated after creating the first
component (after d examples).

Let us now analyze the complexity of the Online Accuracy Updated Ensemble. As Ho-
effding Trees can be learned in constant time per example [49], the training of an ensemble
of k Hoeffding Trees has a complexity of O(k). Additionally, the weighting procedure de-
fined by Equations 5.1–5.5 requires a constant number of operations, thus, for weighting
k components O(k) time is needed. Therefore, the training and weighting of OAUE has a
complexity of O(2k) per example and since k is a user-defined constant this resolves to a
complexity of O(1). It is worth noting that the same would be true for any other constant
time per example component classifier, e.g., the Naive Bayes algorithm.

The memory requirements of an ensemble of Hoeffding Trees depend on the concept
being learned and can be denoted as O(kavcl), where a is the number of attributes, v
is the maximum number of values per attribute, c is the number of classes, and l is the
number of leaves in the tree [49]. The weighting mechanism of OAUE increases this value
by d per component for calculatingMSEti and c for calculatingMSEtr, which gives a total
of O(kavcl+k(d+c)). Since k, d, and c are constants, the proposed weighting scheme does
not increase the asymptotic space complexity compared to an ensemble without weighting.

In contrast to representative block-based ensembles like the Accuracy Weighted En-
semble [163] or Streaming Ensemble Algorithm [155], the proposed approach does not use
static batch learners to construct component classifiers and does not divide the stream
into blocks. OAUE utilizes the notion of accuracy-based weighting introduced in AWE,

5.3. Experimental Evaluation 83

but it does not require a block of d examples and does not evaluate component classifiers
on more than one example at a time. Instead, OAUE processes the stream one instance
at a time and only requires each component classifier to remember its error on the last
d examples. This means that the memory used by OAUE, apart from the memory used
by its component classifiers, is dictated solely by the ensemble size k and the number of
predictions used for weighting d and is, therefore, stream-invariant. Additionally, since
component classifiers are incrementally trained after each example, OAUE is much less
sensitive to the number examples between each new candidate classifier.

The Online Accuracy Updated Ensemble also differs from other data stream ensem-
ble classifiers. Ensemble members of OAUE are incrementally weighted and periodically
removed, unlike in Online Bagging [132] or Leveraging Bagging [16]. In contrast to the
Adaptive Classifier Ensemble [130], OAUE does not use any drift detector or static batch
learner and does not process the stream in blocks. In comparison with Learn++.NSE [52],
the proposed algorithm incrementally trains all existing component classifiers after each
example, retains only k of all the created components, and uses a different weighting
function which ensures that all components will have positive weights. In contrast to the
Dynamic Weighted Majority [91], OAUE weights components according to their prediction
error, treats the candidate classifier as a perfect learner, and its weighting function does not
require any user-specified parameters. It is also worth noting that the Dynamic Weighted
Majority is only capable of penalizing component classifiers using a user-specified value,
while OAUE, thanks to its memory of last d component errors, can penalize or reward
components according to their mean square error.

Although weights of component classifiers in OAUE are calculated on a window of last
d errors, it is not similar to sliding window algorithms used in data stream classification.
In contrast to algorithms like ADWIN [19], OAUE does not aim at direct detection of
drifts by analyzing windows of examples. OAUE also does not store, weight, or select
past examples like FISH [172] or algorithms using decay functions [37]. Moreover, OAUE
differs from algorithms that integrate sliding windows to calculate additional statistics
to rebuild or prune parts of a single classifier, like in CVFDT [80] and other extensions
of online decision trees. In contrast to the WWH algorithm from Yoshida et al. [171],
we do not build component classifiers on overlapping windows to select the best learning
examples or modify the Weighted Majority Algorithm. Finally, unlike algorithms using
sliding windows, OAUE periodically reconstructs the ensemble by replacing component
classifiers.

5.3 Experimental Evaluation

In this section, we summarize experiments conducted during the creation and evaluation
of the proposed OAUE algorithm. In the first part, we study the impact of different
elements of the proposed algorithm. Then, we compare OAUE with state-of-the-art online
ensembles.

84 The Online Accuracy Updated Ensemble

5.3.1 Experimental Setup

The proposed Online Accuracy Updated Ensemble (OAUE) is compared against four
online ensembles, whose selection will be explained in Section 5.3.3. We chose exclusively
ensembles that can be trained online, because in environments where labels are available
after each example, block-based ensembles learn and react to drifts much slower than
online approaches. The analyzed algorithms were implemented in Java as part of the
MOA framework [15] and tested on a machine equipped with an Intel Core i7-2640M @
2.80 GHz processor with 10 GB of RAM.

All the ensembles used k = 10 component classifiers; for ACE those classifiers were J48
trees with default WEKA parameters, while OAUE, Bag, Lev, and DWM used Hoeffding
Trees with adaptive Naive Bayes leaf predictions with a grace period nmin = 100, split
confidence δ = 0.01, and tie-threshold ψ = 0.05 [49]. We decided to use ten component
classifiers as using more classifiers (tested systematically from two up to forty) linearly
increased processing time and memory, but did not notably improve classification accuracy
of any of the analyzed ensemble methods. The data block size used for ACE was equal
d = 1000 as this size was considered the best suitable for block ensembles [155, 163].
Analogously, OAUE and DWM used a window size/evaluation period of d = 1000.

The analyzed algorithms were evaluated with respect to time efficiency, memory usage,
and accuracy. All evaluation measures were periodically calculated using the prequential
evaluation method [69, 15, 21] with a window of d = 1000 examples. As in Chapter 4,
we chose to perform prequential evaluations, as this method is more suitable for online
algorithms than block or holdout evaluations [69].

The algorithms were tested using the same 11 synthetic and 5 real datasets that were
described in Section 4.5.2. Table 5.1 recalls the main characteristics of each dataset.

Table 5.1: Characteristic of datasets used to evaluate the OAUE algorithm

Dataset #Inst #Attrs #Classes Noise #Drifts Drift type

Airlines 539 k 7 2 - - unknown
CovType 581 k 53 7 - - unknown
HyperF 1 M 10 2 5% 1 incremental
HyperS 1 M 10 2 5% 1 incremental
LEDM 1 M 24 10 30% 3 mixed
LEDND 250 k 24 10 20% 0 none
PAKDD 50 k 30 2 - - unknown
Poker 1 M 10 10 - - unknown
Power 30 k 2 24 - - mixed
RBFB 1 M 20 4 0% 2 blips
RBFGR 1 M 20 4 0% 4 gradual recurring
SEAG 1 M 3 4 10% 9 gradual
SEAS 1 M 3 4 10% 3 sudden
TreeSR 100 k 10 6 0% 15 sudden recurring
Wave 1 M 40 3 random 0 none
WaveM 500 k 40 3 random 3 mixed

5.3. Experimental Evaluation 85

5.3.2 Analysis of OAUE Components

As in block-based ensembles the block size is a parameter which largely influences the accu-
racy of the ensemble [163], we decided to verify the impact of using different block/window
sizes d for calculating the mean square error (MSEti ,MSEtr) in OAUE. It is worth noting
that the d parameter in OAUE is responsible not only for the number of examples used to
create candidate classifiers, but also the sliding window used to calculate the mean square
error (MSEti , MSEtr). Table 5.2 presents the average prequential accuracy of OAUE on
different datasets with d ∈ [500; 2000].

Table 5.2: Average prequential accuracy [%] of OAUE for different window sizes d

Window size
500 750 1000 1250 1500 1750 2000

Airlines 67.50 66.93 67.03 67.12 66.72 66.33 66.23
CovType 90.07 90.85 90.91 91.08 91.43 91.51 91.58
HyperF 90.55 90.43 90.42 90.26 90.30 90.24 90.19
HyperS 89.05 89.04 88.94 89.00 88.98 88.92 88.97
LEDM 53.40 53.40 53.38 53.24 52.65 52.40 52.38
LEDND 51.54 51.48 51.40 51.39 51.35 51.27 51.28
PAKDD 80.24 80.23 80.23 80.20 80.20 80.20 80.17
Poker 81.54 87.92 88.87 90.18 90.81 92.01 92.65
Power 15.73 15.58 15.54 15.34 15.27 15.23 14.87
RBFB 96.78 97.59 97.83 97.84 97.96 98.00 97.90
RBFGR 96.69 97.27 97.38 97.46 97.56 97.53 97.43
SEAG 88.95 88.85 88.81 88.79 88.70 88.67 88.62
SEAS 89.41 89.32 89.31 89.28 89.23 89.22 89.15
TreeSR 46.23 46.05 45.86 45.21 44.39 43.66 43.28
Wave 84.34 85.25 85.47 85.58 85.53 85.50 85.49
WaveM 83.86 84.75 84.85 84.87 84.86 84.73 84.66

Additionally, in Figure 5.1 we present three box plots summarizing the differences
in accuracy, memory usage, and testing time of OAUE for different window sizes. The
plots were created by calculating, for each dataset, the proportional differences between
the mean performance over all window sizes and the performance for a certain window
size d. For example, for the Airlines dataset the mean accuracy for all window sizes
d ∈ [500; 2000] is 66.83%. Therefore, the proportional difference for OAUE with d = 500,
which has an average accuracy on Airlines equal 67.50%, is 67.50−66.83

66.83 ≈ +1.00%. This
operation was repeated for all the datasets to create a box plot for a given d.

Analyzing the values in Table 5.2, one can see that differences in each row are small and
no global dependency upon d can be seen. Furthermore, the box plot in Figure 5.1 (a) shows
that most values are within 1% from the mean value on each dataset. Conversely, clear
tendencies are visible on the plots of time and memory usage in Figures 5.1 (b) and (c).
The larger the window size, the more time and memory consuming the classification. This
dependency is a consequence of creating each new classifier using d examples. When d

grows, so does each candidate classifier, which corresponds to higher time and memory
requirements.

86 The Online Accuracy Updated Ensemble

-8 %

-6 %

-4 %

-2 %

0 %

2 %

4 %

6 %

500 750 1000 1250 1500 1750 2000

d
e
v
ia

ti
o
n
 f

ro
m

 a
v
e
ra

g
e
 p

re
q
u
e
n
ti
a
l
a
c
c
u
ra

c
y

window size

-100 %

-50 %

0 %

50 %

100 %

150 %

500 750 1000 1250 1500 1750 2000

d
e
v
ia

ti
o
n
 f

ro
m

 a
v
e
ra

g
e
 m

e
m

o
ry

 u
s
a
g
e

window size

-100 %

-50 %

0 %

50 %

100 %

150 %

200 %

500 750 1000 1250 1500 1750 2000

d
e
v
ia

ti
o
n
 f

ro
m

 a
v
e
ra

g
e
 t

e
s
ti
n
g
 t

im
e

window size

(a) (b)

(c)

Figure 5.1: Box plot of average prequential accuracy (a), memory usage (b), and testing
time (c) for window sizes d ∈ [500; 2000]. The depicted values are the percentage deviation
from the average on each dataset.

Performing a Friedman test on the calculated deviations for d ∈ [500; 2000] we obtain
FFAcc

= 2.183, FFMem
= 34.594, and FFT ime

= 3.857 for accuracy, memory usage, and
evaluation time, respectively. As the critical value for comparing 7 values on 16 datasets
with α = 0.05 is 2.201, we reject the null-hypothesis for memory and time, but not
accuracy. According to the Friedman test, we can state that there is a difference in average
processing time and memory usage for different values of d, but concerning accuracy there
is no significant difference. As there is no strong dependency upon d in terms of accuracy,
but time and memory are proportional, in subsequent experiments we used d = 1000 as
the value with least outliers and relatively low time and memory consumption.

Apart from studying the influence of d, we performed an analysis concerning the impact
of using different functions for weighting OAUE’s components. The experiments involved
calculating average prequential accuracies for all test datasets using a nonlinear (wtNL =

1
MSEt

r+MSEt
i +ε) and linear function (wtL = max{MSEtr−MSEti , ε}). The results, presented

in Table 5.3, show that both functions perform almost identically on most datasets, with
the linear function performing slightly better on datasets with very frequent changes and
the nonlinear function being more accurate on datasets with noise and longer periods of
stability. This dependency can be explained by analyzing component weights during a
sudden concept drift. A practical example of such a situation is depicted in Figure 5.2
were proportional weight values of ten components are depicted for OAUE using wtNL (a)
and wtL (b).

5.3. Experimental Evaluation 87

Table 5.3: Comparison of OAUE with a linear (wtL) and nonlinear (wtNL) weighting func-
tion in terms of average prequential accuracy [%], average memory usage [MB], and average
testing time per d = 1000 examples [s]

OAUE with wtL OAUE with wtNL
Acc. Mem. Test. Acc. Mem. Test.

Airlines 59.48 148.25 16.93 67.02 89.90 4.22
CovType 91.11 3.03 0.35 90.98 3.09 0.40
HyperF 90.44 3.23 0.24 90.43 3.23 0.22
HyperS 88.96 2.87 0.50 88.95 2.87 0.20
LEDM 53.41 0.32 0.13 53.40 0.32 0.15
LEDND 51.47 0.32 0.39 51.48 0.32 0.15
PAKDD 80.14 4.98 1.39 80.23 3.39 1.01
Poker 92.34 3.62 0.56 88.89 2.18 0.18
Power 15.93 0.18 0.13 15.93 0.18 0.13
RBFB 97.88 8.03 0.50 97.87 8.03 0.59
RBFGR 97.43 11.06 0.65 97.42 11.06 0.70
SEAG 88.90 1.45 0.09 88.83 1.45 0.09
SEAS 89.40 2.66 0.14 89.33 2.66 0.14
TreeSR 49.68 2.28 0.73 46.04 2.28 0.61
Wave 85.52 50.63 7.16 85.50 50.63 2.97
WaveM 85.00 12.28 0.87 84.90 12.29 1.05

0

10

20

30

40

50

60

70

80

90

100

14000 14200 14400 14600 14800 15000

c
o
m

p
o
n
e
n
t

c
la

s
s
if
ie

rs
’
w

e
ig

h
ts

timestamp

0

10

20

30

40

50

60

70

80

90

100

14000 14200 14400 14600 14800 15000

c
o
m

p
o
n
e
n
t

c
la

s
s
if
ie

rs
’
w

e
ig

h
ts

timestamp

(a) Nonlinear weighting function (b) Linear weighting function

Figure 5.2: Percentage component weight proportions of OAUE with a nonlinear weighting
function (a) and OAUE with a linear weighting function (b)

As Figure 5.2 shows, compared with the nonlinear function, the linear function in-
troduces larger proportional weight changes after each example. This can have the effect
of faster reactions to changes, but means that using wtL the algorithm is more sensitive
to noise. We performed a Wilcoxon signed rank test to compare the accuracy of OAUE
using wtNL and wtL. For α = 0.05, we were unable to reject the null-hypothesis for any of
the measured performance metrics, therefore, we cannot state any significant differences
in using wtNL or wtL. In the comparative study presented below, OAUE is tested with the
nonlinear function, as presented in Section 5.2. However, it is worth noting that using the
presented linear function would yield a practically identical comparison, with identical
ranks for the Friedman test presented in Table 5.7.

88 The Online Accuracy Updated Ensemble

5.3.3 Comparison of OAUE and Other Ensembles

To evaluate the OAUE algorithm, we performed an experimental comparison involving
four online ensembles:
• Online Bagging with an ADWIN change detector (Bag),

• Leveraging Bagging (Lev),

• Dynamic Weighted Majority (DWM),

• and the Adaptive Classifier Ensemble (ACE).

OAUE was implemented for this study, the source codes of the Adaptive Classifier En-
semble and Learn++.NSE were provided courtesy of Dr. Kyosuke Nishida and Dr. Paulo
Gonçalves respectively, while the remaining classifiers were already a part of MOA.

Online Bagging and Leveraging Bagging were chosen as strong representatives of online
ensembles, DWM was selected because it periodically evaluates an ensemble and incremen-
tally changes component weights, and ACE represents a processing scheme with a drift
detector similar to the third of the proposed modification strategies. It is worth point-
ing out that ACE is an algorithm that was used as a separate library and not originally
written for the MOA framework. This means that ACE used different base classes and its
time and memory usage measured by MOA are not fully comparable with the remaining
algorithms. Additionally, on the Wave, WaveM , and PAKDD datasets which contain a large
number of attributes, ACE exceeded available memory and was unable to process the en-
tire stream, while on other datasets ACE showcased very low memory usage. This confirms
that the memory usage calculated by MOA for ACE was underestimated and, therefore,
we do not present memory usage of ACE. Average prequential accuracy, memory usage,
and processing time for all algorithms are given in Tables 5.4–5.6.

Table 5.4: Average prequential classification accuracies [%]

ACE DWM Lev Bag OAUE

Airlines 64.89 64.98 62.84 64.24 67.02
CovType 69.60 89.87 92.11 88.84 90.98
HyperF 84.28 89.94 88.49 89.54 90.43
HyperS 79.59 88.48 85.43 88.35 88.95
LEDM 46.75 53.34 51.31 53.33 53.40
LEDND 39.88 51.48 49.98 51.50 51.48
PAKDD - 80.24 79.85 80.22 80.23
Poker 79.83 91.29 97.67 76.92 88.89
Power 18.57 15.45 16.84 15.96 15.93
RBFB 84.62 96.00 98.22 97.87 97.87
RBFGR 83.78 95.49 97.79 97.54 97.42
SEAG 85.91 88.39 89.00 88.36 88.83
SEAS 86.00 89.15 89.26 88.94 89.33
TreeSR 43.20 42.48 47.88 48.77 46.04
Wave - 84.02 83.99 85.51 85.50
WaveM - 83.76 83.46 84.95 84.90

5.3. Experimental Evaluation 89

Table 5.5: Average memory usage [MB]

ACE DWM Lev Bag OAUE

Airlines - 86.26 63.73 60.27 89.90
CovType - 8.27 6.75 1.19 3.09
HyperF - 4.37 63.41 7.19 3.23
HyperS - 4.24 110.11 6.31 2.87
LEDM - 0.61 1.76 2.56 0.32
LEDND - 0.41 0.98 1.32 0.32
PAKDD - 3.16 38.26 6.24 3.39
Poker - 2.25 4.62 0.17 2.18
Power - 0.09 0.11 0.11 0.18
RBFB - 6.36 60.21 13.07 8.03
RBFGR - 6.22 52.94 13.15 11.06
SEAG - 1.73 31.05 4.06 1.45
SEAS - 1.32 67.33 7.32 2.66
TreeSR - 1.81 3.75 1.10 2.28
Wave - 6.18 480.29 69.71 50.63
WaveM - 6.42 190.03 26.16 12.29

Table 5.6: Algorithm testing time per d = 1000 examples [s]

ACE DWM Lev Bag OAUE

Airlines 0.04 2.50 11.20 2.64 4.22
CovType 0.22 0.49 2.84 0.35 0.40
HyperF 0.25 0.21 3.90 0.89 0.22
HyperS 0.26 0.20 9.16 0.38 0.20
LEDM 0.09 0.14 0.75 0.21 0.15
LEDND 0.08 0.16 0.27 0.18 0.15
PAKDD - 0.28 9.83 0.85 1.01
Poker 0.03 0.10 1.29 0.06 0.18
Power 0.19 0.11 0.24 0.15 0.13
RBFB 0.62 0.30 11.36 0.75 0.59
RBFGR 0.61 0.31 7.79 0.86 0.70
SEAG 0.05 0.08 5.97 0.23 0.09
SEAS 0.04 0.07 7.94 0.48 0.14
TreeSR 0.25 0.17 0.62 0.17 0.61
Wave - 0.48 33.65 5.04 2.97
WaveM - 0.46 33.46 1.63 1.05

90 The Online Accuracy Updated Ensemble

As in previous chapters, we also generated graphical plots for each dataset depicting
the algorithms’ performance in time. We will analyze the most interesting accuracy and
memory plots, which highlight characteristic features of the studied algorithms.

Figures 5.3 and 5.4 present the prequential accuracy and memory usage of the analyzed
algorithms on the HyperF dataset. The two best performing algorithms for this dataset
containing fast incremental drift are OAUE and DWM, which seem to react better to
incremental changes than ACE, Lev, and Bag. The characteristic feature of DWM and
OAUE is that they periodically change ensemble members, while the remaining three
algorithms do that only when drift is detected. Similar behavior was observed in accuracy
plots for the HyperS dataset, which contains a continuous, slow, incremental drift.

Looking at the memory plot in Figure 5.4, we can see that Lev requires much more
memory than the remaining algorithms, Bag is second, while OAUE and DWM are the
least expensive in terms of memory. This observation was consistent among most memory
plots. It is also worth noticing that OAUE is one of the fastest of the analyzed algorithms
and, in contrast to the analyzed online evaluation strategy from Section 4.2, does not
introduce any additional processing costs compared to its block-based predecessor AUE.

76 %

78 %

80 %

82 %

84 %

86 %

88 %

90 %

92 %

94 %

96 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

ACE
DWM

Lev
Bag

OAUE

Figure 5.3: Prequential accuracy on the HyperF dataset

For streams with gradual drifts (RBFGR and SEAG) the best performing algorithm is
Lev, with OAUE and Bag being close second. However, Lev is also the slowest and most
memory consuming algorithm on these datasets, requiring on an average 13 times more
memory and 38 times more processing time than OAUE. Figure 5.5 presents the accuracies
of the analyzed algorithms on the RBFGR dataset. Gradual drifts created around examples
number 125, 250, 375, 500 k have the worst impact on DWM and ACE. ACE uses static
batch learners and, therefore, is not capable of reacting sufficiently quickly to changes.
DWM on the other hand is probably performing slightly worse because it uses a penalty
function which strongly diminishes component weights during prolonged drifts.

5.3. Experimental Evaluation 91

0 B

20 MB

40 MB

60 MB

80 MB

100 MB

120 MB

140 MB

160 MB

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

M
e
m

o
ry

Processed instances

DWM
Lev
Bag

OAUE

Figure 5.4: Memory usage on the HyperF dataset

75 %

80 %

85 %

90 %

95 %

100 %

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

A
c
c
u
ra

c
y

Processed instances

ACE
DWM

Lev
Bag

OAUE

Figure 5.5: Prequential accuracy on the RBFGR dataset

Depending on the frequency of drifts, the best performing algorithms for streams
with sudden changes were OAUE and Bag. For rare abrupt changes, such as in the SEAS
dataset, OAUE suffered smallest accuracy drops. However, for very fast changes present
in the TreeSR stream, algorithms with drift detectors, such as Lev and Bag, were more
accurate. What is worth noting is that using OAUE with a linear weighting function (as
presented in Section 5.3.2) would yield an accuracy of 49.68%, which would be the best
result for this dataset. This shows that for very dynamic changes either drift detectors or
very drastic component weight modifications are required to adapt in time.

92 The Online Accuracy Updated Ensemble

On datasets with no drift (LEDND), with drifting attribute values (Wave, WaveM) or
added noise (LEDM , RBFB), OAUE and Bag perform almost identically, with Lev, DWM,
and ACE being slightly less accurate. All algorithms react similarly to changes introduced
in these datasets, and differences concern only the predictive performance of each ensemble.

Concerning real datasets, there is no single best performing algorithm in terms of
accuracy. On Poker, Lev clearly outperforms all the other algorithms. On CovType, Lev is
the most accurate followed by OAUE, while on PAKDD all the algorithms perform almost
identically. On the other hand, OAUE is the most accurate on the Airlines dataset, while
ACE is the best on Power.

To conclude the analysis, we carried out statistical tests for comparing multiple clas-
sifiers over multiple datasets. As in previous experiments, we used the non-parametric
Friedman test coupled with the Bonferroni-Dunn post-hoc test [45, 82] to verify whether
the performance of OAUE is statistically different from the remaining algorithms. The
average ranks of the analyzed algorithms are presented in Table 5.7 (the lower the rank
the better).

Table 5.7: Average algorithm ranks used in the Friedman tests

ACE DWM Lev Bag OAUE

Accuracy 4.50 2.94 2.75 2.75 2.06
Memory - 1.81 3.56 2.63 2.00
Testing time 2.50 1.81 4.81 3.19 2.69

By using the Friedman test to verify the differences between accuracies, we obtain
FFAcc

= 7.248. As the critical value for comparing 5 algorithms over 16 datasets for
α = 0.05 is 2.525, the null hypothesis can be rejected. Considering accuracies, OAUE
provides the best average achieving usually a high rank on each dataset. To verify whether
OAUE performs better than the remaining algorithms, we compute the critical difference
chosen by the Bonferroni-Dunn test as CD = 1.396. This allows us to state that OAUE
is significantly more accurate then ACE, but concerning the remaining algorithms the
experimental data is not sufficient to reach such a conclusion. However, by performing
additional one-tailed Wilcoxon signed rank tests for comparing pairs of classifiers, we can
state that OAUE is more accurate than DWM with pDWM = 0.004. The p-value for
stating that OAUE is more accurate than Bag and Lev are pBag = 0.089 and pLev = 0.163
respectively. Overall, the conducted experiments seem to support our observation that in
terms of accuracy OAUE is not only comparable to other systems in the literature, but in
most cases achieves better performance.

Performing a similar analysis for memory usage and processing time we get FFMem
=

6.793 and FFT ime
= 15.476 respectively, which allows us to reject the null-hypothesis in

both cases. Analyzing the CD and by performing Wilcoxon tests we can state that OAUE
is significantly faster than Lev (pLev = 0.0002) and less memory consuming than Lev and
Bag (pLev = 0.001, pBag = 0.022).

5.4. Conclusions 93

5.4 Conclusions

In this chapter, we combined the main results of Chapter 4 and proposed a new incremental
stream classifier, called Online Accuracy Updated Ensemble (OAUE), which trains and
weights component classifiers with each incoming example. The main novelty of the OAUE
algorithm is the proposal of a cost-effective component weighting function, which estimates
a classifier’s error on a window of last seen instances in constant time and memory without
the need of remembering past examples.

We also carried out experimental studies analyzing the effect of using different window
sizes and functions for evaluating component classifiers. The obtained results showed that
the accuracy of the proposed algorithm did not change depending on the window size, but
larger windows induced higher time and memory costs. Concerning different error-based
weighting functions, we have found that a linear function performed better on fast drifting
streams, but a nonlinear function was more robust to noise.

Finally, we experimentally compared OAUE with four representative online ensem-
bles: the Adaptive Classifier Ensemble, Dynamic Weighted Majority, Online Bagging, and
Leveraging Bagging. The obtained results demonstrated that OAUE can offer high clas-
sification accuracy in online environments regardless of the existence or type of drift.
OAUE provided best average classification accuracy out of all the tested algorithms and
was among the least time and memory consuming ones.

The AUE algorithm, presented in Chapter 3, was designed to add elements of online
learning to block-based ensembles. However, in environments where labels are available
after each instance, these elements of online learning do not suffice if the ensemble still
processes data in blocks. The OAUE algorithm aims at retaining the positive elements of
AUE, while adding the capability of processing streams online. The fact that this capability
was achieved with negligible overhead in terms of memory usage and processing time,
makes OAUE a much better choice for streams with online labeling.

Chapter 6

Classifier Evaluation Methods for
Imbalanced Streams with Class
Distribution Changes

Thus far, the conducted analysis has concentrated on the performance of block-based and
online ensembles in the presence of real drifts. However, as mentioned in Section 2.2,
several types of changes fall into the category of virtual drift, i.e., changes in the data dis-
tribution p(x) or p(y) that do not necessarily affect class conditional probabilities p(y|x).
Although less frequently studied than real drifts in the context of data streams, virtual
drifts resemble difficulties that have been more intensively analyzed for batch data. For ex-
ample, the issue of class distribution changes between classifier training and performance
has been investigated in the context of model selection [169, 82]. Furthermore, the prob-
lem of time-evolving class imbalance, i.e., the underrepresentation of certain classes, can
also be considered a special type of virtual drift. In traditional methods for mining static
data, the issues of class imbalance and class distribution changes have been studied due
to complexities arising not only in classifier training but also evaluation [76]. Similarly,
virtual drift introduces additional difficulties to the process of training and evaluating
stream classifiers.

This chapter aims at analyzing how class distribution changes, as a special case of
virtual drift, affect the performance of classifiers for evolving data streams. In order to
perform this evaluation, we first summarize, in Section 6.1, existing methods for assessing
the predictive performance of data stream classifiers. The main goal of this review is
to underline deficiencies of currently used stream evaluation measures when applied to
imbalanced data. In particular, we analyze if and how the most popular class distribution-
independent measure for batch imbalanced data, the area under the ROC curve (AUC),
is used for evaluating streaming classifiers. The resulting literature study indicates that
traditional AUC computation methods are inapplicable to streaming data and the use of
this measure for assessing adaptive classifiers remains an open challenge. Therefore, in
Section 6.2, we put forward a novel online algorithm for calculating the area under the
ROC curve with a forgetting mechanism, called prequential AUC. Section 6.3 analyzes

95

96 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

the properties of this newly proposed evaluation measure, in particular, its consistency
with traditional AUC in the context of stationary and drifting streams. Furthermore, in
Section 6.4 we present experimental results, which demonstrate the time performance
of prequential AUC and its applicability to drift detection for balanced and imbalanced
data streams. Additionally, we use prequential AUC to assess the performance of online
classifiers in the presence of class distribution changes. Finally, Section 6.5 concludes the
chapter.

6.1 Classifier Evaluation Methods in the Context of
Concept Drift

In this section, we discuss evaluation measures and error-estimation procedures used in
data stream classification. Section 6.1.1, covers measures currently used to assess predictive
performance and highlights their properties in the context of class distribution changes.
Section 6.1.2 discusses error-estimation and randomization procedures, which try to take
into account the existence of concept drift as well as problems of limited time and memory,
during the calculation of evaluation measures.

6.1.1 Evaluation Measures

When evaluating the performance of a classifier for concept-drifting data streams, two
factors are crucial: prediction accuracy and the ability to adapt.

The first factor could be analyzed by a simple empirical error-rate, i.e. the fraction
of misclassified examples, or its complement, the fraction of correctly classified examples.
This measure is referred to as accuracy, and is one of the most commonly used evalua-
tion metrics in batch and data stream classification. Accuracy and error-rate effectively
summarize the overall performance of a classifier in a single scalar metric, taking into
account all data classes. Consequently, they can be efficiently calculated using all of the
error-estimation and randomization techniques, which will be discussed in Section 6.1.2.
Moreover, accuracy and error-rate can be used to assess simple discrete classifiers, as well
as more complex scoring or probabilistic classifiers.

However, as a result of trying to combine knowledge about all data classes in a sin-
gle metric, there are limitations concerning the encompassed information as well as the
effectiveness of these measures in different scenarios [82]. Error-rate and accuracy do not
convey information on the importance of the performance of different classes. Moreover,
in case of skewed distributions these measures promote majority class predictions and
effectively hide algorithm weaknesses concerning minority class examples. In other words,
accuracy and error-rate are effective measures when the number of instances belonging to
particular classes is more or less balanced. This last issue, limits the use of accuracy or
error-rate on imbalanced or class distribution drifting streams.

In traditional, batch and stationary, data mining, several alternatives for evaluating
classifiers on imbalanced data have been proposed [76, 82]. Most of these measures, such as
the G-mean, sensitivity, specificity, precision, recall, or F-score, are calculated by aggregat-

6.1. Classifier Evaluation Methods in the Context of Concept Drift 97

ing correct and incorrect predictions, similarly to accuracy. However, the aforementioned
metrics combine different parts of the confusion matrix, i.e., different types of classifier
prediction errors [82]. Although these measures have computational requirements com-
parable to accuracy, they are still rarely used in evaluations of data stream classifiers.
However, two other measures for imbalanced data are slowly gaining more attention in
data stream processing — the κ statistic and AUC.

Bifet and Frank [12] proposed the use of the Cohen’s κ to assess the predictive abilities
of a classifier on imbalanced data streams. Cohen’s κ is a statistic that measures the ratio
of the difference between the observed and chance agreement that can be achieved over and
beyond chance [82]. In the context of classification, this involves comparing the accuracy
of the tested classifier with that of a chance classifier:

κ = p0 − pc
1− pc

(6.1)

where p0 is the accuracy of the tested classifier and pc is the accuracy of a chance classifier.
The accuracy of a chance classifier is determined by the probability of giving a correct
prediction by chance, which in turn is dependent on the current class distribution [82].
The κ statistic can achieve values from (−∞; 1], where zero means that p0 is no better
than a chance classifier and values above/below zero indicate how much better/worse p0

performs compared to pc. Additionally, in the context of data stream classification, this
metric has been recently extended to take into account temporal dependence [22, 178].
The κ statistic, and other agreement measures, often yield more realistic estimations
of predictive performance, as they take into account the marginal probability of label
assignments to correct the estimated accuracy for chance. However, they are still sensitive
to issues such as class imbalance and misclassification costs [82].

Several data stream researchers have also tried to use the area under the ROC (Receiver
Operator Characteristic) curve, which is one of the most popular evaluation metrics for
batch imbalanced data. ROC analysis investigates the relationship between the true and
false positive rate of a binary classifier, for different decision thresholds [58]. If we denote
examples of two classes distinguished by a binary classifier as positive and negative, the
ROC curve is created by plotting the proportion of positives correctly classified (true
positive rate) against the proportion of negatives incorrectly classified (false positive rate).
If a classifier outputs a score proportional to its belief that an instance belongs to the
positive class, decreasing the classifier’s decision threshold (above which an instance is
deemed to belong to the positive class) will increase both true and false positive rates.
Varying the decision threshold results in a piecewise linear curve, called the ROC curve,
which is presented in Figure 6.1. The area under this ROC curve, abbreviated as AUC,
summarizes the plotted relationship in a single scalar metric and is one of the most popular
evaluation metrics in data mining [82].

The popularity of AUC for batch imbalanced data, stems from the fact that it is
invariant to changes in class distribution. Moreover, for scoring classifiers it has a very
useful statistical interpretation as the expectation that a randomly drawn positive exam-
ple receives a higher score than a random negative example [169]. Additionally, several

98 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

AUC

False positive rate

Classifier ROC curve

Figure 6.1: Example ROC curve

authors have shown that for stationary data AUC is more preferable for classifier evalua-
tion than total accuracy [79]. However, the calculation of AUC is costly, as it requires that
all examples be sorted according to scores assigned by the evaluated classifier. Moreover,
after sorting, the calculation algorithm has to re-iterate through all the examples to sum
the area of trapezoids for each pair of sequential points on the ROC curve. Therefore,
researchers tried to compute AUC only once using entire streams [48, 110] or periodi-
cally using holdout sets [162, 78]. Nevertheless, it was noticed that periodical holdout
sets may not fully capture the temporal dimension of the data, whereas evaluation using
entire streams is neither feasible for large datasets nor suitable for drift detection. It is
also worth mentioning that an algorithm for computing AUC incrementally has also been
proposed [25], yet one which calculates AUC from all available examples and is not appli-
cable to evolving data streams. Although the cited works show that AUC is recognized as
a measure which should be used to evaluate classifiers for imbalanced data streams, up till
now it has been computed the same way as for static data and its applicability to large
drifting streams remains an open problem.

To evaluate the second crucial factor, the ability to adapt, separate methods are
needed. Some researchers evaluate the classifier’s adaptability by comparing drift reac-
tion times [72]. This is done by measuring the time between the start of a drift and the
moment when the tested classifier’s accuracy recovers to level from before the drift. It
is important to notice that in order to calculate reaction times, usually a human expert
needs to determine moments when a drift starts and when a classifier recovers from it.

To automate the assessment of adaptability, Shaker and Hullermeier [150, 151] pro-
posed an approach, called recovery analysis, which uses synthetic datasets to calculate

6.1. Classifier Evaluation Methods in the Context of Concept Drift 99

classifier reaction times. The authors propose to divide a dataset with a single drift into
two sets without drifts. Afterwards, they propose to plot the accuracy of the tested clas-
sifier on each of these datasets separately. The combination of these two plots is called
the optimal performance curve and serves as a reference that can be compared with the
accuracy plot of the classifier on the original dataset. Apart from a graphical compari-
son, the authors propose to calculate two metrics: the relative recovery duration and the
maximum performance loss. The duration of recovery is defined as:

duration = t2 − t1
T

(6.2)

where t1 is the time at which the performance of the classifier drops below 95% of its
optimal performance curve before the drift, t2 the time at which the classifier recovers
to 95% of its optimal performance curve after the drift, and T the length of the entire
stream. The maximum performance loss measures the maximum drop in accuracy as:

maxLoss = max
t∈T

min{SA(t), SB(t)} − SC(t)
min{SA(t), SB(t)} (6.3)

where SA(t) and SB(t) are optimal performance curves of the tested classifier before and
after the drift respectively, and SC(t) is the performace curve of the classifier on the
original dataset. Recovery analysis, bypasses the problem of hand labeling of the drift
reaction period, but requires external knowledge about drifts in real streams or the use of
synthetic datasets and, therefore, can only be used offline.

Finally, some researchers have put forward measures that take into account the cost of
classifier adaptation. Brzezinski and Stefanowski [31] proposed to differentiate the impor-
tance of predictions made directly after the appearance of a concept drift and predictions
during periods of stability. This is done by applying a user-defined weight to predictions
during periods after a detected drift. Such an approach is inspired by cost-based learning
for imbalanced datasets, where errors made on a minority class example cost more than
errors made on examples from the majority class. In this approach, the authors treat ex-
amples directly after a detected drift as “minority” examples and assign a higher weight.
With consecutive examples, the new concept slowly becomes the “majority” and the weight
of examples converges back to a default value. There are several example weighting func-
tions that fulfill these requirements, but as a practical example the authors proposed a
logarithmic function defined as follows:

w(t) = max(−log
e

1
wavg−1

t+ 1 + log
e

1
wavg−1

d, 1), (6.4)

where t is the number examples after the detected drift, d is the average time between
drifts, and wavg is the average weight of examples during the d period. The wavg parameter
defines how much more important should predictions directly after a drift be compared
to predictions in times of stability. The proposed measure can combine information about
accuracy and adaptability in a single metric, but through the wavg parameter assumes that
the user can estimate the cost of not reacting to changes and makes the user responsible
for parametrizing the evaluation.

100 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

A more business-oriented approach to adaptation costs was put forward by Žliobaitė et
al. [179]. The authors propose to treat potential model updates as an investment decision,
which should be based on performance gains in relation to computational costs. This
gain-to-cost ratio can be used to resolve the practical trade-off between using accurate
but computationally expensive models and not that accurate but cheap models. As a
result, the authors propose practical assessment measures which can be used for offline
and online model selection. More precisely they propose to calculate the return of interest
(ROI) for quantifying the gain in performance per resources (RAM-hours) invested:

ROI = γ

ϕ
(6.5)

where γ is the absolute gain of adapting compared to not adapting to change and ϕ is
overall cost of adaptation. Depending whether ROI is calculated on a single drift, averaged
over several drifts, or computed incrementally, it can be used to analyze single drifts and
select models offline or online. In terms of class distribution changes, ROI metrics have been
used with error-rates and, therefore, inherit limitations concerning skewed and imbalanced
data.

6.1.2 Error-estimation Procedures

Just as in traditional machine learning, in data streams the discussed evaluation measures
are estimated on labeled testing examples. However, contrary to batch data scenarios, it
is assumed that due to the size and speed of data streams repeated runs over the data
are not necessary. In fact, due to their computational costs, resampling techniques such
as cross-validation or bootstrapping are deemed too expensive to be worth applying in
streaming scenarios [87]. Therefore, simpler error-estimation procedures have to be used,
yet ones that enable to build a picture of performance over time or ensure robustness to
concept drift.

When batch learning is performed on datasets involving too many examples to employ
resampling, it is often accepted to measure performance on a single holdout set. This set is
separated from the training instances, to ensure that the calculated measures indicate the
generalization performance of the classifier [82]. Viewing data streams as large datasets,
it then follows from batch learning that using holdout sets is appropriate. To track per-
formance over time, the classifier can be evaluated periodically, for example, after every
50,000 examples. However, using a single holdout set is suitable only for data streams
without concept drift, as each new concept requires appropriate testing examples.

An alternate scheme of estimating the performance of data stream classifiers involves
interleaving testing with training [87]. Each individual example is first used to test the
classifier before it is used for training. This evaluation procedure, often called interleaved
test-then-train, has the advantage that it makes maximum use of the available data. Fur-
thermore, when depicted over time, performance measures obtained using this procedure
result in smoother and more detailed plots. However, the disadvantages of this approach
are that it can only be used in online processing and it is difficult to separately measure
training and testing times. With this issue in mind, some researchers propose to assess

6.2. Prequential Area Under the ROC Curve 101

performance using interleaved chunks [29, 30], where, instead of single examples, larger
blocks of examples are used for testing and training. The advantage of using interleaved
chunks is that this procedure can be used in block processing environments and forms a
compromise between testing on single examples or a holdout set.

More recently, Gama et al. [69] proposed a prequential procedure, which is similar
to the test-then-train technique, but involves forgetting old examples. More precisely,
prequential calculations use a sliding window, which limit the number of examples used
during evaluation. When the window is full and a new example arrives, the oldest example
is removed from the window. Such a procedure highlights the current rather than over-
all performance and as a result showcases changes in the stream more clearly, which is
especially important for drift detection. Moreover, the authors have shown that comput-
ing accuracy using this method is more appropriate for continuous assessment and drift
detection in evolving data streams than a holdout set or the interleaved test-then-train
method. In terms of prequential accuracy, the authors have additionally shown that it can
be computed either using a sliding window or a decay function. Nevertheless, prequential
accuracy inherits the weaknesses of traditional accuracy, that is, variance with respect to
class distribution and promoting majority class predictions. It is also worth noting that,
despite several advantages of the prequential procedure, apart from accuracy and the κ
statistic, other evaluation measures are not calculated prequentially on streams due to
computational difficulties.

In terms of testing robustness, an interesting randomization technique involves permu-
tating the test dataset several times to ensure measured drift reactions are not sensitive
to the order of examples [176]. The author put forward three controlled permutation tech-
niques that can create several variations of a given dataset, changing the time, speed, or
shape of drifts. The key idea lies in the fact that these permutations are restricted and
provide theoretical guarantees for preserving distributions. Therefore, they ensure that
the new sets represent close variations of the original learning task. The drawback of this
randomization technique is that it requires generating artificial datasets and, thus, is lim-
ited to offline use during model selection, rather than on deployed models working online
on streams.

6.2 Prequential Area Under the ROC Curve

All of the measures presented in the previous section have drawbacks concerning the eval-
uation of data streams with class distribution changes. Total accuracy promotes majority
class predictions and, thus, overestimates performance on imbalanced data. The κ statis-
tic is also sensitive to skewed distributions. Finally, the area under the Receiver Operator
Characteristic curve (AUC), has been used only on holdout sets or entire datasets, both
of which are unacceptable for evolving data streams.

However, AUC is one of the main evaluation measures in traditional batch data mining,
especially in the context of class imbalanced data. It is invariant to changes in class
distribution, has a useful statistical interpretation, and has been shown to be preferable to
accuracy in many scenarios. Therefore, the disadvantages of AUC as an evaluation measure

102 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

stem from the fact that currently there is no memory and computationally efficient method
for calculating this metric [33]. In this section we will tackle this open problem and verify
if it is possible to efficiently adapt AUC to classifier evaluation on drifting data streams.

As AUC is calculated on ranked examples, we will consider scoring classifiers, i.e.,
classifiers that for each predicted class label additionally return a numeric value (score)
indicating the extent to which an instance is predicted to be positive or negative. Fur-
thermore, we will limit our analysis to binary classification. It is worth mentioning, that
most classifiers can produce scores, and many of those that only predict class labels can be
converted to scoring classifiers. For example, decision trees can produce class-membership
probabilities by using Naive Bayes leaves or averaging predictions using bagging [140].
Similarly, rule-based classifiers can be modified to produce instance scores indicating the
likelihood that an instance belongs to a given class [55].

We propose to compute AUC incrementally after each example using a special sorted
structure combined with a sliding window forgetting mechanism. It is worth noting that,
since the calculation of AUC requires sorting examples with respect to their classifica-
tion scores, it cannot be computed on an entire stream or using fading factors without
remembering the entire stream. Therefore, for AUC to be computationally feasible and
applicable to evolving concepts, it must be calculated using a sliding window.

s: 0.70

l : +

t : 5

s: 0.45

l : -

t : 1

s: 0.2

l : -

t : 6

s: 0.95

l : +

t : 3

s: 0.45

l : +

t : 4

s: 0.6

l : -

t : 2

s: 0.45

l : -

t : 1

s: 0.60

l : -

t : 2

s: 0.95

l : +

t : 3

s: 0.45

l : +

t : 4

s: 0.70

l : +

t : 5

s: 0.20

l : -

t : 6

w:

(a) Before adding a new instance

s: 0.70

l : +

t : 5

s: 0.95

l : +

t : 3

s: 0.2

l : -

t : 6

s: 0.80

l : +

t : 7

s: 0.45

l : +

t : 4

s: 0.6

l : -

t : 2

s: 0.80

l : +

t : 7

s: 0.60

l : -

t : 2

s: 0.95

l : +

t : 3

s: 0.45

l : +

t : 4

s: 0.70

l : +

t : 5

s: 0.20

l : -

t : 6

w:

(b) After adding a new instance

Figure 6.2: Example red-black tree of scored examples from window w, where l is the
example’s true label, s its assigned score, and t its timestamp

A sliding window of scores limits the analysis to the most recent data, but to calculate
AUC, scores have to be sorted. To efficiently maintain a sorted set of scores, we propose
to use the red-black tree data structure [7]. A red-black tree is a self-balancing binary
search tree, which is capable of adding and removing elements extremely efficiently (in
logarithmic time), while requiring minimal memory. An example red-black tree with a
corresponding window of examples is presented in Figure 6.2. With these two structures,
we can efficiently calculate AUC prequentially on the most recent examples. Algorithm 6.1
lists the pseudo-code for calculating prequential AUC.

6.2. Prequential Area Under the ROC Curve 103

Algorithm 6.1 Prequential AUC
Input: S: stream of examples

d: window size
Output: θ̂: prequential AUC after each example

1: W ← ∅; n← 0; p← 0; idx← 0;
2: for all scored examples xt ∈ S do
3: // Remove oldest score from the window and tree
4: if idx ≥ d then
5: scoreTree.remove(W [idx mod d]);
6: if isPositive(W [idx mod d]) then
7: p← p− 1;
8: else
9: n← n− 1;

10: end if
11: end if
12: // Add new score to the window and tree
13: scoreTree.add(xt);
14: if isPositive(xt) then
15: p← p+ 1;
16: else
17: n← n+ 1;
18: end if
19: W [idx mod d]← xt;
20: idx← idx+ 1;
21: // Calculate AUC [169]
22: AUC ← 0; c← 0;
23: for all consecutive scored examples s ∈ scoreTree do
24: if isPositive(s) then
25: c← c+ 1;
26: else
27: AUC ← AUC + c;
28: end if
29: end for
30: θ̂ ← AUC

pn ;
31: end for

For each incoming labeled example the score assigned to this example by the classifier is
inserted into the window (line 19) as well as the red-black tree (line 13) and, if the window
of examples has been exceeded, the oldest score is removed (lines 5 and 19). The red-black
tree is sorted in descending order according to scores and ascending order according to the
arrival time of the score. This way, we maintain a structure that facilitates the calculation
of AUC and ensures that the oldest score in the sliding window will be instantly found
in the red-black tree. After the sliding window and tree have been updated, AUC is
calculated by summing the number of positive examples occurring before each negative
example (lines 23–29) and normalizing that value by all possible pairs pn (line 30), where
p is the number of positives and n is the number of negatives in the window. This method
of calculating AUC, proposed in [169], is equivalent to summing the area of trapezoids for

104 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

each pair of sequential points on the ROC curve, but more suitable for our purposes, as
it requires very little computation given a sorted collection of scores.

An example of using a sliding window and a red-black tree is presented in Figure 6.2.
Window w contains 6 examples, all of which are already inserted into the red-black tree.
As mentioned earlier, examples in the tree are sorted (depth first search wise) descending
according to scores s and ascending according to arrival time t. When a new instance is
scored by the classifier (t = 7, l = +, s = 0.80), the oldest instance (t = 1) is removed from
the window and the tree. Since the tree is sorted according to scores and arrival times,
finding the example to be removed involves finding the first example with the score of the
oldest example (s = 0.45). After the new scored example is inserted, AUC is calculated
by traversing the tree in a depth first search manner and counting labels as presented in
lines 22–30 of Algorithm 6.1. In this example, the resulting AUC would be 0.875.

Let us now analyze the complexity of the proposed approach. For a window of size d,
the time complexity of adding and removing a score to the red-black tree is O(2 log d).
Additionally, the computation of AUC requires iterating through all the scores in the
tree, which is an O(d) operation. In summary, the computation of prequential AUC has a
complexity of O(d+2 log d) per example and since d is a user-defined constant this resolves
to a complexity of O(1). It is worth noticing that if AUC only needs to be sampled every
k examples (a common scenario while plotting metrics in time) lines from 22 to 30 can be
executed only once per k examples. In terms of space complexity, the algorithm requires
O(2d) memory for the red-black tree and the window, which also resolves to O(1).

In contrast to error-rate performance metrics, such as accuracy [69, 62] or the Kappa
statistic [12, 178], the proposed measure is invariant of the class distribution. Further-
more, unlike total accuracy, it does not promote majority class predictions. Additionally,
in contrast to the Kappa statistic, AUC is a non-relative, [0, 1] normalized metric with
a direct statistical interpretation. As opposed to previous applications of AUC to data
streams [48, 78, 110, 162], the proposed algorithm can be executed after each example
using constant time and memory. Finally, compared to the method presented in [25], the
proposed algorithm provides a forgetting mechanism and uses a sorting structure, making
it suitable for evolving data streams and allowing for efficient sampling.

Prequential AUC assesses the ranking abilities of a classifier and is invariant of the
class distribution. These properties differentiate it from common evaluation metrics for
data stream classifiers and could be applied in an additional context. In particular, for
streams with high class imbalance ratios simple metrics, such as accuracy, will suggest
good performance (as they are biased toward recognizing the majority class) and may
poorly exhibit concept drifts. Therefore, we propose to investigate AUC not only as an
evaluation measure, but also as a basis for drift detection in imbalanced streams, where
it should better indicate changes concerning the minority class.

For this purpose, we modify the Page-Hinkley (PH) test [69], however, generally other
drift detection methods could also have been adapted. As discussed in Section 2.3.3, the PH
test considers a variable mt, which measures the accumulated difference between observed
values e (originally error estimates) and their mean till the current moment, decreased
by a user-defined magnitude of allowed changes δ: mt =

∑t
i=1 (et − ēt − δ). After each

6.3. Properties of Prequential AUC 105

observation et, the test checks whether the difference between the current mt and the
smallest value up to this moment min(mi, i = 1, . . . , t) is greater than a given threshold
λ. If the difference exceeds λ, a drift is signaled. In this thesis, we propose to use the
area over the ROC curve (AOC = 1− AUC) as the observed value. Hence, according to
the statistical interpretation of AUC, instead of error estimates, we monitor the estimate
of the probability that a randomly chosen positive is ranked after a randomly chosen
negative. This way, the PH test will trigger whenever a classifier begins to make severe
ranking errors regardless of the class imbalance ratio.

Prequential AUC aims at extending the list of available evaluation measures, partic-
ularly for assessing classifiers and detecting drifts in streams with evolving class distri-
butions. However, we must verify if this measure is suitable for depicting performance
changes over time, particularly in the context of class imbalance. Furthermore, we are
also interested how prequential AUC averaged over time relates to AUC calculated peri-
odically on blocks or once over the entire stream. In the following sections, we examine
these characteristics of prequential AUC, as well as its performance in scenarios involving
different types of drift and imbalance ratios.

6.3 Properties of Prequential AUC

As it was mentioned in Section 6.1, there have already been attempts to use AUC as an
evaluation measure for data stream classifiers. Some researchers [162, 78] calculated AUC
on periodical holdout sets (blocks of examples), while others [48, 110], for experimental
purposes, treated entire data streams as a single batch of examples and calculated AUC
traditionally. Furthermore, although not studied in the context of drifting data streams,
there has been a proposal of an algorithm for computing AUC incrementally instance after
instance [25]. With the proposed prequential estimation, this gives in total four ways of
evaluating data stream classifiers using AUC. Let us analyze how these four alternatives
perform when visualized in time and averaged over entire streams.

6.3.1 AUC Visualizations Over Time

Figures 6.3 and 6.4 present a visualization of four AUC calculation procedures:

• traditional batch AUC calculated once for the entire stream,

• incremental AUC calculated after each example,

• block AUC calculated every d examples on the last d examples,

• prequential AUC using last d examples.

More precisely, both plots present the performance of a single Hoeffding Tree classifier on a
dataset with 20 k examples created using the RBF generator, discussed in Section 3.3.1. The
forst dataset contained no drifts, whereas in the second dataset a sudden drift was added at
the 10 k example. Both prequential and block-based AUC were calculated using a window
of d = 1000 examples. Similar visualizations were previously done for accuracy [87, 69].

106 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 5 k 10 k 15 k 20 k

A
U

C

Processed instances

Prequential AUC
Block AUC

Incremental AUC
AUC

Figure 6.3: Batch, incremental, block-based, and prequential AUC on a data stream with
no drifts (RBF20k)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 5 k 10 k 15 k 20 k

A
U

C

Processed instances

Prequential AUC
Block AUC

Incremental AUC
AUC

Figure 6.4: Batch, incremental, block-based, and prequential AUC on a data stream with
a sudden drift after 10 k examples (RBF20kSD)

6.3. Properties of Prequential AUC 107

On the stream without any drifts, presented in Figure 6.3, we can see that AUC
calculated in blocks or prequentially is less pessimistic than AUC calculated incrementally.
This is due to the fact that the true performance of an algorithm at a given point in time
is obscured when calculated incrementally — algorithms are punished for early mistakes
regardless of the level of performance they are eventually capable of, although this effect
diminishes over time. This property has also been noticed by other researchers when
visualizing classification accuracy over time [87, 69]. Therefore, if one is interested in the
performance of a classifier at a given moment in time, prequential and block AUC give
less pessimistic estimates, with prequential calculation producing a much smoother curve.

Figure 6.4 presents the difference between all four AUC calculation methods in the
presence of concept drift. As one can see, after a sudden drift, occurring after 10 k ex-
amples, the change in performance is most visible when looking at prequential AUC over
time. AUC calculated on blocks of examples also depicts this change, but delayed ac-
cording to the block size. However, the most relevant observation is that AUC calculated
incrementally is not capable of depicting drifts due to a long memory of predictions. For
this reason, prequential evaluations are favored over incremental and block-based assess-
ment in drifting environments where class labels are available after each example [69].
Therefore, prequential AUC is preferable to batch and incremental AUC when monitoring
classifier performance online on drifting data streams.

6.3.2 Prequential AUC Averaged Over Entire Streams

The above analysis shows that prequential AUC has several advantages when monitored
over time, especially in environments with possible concept drifts. However, in many situ-
ations, particularly when comparing the performance of multiple algorithms over several
datasets, it is easier to compare simple numeric values rather than entire performance
plots. Therefore, in such situations researchers are more interested in averaged perfor-
mance values over entire streams.

As it was shown in Figure 6.4, in the presence of concept drift AUC calculated pre-
quentially will showcase stronger performance drops than AUC calculated incrementally.
If one is to determine algorithms capable of reacting to drifts, prequential AUC averaged
over the entire stream gives a better insight about predictive performance. This is espe-
cially true for sudden concept drifts and short blips, which will have almost no impact on
AUC calculated on the entire stream without any forgetting mechanism.

However, if no drifts are expected, or one is not sure if there is a possibility of concept
changes during classification, AUC calculated traditionally in a batch manner over all
examples should give the best performance estimate. Since in a stationary stream all
examples represent a single concept, all predictions can be simultaneously taken into
account during evaluation. Although batch AUC computation is not feasible for large
data streams, we are interested how prequential and block calculations averaged over the
entire stream compare to AUC calculated once using all predictions.

It is worth noticing that if we simultaneously take all testing examples into account,
their order of appearance does not affect the final AUC estimation, as long as an example

108 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

receives a certain score regardless of its position in the stream. This is contrary to AUC
calculated prequentially or in blocks where the order of examples affects the final averaged
performance values. Let us analyze two examples that demonstrate this issue.

Table 6.1 presents a stream where two classifiers give the lowest score to positive
instances and the highest to negative instances. As a result, AUC calculated on the entire
dataset at once will be 0.00, regardless of the order of examples. However, if positive and
negative instances are clearly separated (all positive instances appear before all negative,
or vice versa), averaged AUC calculated in blocks or prequentially with a window of d = 2
instances will give an estimate of 1.00 and 0.93, respectively. Such high estimates are due to
the fact that for most window positions all instances have the same class label (Classifier
1). On the other hand, if the same examples arrive in a different order (Classifier 2),
prequential or block AUC with the same window of d = 2 when averaged over the stream
will be 0.00 just as batch AUC.

Table 6.2 presents an additional issue. For Classifier 3 is batch AUC is 0.57, averaged
block AUC is 1.00, and averaged prequential AUC is 0.53. For Classifier 4, on the other
hand, batch AUC is 0.00, block AUC 1.00, and prequential AUC 0.93. This shows that
prequential AUC does not have to be necessarily higher than batch AUC. It is worth
noting, that if the sequence of interleaved positives and negatives for Classifier 4 started
with a negative example, block AUC would yield 0.00.

Table 6.1: An example in which two classifiers have the same batch AUC but different
prequential (and block) AUC (for a window of d = 2 examples)

Classifier 1 - - - - - - - - + + + + + + + +
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Classifier 2 - - - - - - - - + + + + + + + +
t 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16

Table 6.2: An example in which one classifiers has higher batch AUC but lower prequential
(and block) AUC (for a window of d = 2 examples)

Classifier 3 + - + - + - + - + - + - + - + -
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Classifier 4 - - - - - - - - + + + + + + + +
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The above examples show, that depending on the calculation procedure, one can obtain
AUC estimates that are far away from each other. This might be beneficial for concept-
drifting streams, but not for stationary distributions. Since we cannot ensure equal pre-
quential, block-based, and batch AUC estimates, we are interested in how different these
estimates are on average. More importantly, we are interested in how these differences
affect classifier evaluation. To answer these questions, we will use criteria for comparing
evaluation measures proposed by Huang and Ling [79].

6.3. Properties of Prequential AUC 109

When discussing two different measures f and g used for evaluating two learning
algorithms A and B, we want f and g to be consistent with each other. That is, when
f shows that algorithm A is better than B, then g will not say B is better than A [79].
Furthermore, if f is more discriminating than g, we expect to see cases where f can tell the
difference between A and B but g cannot, but not vice versa. These intuitive descriptions
of consistency and discriminancy were made precise by the following definitions [79].

Definition 6.1. For two measures f , g and two classifier outputs a, b on a domain Ψ,
f and g are strictly consistent if there exists no a, b ∈ Ψ, such that f(a) > f(b) and
g(a) < g(b).

Definition 6.2. For two measures f , g and two classifier outputs a, b on a domain Ψ, f
is strictly more discriminating than g if there exists a, b ∈ Ψ such that f(a) 6= f(b) and
g(a) = g(b), and there exists no a, b ∈ Ψ, such that g(a) 6= g(b) and f(a) = f(b).

As we have already shown, counter examples on strict consistency and discriminancy
do exist for average AUC calculated on an entire stream and using blocks or sliding
windows. Therefore, it is impossible to prove consistency and discriminancy between batch
and prequential or block AUC, based on Definitions 6.1 and 6.2. In this case, we have to
rather consider the degree of being consistent and the degree of being more discriminating.
This leads to the definitions of the degree of consistency and degree of discriminancy [79].

Definition 6.3. For two measures f , g and two classifier outputs a, b on a domain Ψ, let
R = {(a, b)|a, b ∈ Ψ, f(a) > f(b), g(a) > g(b)}, S = {(a, b)|a, b ∈ Ψ, f(a) > f(b), g(a) <
g(b)}. The degree of consistency of f and g is C (0 ≤ C ≤ 1), where C = |R|

|R|+|S| .

Definition 6.4. For two measures f , g and two classifier outputs a, b on a domain Ψ, let
P = {(a, b)|a, b ∈ Ψ, f(a) > f(b), g(a) = g(b)}, Q = {(a, b)|a, b ∈ Ψ, g(a) > g(b), f(a) =
f(b)}. The degree of discriminancy for f over g is D = |P |

|Q| .

As it was suggested by Huang and Ling, two measures should agree on the majority of
classifier evaluations to be comparable. Therefore, we require prequential AUC averaged
over the entire stream to be C > 0.5 consistent with batch AUC . Furthermore, the degree
of discriminancy D shows how many times it is more likely that a given measure can tell
the difference between two algorithms, when the other measure cannot. In particular, for
D > 1 we will be able to say that one measure is more discriminating than the other.

Since prequential and block AUC are dependent on the ranking of examples, their order
in the stream, and the used window size d, it is difficult to formally prove that prequential
AUC is statistically consistent (C > 0.5) and less (or more) discriminating (D 6= 1)
than AUC calculated using the entire stream at once. Therefore, we will experimentally
verify whether prequential AUC is statistically consistent with batch AUC and whether
we can decide which calculation procedure is more discriminating. More importantly,
empirical evaluations on artificial datasets will give us an insight on the practical degree
of consistency and discriminancy for different class imbalance ratios and window sizes.

We test datasets with 4, 6, 8, and 10 testing examples. For each case, we enumerate
all possible orderings of examples of all possible pairs of ranked lists with 50%, 34%, 14%

110 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

minority class examples and calculate prequential (and block) AUC for all possible window
sizes (1 < d < n). For a dataset with np positive examples and n examples in total, there
are

((n
np

)+2−1
2

)
·n! such non-repeating pairs of ranked lists with different example orderings.

Due to such a large number of ordering/ranking possibilities, we only test datasets up to
10 instances. The three class imbalance ratios were chosen to show performance on a
balanced dataset (50%), 1:2 imbalance ratio (34%), and the extreme case of only one
positive instance regardless of the dataset size (14%).

We exhaustively compare all orderings of examples for all possible example rank-
ings to verify the degree of consistency and discriminancy for different window sizes
d. To obtain the degree of consistency, we count the number of pairs for which
“AUC(a) < AUC(b) and pAUC(a) < pAUC(b)” and the number of pairs for which
“AUC(a) < AUC(b) and pAUC(a) > pAUC(b)”, where AUC(·) denotes batch calcu-
lated AUC and pAUC(·) prequential AUC averaged over the entire stream. To obtain
the degree of discriminancy, we count the number of pairs which satisfy “AUC(a) <

AUC(b) and pAUC(a) = pAUC(b)” and the number of pairs which satisfy “AUC(a) =
AUC(b) and pAUC(a) < pAUC(b)”. Similar computations where done for block AUC,
denoted as bAUC(·). Tables 6.3–6.8 show the experiment results.

Regarding consistency, the results show that both block-based and prequential AUC
have a high percentage of decisions consistent with batch AUC. More precisely, both
estimations usually achieve a degree of consistency between 0.80 and 0.90, which is much
larger than the required 0.5. However, it is also worth noticing that, for all class imbalance
ratios and all window sizes, prequential AUC is more consistent with batch AUC than its
block-calculated competitor. What is even more important is that this difference is most
apparent for smaller window sizes, where prequential AUC usually has a 0.05 higher degree
of consistency. Finally, it is worth noting that larger windows persistently allow to achieve
estimations that are more consistent with batch AUC.

In terms of the degree of discriminancy, the results vary. For very small window sizes
batch AUC seems to be better at differentiating rankings, whereas windows of sizes d > 3
invert this relation. However, once again it is worth noticing that prequential AUC is
usually more discriminant than block AUC regardless of the window size or class-imbalance
ratio. Moreover, higher class-imbalance ratios appear to make the differentiation more
difficult for prequential and block estimations, especially for smaller window sizes. This is
understandable, as with such small datasets, for higher class imbalance ratios only a single
positive example is available. If a window is too small compared to the class-imbalance
ratio, no positive examples are available in a window. This situation is visible in Table 6.8,
where for all dataset sizes n the number of positive examples is np = 1.

A direct conclusion can be drawn from this observation — window sizes used for
prequential (or block) AUC estimations should be large enough to always contain at
least one positive example to ensure higher discriminancy. Nevertheless, apart from very
small window sizes compared to the class-distribution, prequential AUC is comparably
discriminant with AUC calculated on the entire stream.

6.3. Properties of Prequential AUC 111

Ta
bl
e
6.
3:

St
at
ist

ic
al

co
ns
ist

en
cy

co
m
pa

re
d
to

ba
tc
h-
ca
lc
ul
at
ed

A
U
C

fo
r
ba

la
nc

ed
da

ta
se
ts

(5
0%

bo
th

cl
as
se
s)

(a
)
Pr

eq
ue
nt
ia
lA

U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)<

A
U
C

(b
)&

C
p
A
U
C

(a
)<

p
A
U
C

(b
)

p
A
U
C

(a
)>

p
A
U
C

(b
)

4
2

22
6

30
0.
88

3
4

3
27

6
0

1.
00

0

6
2

78
,5

58
14
,2

06
0.
84

7
6

3
95
,0

86
11
,6

88
0.
89

1
6

4
10

6,
56

6
10
,0

98
0.
91

3
6

5
10

9,
15

2
3,

84
0

0.
96

6

8
2

53
,1

58
,6

28
11
,1

85
,9

76
0.
82

6
8

3
63
,2

40
,0

34
10
,4

25
,2

37
0.
85

8
8

4
69
,1

82
,3

04
9,

97
2,

77
0

0.
87

4
8

5
70
,7

61
,1

92
7,

69
3,

01
2

0.
90

2
8

6
73
,4

79
,1

68
6,

41
1,

40
8

0.
92

0
8

7
75
,5

03
,5

20
2,

40
3,

36
0

0.
96

9

10
2

60
,6

34
,8

66
,7

84
14
,0

63
,9

99
,5

24
0.
81

2
10

3
71
,1

30
,1

63
,4

63
13
,2

90
,4

85
,7

52
0.
84

3
10

4
74
,0

37
,6

44
,4

04
14
,1

63
,9

43
,5

82
0.
83

9
10

5
78
,9

20
,7

00
,3

64
11
,1

76
,3

41
,2

90
0.
87

6
10

6
73
,1

68
,7

30
,7

42
13
,4

67
,3

50
,8

16
0.
84

5
10

7
79
,0

76
,2

75
,2

96
9,

29
3,

05
8,

74
4

0.
89

5
10

8
83
,9

44
,2

44
,8

80
6,

70
1,

32
0,

80
0

0.
92

6
10

9
86
,5

39
,8

24
,0

00
2,

92
6,

62
7,

20
0

0.
96

7

(b
)
B
lo
ck

A
U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)<

A
U
C

(b
)&

C
bA
U
C

(a
)<

bA
U
C

(b
)

bA
U
C

(a
)>

bA
U
C

(b
)

4
2

20
8

56
0.
78

8
4

3
23

6
28

0.
89

4

6
2

67
,2

30
17
,4

28
0.
79

4
6

3
87
,1

50
14
,1

64
0.
86

0
6

4
92
,9

30
19
,3

56
0.
82

8
6

5
10

1,
52

0
7,

60
8

0.
93

0

8
2

45
,4

05
,5

86
13
,3

58
,8

10
0.
77

3
8

3
53
,8

50
,2

02
14
,3

91
,8

87
0.
78

9
8

4
66
,5

67
,0

40
8,

62
4,

16
7

0.
88

5
8

5
63
,5

72
,5

60
12
,0

86
,7

30
0.
84

0
8

6
64
,6

11
,7

92
14
,2

32
,1

92
0.
81

9
8

7
72
,1

36
,0

80
4,

44
8,

88
0

0.
94

2

10
2

51
,4

87
,8

87
,1

04
17
,0

00
,4

41
,7

62
0.
75

2
10

3
59
,4

90
,7

57
,9

35
16
,8

83
,7

41
,6

96
0.
77

9
10

4
64
,5

12
,4

19
,5

13
20
,5

09
,7

08
,2

99
0.
75

9
10

5
76
,7

14
,1

47
,7

35
9,

07
8,

49
3,

56
6

0.
89

4
10

6
71
,8

55
,7

03
,7

00
13
,9

34
,7

26
,8

72
0.
83

8
10

7
70
,3

12
,6

08
,7

20
16
,5

52
,8

37
,6

32
0.
80

9
10

8
74
,3

78
,6

85
,6

00
15
,5

90
,5

30
,0

80
0.
82

7
10

9
83
,3

65
,1

07
,8

40
4,

81
7,

83
6,

80
0

0.
94

5

112 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

Ta
bl
e
6.
4:

St
at
ist

ic
al

di
sc
rim

in
an

cy
co
m
pa

re
d
to

ba
tc
h-
ca
lc
ul
at
ed

A
U
C

fo
r
ba

la
nc

ed
da

ta
se
ts

(5
0%

bo
th

cl
as
se
s)

(a
)
Pr

eq
ue
nt
ia
lA

U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)=

A
U
C

(b
)&

D
p
A
U
C

(a
)=

p
A
U
C

(b
)

p
A
U
C

(a
)<

p
A
U
C

(b
)

4
2

80
8

10
.0
0

4
3

60
8

7.
50

6
2

26
,7

56
3,

50
0

7.
64

6
3

12
,7

46
4,

04
4

3.
15

6
4

2,
85

6
4,

72
4

0.
60

6
5

6,
52

8
4,

03
2

1.
62

8
2

16
,2

14
,7

56
2,

35
3,

18
2

6.
89

8
3

6,
89

4,
08

9
2,

73
8,

33
9

2.
52

8
4

1,
30

4,
29

8
2,

99
6,

76
4

0.
44

8
5

2,
10

4,
79

2
2,

87
0,

94
4

0.
73

8
6

35
6,

71
2

2,
89

1,
13

6
0.
12

8
7

2,
65

2,
48

0
2,

34
9,

36
0

1.
13

10
2

16
,4

74
,0

70
,2

44
2,

32
5,

71
4,

63
6

7.
08

10
3

6,
75

1,
65

2,
79

4
2,

69
2,

73
5,

08
5

2.
51

10
4

1,
13

5,
33

3,
02

5
2,

78
2,

77
6,

39
4

0.
41

10
5

1,
52

3,
94

9,
09

9
2,

69
3,

16
5,

27
2

0.
57

10
6

20
5,

90
1,

52
2

2,
46

4,
41

6,
66

6
0.
08

10
7

83
7,

73
0,

39
2

2,
68

8,
38

8,
94

4
0.
31

10
8

16
3,

83
8,

88
0

2,
51

3,
98

2,
96

0
0.
07

10
9

1,
70

7,
14

8,
80

0
2,

11
3,

69
5,

36
0

0.
81

(b
)
B
lo
ck

A
U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)=

A
U
C

(b
)&

D
bA
U
C

(a
)=

bA
U
C

(b
)

bA
U
C

(a
)<

bA
U
C

(b
)

4
2

72
0

∞
4

3
72

4
18

.0
0

6
2

34
,8

62
2,

01
0

17
.3
4

6
3

18
,2

06
2,

80
2

6.
50

6
4

7,
23

4
4,

12
2

1.
75

6
5

10
,3

92
2,

71
2

3.
83

8
2

21
,7

94
,9

64
1,

82
7,

86
8

11
.9
2

8
3

12
,3

17
,2

71
2,

15
2,

12
0

5.
72

8
4

5,
26

8,
16

5
2,

25
8,

63
2

2.
33

8
5

4,
89

9,
70

6
2,

26
2,

63
4

2.
17

8
6

1,
40

3,
30

4
2,

47
5,

19
2

0.
57

8
7

3,
97

4,
40

0
1,

75
1,

04
0

2.
27

10
2

22
,6

84
,6

07
,6

86
1,

76
4,

46
1,

48
8

12
.8
6

10
3

14
,7

97
,8

02
,3

78
2,

10
8,

35
0,

18
3

7.
02

10
4

4,
31

4,
79

3,
19

9
2,

64
8,

70
0,

61
3

1.
63

10
5

5,
82

8,
34

9,
45

2
2,

13
3,

67
2,

48
6

2.
73

10
6

1,
05

1,
55

2,
50

8
2,

57
7,

78
0,

70
0

0.
41

10
7

2,
34

1,
61

8,
08

0
2,

38
1,

20
8,

00
0

0.
98

10
8

84
0,

18
8,

88
0

2,
23

0,
41

3,
84

0
0.
38

10
9

2,
99

0,
65

5,
36

0
1,

60
7,

11
4,

88
0

1.
86

6.3. Properties of Prequential AUC 113

Ta
bl
e
6.
5:

St
at
ist

ic
al

co
ns
ist

en
cy

co
m
pa

re
d
to

ba
tc
h-
ca
lc
ul
at
ed

A
U
C

fo
r
im

ba
la
nc

ed
da

ta
se
ts

(3
4%

m
in
or
ity

cl
as
s)

(a
)
Pr

eq
ue
nt
ia
lA

U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)<

A
U
C

(b
)&

C
p
A
U
C

(a
)<

p
A
U
C

(b
)

p
A
U
C

(a
)>

p
A
U
C

(b
)

4
2

96
8

0.
92

3
4

3
11

2
8

0.
93

3

6
2

44
,3

28
7,

43
0

0.
85

6
6

3
53
,3

18
7,

31
2

0.
87

9
6

4
58
,7

74
6,

90
4

0.
89

5
6

5
62
,0

64
3,

31
2

0.
94

9

8
2

34
,2

50
,7

30
6,

98
0,

00
6

0.
83

1
8

3
40
,6

99
,4

97
6,

79
3,

14
2

0.
85

7
8

4
44
,1

93
,3

31
6,

98
2,

89
9

0.
86

4
8

5
45
,4

63
,9

56
5,

42
6,

99
8

0.
89

3
8

6
47
,5

16
,6

40
4,

32
6,

86
4

0.
91

7
8

7
49
,2

81
,1

20
2,

12
7,

60
0

0.
95

9

10
2

14
,0

56
,0

95
,1

36
2,

99
1,

72
3,

20
4

0.
82

5
10

3
16
,5

06
,9

30
,0

25
3,

05
8,

60
9,

66
8

0.
84

4
10

4
17
,3

97
,8

51
,5

65
3,

45
8,

53
6,

94
4

0.
83

4
10

5
17
,8

57
,9

02
,4

89
3,

07
7,

58
3,

82
0

0.
85

3
10

6
17
,3

68
,2

67
,2

82
3,

20
8,

77
4,

63
4

0.
84

4
10

7
18
,5

41
,6

58
,2

08
2,

19
8,

96
5,

39
2

0.
89

4
10

8
19
,4

69
,1

78
,7

20
1,

65
3,

88
3,

92
0

0.
92

2
10

9
20
,3

38
,1

74
,0

80
83

4,
82

5,
60

0
0.
96

1

(b
)
B
lo
ck

A
U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)<

A
U
C

(b
)&

C
bA
U
C

(a
)<

bA
U
C

(b
)

bA
U
C

(a
)>

bA
U
C

(b
)

4
2

92
8

0.
92

0
4

3
10

2
18

0.
85

0

6
2

39
,2

22
9,

58
2

0.
80

4
6

3
49
,4

82
7,

59
0

0.
86

7
6

4
52
,3

02
11
,4

68
0.
82

0
6

5
59
,4

96
5,

35
2

0.
91

7

8
2

28
,9

45
,2

60
8,

46
3,

25
8

0.
77

4
8

3
34
,6

82
,9

61
8,

76
1,

15
7

0.
79

8
8

4
43
,3

61
,9

87
6,

74
0,

64
5

0.
86

5
8

5
41
,7

05
,6

50
7,

62
3,

63
6

0.
84

5
8

6
42
,3

82
,6

08
8,

98
5,

33
6

0.
82

5
8

7
47
,7

43
,9

20
3,

41
8,

56
0

0.
93

3

10
2

12
,1

95
,0

33
,2

76
3,

41
3,

02
1,

30
6

0.
78

1
10

3
13
,7

92
,3

98
,2

81
3,

67
5,

83
1,

23
2

0.
79

0
10

4
15
,9

03
,2

98
,9

10
4,

11
3,

64
7,

61
0

0.
79

4
10

5
17
,3

06
,0

25
,7

84
3,

10
2,

20
0,

56
5

0.
84

8
10

6
17
,4

69
,1

34
,5

32
2,

94
7,

90
1,

72
6

0.
85

6
10

7
16
,8

64
,1

20
,8

96
3,

46
6,

86
8,

30
4

0.
82

9
10

8
17
,2

93
,4

51
,7

60
3,

65
6,

52
7,

92
0

0.
82

5
10

9
19
,8

22
,3

60
,3

20
1,

21
6,

01
0,

88
0

0.
94

2

114 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

Ta
bl
e
6.
6:

St
at
ist

ic
al

di
sc
rim

in
an

cy
co
m
pa

re
d
to

ba
tc
h-
ca
lc
ul
at
ed

A
U
C

fo
r
im

ba
la
nc

ed
da

ta
se
ts

(3
4%

m
in
or
ity

cl
as
s)

(a
)
Pr

eq
ue
nt
ia
lA

U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)=

A
U
C

(b
)&

D
p
A
U
C

(a
)=

p
A
U
C

(b
)

p
A
U
C

(a
)<

p
A
U
C

(b
)

4
2

40
0

∞
4

3
24

0
∞

6
2

15
,9

22
1,

67
6

9.
50

6
3

7,
05

0
2,

08
0

3.
39

6
4

1,
98

8
2,

40
8

0.
83

6
5

2,
30

4
2,

04
0

1.
13

8
2

10
,8

22
,3

84
1,

44
5,

69
0

7.
49

8
3

4,
56

0,
48

1
1,

69
8,

16
2

2.
69

8
4

90
4,

81
0

1,
86

1,
82

2
0.
49

8
5

1,
15

6,
82

8
1,

86
4,

49
6

0.
62

8
6

19
1,

49
6

1,
83

1,
68

0
0.
10

8
7

64
6,

56
0

1,
51

7,
76

0
0.
43

10
2

4,
23

1,
46

4,
86

0
51

2,
00

2,
31

6
8.
26

10
3

1,
71

3,
74

3,
50

7
60

5,
48

6,
57

8
2.
83

10
4

29
5,

39
7,

17
8

68
0,

06
7,

47
9

0.
43

10
5

29
7,

69
7,

50
0

66
0,

11
3,

56
2

0.
45

10
6

43
,1

62
,6

24
66

5,
02

6,
73

6
0.
06

10
7

10
4,

00
5,

51
2

76
5,

19
0,

63
2

0.
14

10
8

79
,6

02
,4

80
61

4,
25

5,
04

0
0.
13

10
9

11
4,

58
9,

44
0

48
6,

86
4,

00
0

0.
24

(b
)
B
lo
ck

A
U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)=

A
U
C

(b
)&

D
bA
U
C

(a
)=

bA
U
C

(b
)

bA
U
C

(a
)<

bA
U
C

(b
)

4
2

44
0

∞
4

3
24

0
∞

6
2

18
,8

76
1,

05
0

17
.9
8

6
3

10
,6

08
1,

04
2

10
.1
8

6
4

3,
89

6
2,

15
6

1.
81

6
5

2,
83

2
1,

41
6

2.
00

8
2

14
,6

44
,6

02
1,

06
1,

40
4

13
.8
0

8
3

8,
60

9,
00

2
1,

20
6,

62
5

7.
13

8
4

1,
97

8,
40

8
1,

83
5,

34
0

1.
08

8
5

2,
71

8,
49

6
1,

62
0,

15
0

1.
68

8
6

66
7,

05
6

1,
52

2,
22

4
0.
44

8
7

89
2,

80
0

1,
10

0,
88

0
0.
81

10
2

5,
67

1,
22

8,
61

8
38

4,
81

6,
44

4
14

.7
4

10
3

3,
81

1,
05

3,
68

7
45

1,
97

7,
68

7
8.
43

10
4

1,
13

4,
83

9,
16

7
60

2,
14

4,
26

0
1.
88

10
5

82
4,

95
7,

46
0

62
5,

11
4,

24
9

1.
32

10
6

20
3,

16
8,

28
2

66
9,

16
0,

83
8

0.
30

10
7

51
3,

63
9,

91
2

55
7,

69
5,

84
8

0.
92

10
8

25
2,

68
5,

44
0

47
4,

17
6,

16
0

0.
53

10
9

24
9,

21
7,

92
0

34
1,

10
7,

20
0

0.
73

6.3. Properties of Prequential AUC 115

Ta
bl
e
6.
7:

St
at
ist

ic
al

co
ns
ist

en
cy

co
m
pa

re
d
to

ba
tc
h-
ca
lc
ul
at
ed

A
U
C

fo
r
im

ba
la
nc

ed
da

ta
se
ts

(1
4%

m
in
or
ity

cl
as
s)

(a
)
Pr

eq
ue
nt
ia
lA

U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)<

A
U
C

(b
)&

C
p
A
U
C

(a
)<

p
A
U
C

(b
)

p
A
U
C

(a
)>

p
A
U
C

(b
)

4
2

96
8

0.
92

3
4

3
11

2
8

0.
93

3

6
2

6,
88

8
84

0
0.
89

1
6

3
8,

06
8

1,
24

0
0.
86

7
6

4
8,

56
8

1,
22

0
0.
87

5
6

5
9,

26
4

81
6

0.
91

9

8
2

70
1,

56
8

96
,7

68
0.
87

9
8

3
84

1,
16

8
14

5,
63

2
0.
85

2
8

4
86

8,
68

0
16

4,
58

4
0.
84

1
8

5
89

1,
96

0
16

4,
38

4
0.
84

4
8

6
93

6,
14

4
13

9,
05

6
0.
87

1
8

7
1,

00
6,

56
0

82
,0

80
0.
92

5

10
2

99
,7

92
,0

00
14
,6

36
,1

60
0.
87

2
10

3
12

1,
11

3,
79

2
21
,6

83
,2

32
0.
84

8
10

4
12

5,
44

8,
67

2
25
,4

81
,8

08
0.
83

1
10

5
12

7,
00

0,
51

2
27
,1

98
,0

96
0.
82

4
10

6
12

8,
75

5,
24

8
27
,1

34
,5

20
0.
82

6
10

7
13

2,
68

7,
74

4
24
,5

59
,7

76
0.
84

4
10

8
13

9,
40

0,
64

0
19
,5

55
,9

20
0.
87

7
10

9
14

8,
86

1,
44

0
10
,8

05
,7

60
0.
93

2

(b
)
B
lo
ck

A
U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)<

A
U
C

(b
)&

C
bA
U
C

(a
)<

bA
U
C

(b
)

bA
U
C

(a
)>

bA
U
C

(b
)

4
2

92
8

0.
92

0
4

3
10

2
18

0.
85

0

6
2

6,
09

6
78

4
0.
88

6
6

3
8,

15
2

64
4

0.
92

7
6

4
8,

27
6

93
4

0.
89

9
6

5
8,

88
0

1,
20

0
0.
88

1

8
2

57
1,

68
0

71
,0

40
0.
88

9
8

3
79

6,
03

2
90
,5

28
0.
89

8
8

4
91

4,
94

4
64
,8

88
0.
93

4
8

5
92

3,
65

6
77
,8

32
0.
92

2
8

6
94

0,
36

8
99
,3

12
0.
90

4
8

7
98

2,
80

0
10

5,
84

0
0.
90

3

10
2

81
,2

50
,5

60
11
,6

32
,3

20
0.
87

5
10

3
10

5,
15

1,
84

8
16
,3

03
,8

48
0.
86

6
10

4
12

6,
34

9,
65

6
12
,9

07
,6

56
0.
90

7
10

5
13

9,
37

4,
33

6
8,

25
1,

15
2

0.
94

4
10

6
14

2,
75

4,
11

2
12
,8

08
,3

68
0.
91

8
10

7
14

1,
32

4,
57

6
10
,8

24
,7

20
0.
92

9
10

8
14

2,
57

2,
24

0
12
,8

27
,5

20
0.
91

7
10

9
14

6,
60

3,
52

0
13
,0

63
,6

80
0.
91

8

116 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

Ta
bl
e
6.
8:

St
at
ist

ic
al

di
sc
rim

in
an

cy
co
m
pa

re
d
to

ba
tc
h-
ca
lc
ul
at
ed

A
U
C

fo
r
im

ba
la
nc

ed
da

ta
se
ts

(1
4%

m
in
or
ity

cl
as
s)

(a
)
Pr

eq
ue
nt
ia
lA

U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)=

A
U
C

(b
)&

D
p
A
U
C

(a
)=

p
A
U
C

(b
)

p
A
U
C

(a
)<

p
A
U
C

(b
)

4
2

40
0

∞
4

3
24

0
∞

6
2

3,
07

2
0

∞
6

3
1,

49
2

0
∞

6
4

1,
01

2
0

∞
6

5
72

0
0

∞

8
2

33
0,

62
4

0
∞

8
3

14
2,

16
0

0
∞

8
4

95
,6

96
0

∞
8

5
72
,6

16
0

∞
8

6
53
,7

60
0

∞
8

7
40
,3

20
0

∞

10
2

48
,8

67
,8

40
0

∞
10

3
20
,4

98
,9

76
0

∞
10

4
12
,3

65
,5

20
0

∞
10

5
9,

09
7,

39
2

0
∞

10
6

7,
40

6,
23

2
0

∞
10

7
6,

04
8,

48
0

0
∞

10
8

4,
33

9,
44

0
0

∞
10

9
3,

62
8,

80
0

0
∞

(b
)
B
lo
ck

A
U
C

n
d

A
U
C

(a
)<

A
U
C

(b
)&

A
U
C

(a
)=

A
U
C

(b
)&

D
bA
U
C

(a
)=

bA
U
C

(b
)

bA
U
C

(a
)<

bA
U
C

(b
)

4
2

44
0

∞
4

3
24

0
∞

6
2

3,
92

0
0

∞
6

3
2,

00
4

0
∞

6
4

1,
59

0
0

∞
6

5
72

0
0

∞

8
2

48
6,

24
0

0
∞

8
3

24
2,

40
0

0
∞

8
4

14
9,

12
8

0
∞

8
5

12
7,

47
2

0
∞

8
6

89
,2

80
0

∞
8

7
40
,3

20
0

∞

10
2

70
,4

13
,1

20
0

∞
10

3
41
,8

40
,3

04
0

∞
10

4
24
,0

38
,6

88
0

∞
10

5
15
,6

70
,5

12
0

∞
10

6
7,

73
3,

52
0

0
∞

10
7

11
,1

46
,7

04
0

∞
10

8
7,

89
6,

24
0

0
∞

10
9

3,
62

8,
80

0
0

∞

6.3. Properties of Prequential AUC 117

Apart from the number of pairs when prequential or block estimations are consistent
or more discriminating than batch AUC, one may be interested in the absolute difference
between the values of these estimations. To verify these differences, we have calculated
and plotted the values of pAUC(a)−AUC(a) and bAUC(a)−AUC(a) for different class
imbalance ratios. Figures 6.5–6.10 present these differences on 3-dimendional plots.

The left-hand side of each figure presents a 3-dimensional plot, where the x-axis denotes
the difference between prequential (or block) AUC and batch AUC, the y-axis describes
window sizes, and the z-axis shows the number of rankings for which a given difference
was observed. The right-hand side of each figure shows a 2-dimensional top view of the
same plot. The left plots are intended to demonstrate the dominating difference values
and their variation for each window size. It is also worth noticing that these plots usually
demonstrate peaks around the 0.0 difference. The right plots, on the other hand, clearly
show the range of possible differences for each window size.

-1

-0.5

 0

 0.5

 1 2

 3

 4

 5

 6

 7

 8

 9

 0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

8000000000

Estimation difference

Window size

(a) 3-dimensional plot

 2

 3

 4

 5

 6

 7

 8

 9

-1 -0.5 0 0.5 1

W
in

do
w

 s
iz

e

Estimation difference

(b) 2-dimensional view

Figure 6.5: Differences between prequential and batch AUC for different window sizes on
the largest balanced dataset (50% examples of both classes)

-1

-0.5

 0

 0.5

 1 2

 3

 4

 5

 6

 7

 8

 9

 0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

8000000000

Estimation difference

Window size

(a) 3-dimensional plot

 2

 3

 4

 5

 6

 7

 8

 9

-1 -0.5 0 0.5 1

W
in

do
w

 s
iz

e

Estimation difference

(b) 2-dimensional view

Figure 6.6: Differences between block and batch AUC for different window sizes on the
largest balanced dataset (50% examples of both classes)

118 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

-1

-0.5

 0

 0.5

 1 2

 3

 4

 5

 6

 7

 8

 9

 0

 200000000

 400000000

 600000000

 800000000

1000000000

1200000000

1400000000

Estimation difference

Window size

(a) 3-dimensional plot

 2

 3

 4

 5

 6

 7

 8

 9

-1 -0.5 0 0.5 1

W
in

do
w

 s
iz

e

Estimation difference

(b) 2-dimensional view

Figure 6.7: Differences between prequential and batch AUC for different window sizes on
the largest dataset with medium class imbalance (34% minority class examples)

-1

-0.5

 0

 0.5

 1 2

 3

 4

 5

 6

 7

 8

 9

 0

 200000000

 400000000

 600000000

 800000000

1000000000

1200000000

1400000000

Estimation difference

Window size

(a) 3-dimensional plot

 2

 3

 4

 5

 6

 7

 8

 9

-1 -0.5 0 0.5 1

W
in

do
w

 s
iz

e

Estimation difference

(b) 2-dimensional view

Figure 6.8: Differences between block and batch AUC for different window sizes on the
largest dataset with medium class imbalance (34% minority class examples)

-1

-0.5

 0

 0.5

 1 2

 3

 4

 5

 6

 7

 8

 9

 0

 10000000

 20000000

 30000000

 40000000

 50000000

Estimation difference

Window size

(a) 3-dimensional plot

 2

 3

 4

 5

 6

 7

 8

 9

-1 -0.5 0 0.5 1

W
in

do
w

 s
iz

e

Estimation difference

(b) 2-dimensional view

Figure 6.9: Differences between prequential and batch AUC for different window sizes on
the largest dataset with high class imbalance (14% minority class examples)

6.3. Properties of Prequential AUC 119

-1

-0.5

 0

 0.5

 1 2

 3

 4

 5

 6

 7

 8

 9

 0

 10000000

 20000000

 30000000

 40000000

 50000000

Estimation difference

Window size

(a) 3-dimensional plot

 2

 3

 4

 5

 6

 7

 8

 9

-1 -0.5 0 0.5 1

W
in

do
w

 s
iz

e

Estimation difference

(b) 2-dimensional view

Figure 6.10: Differences between block and batch AUC for different window sizes on the
largest dataset with high class imbalance (14% minority class examples)

As the above plots show, most prequential estimates of AUC are very close AUC
calculated on the entire dataset. For all three class imbalance ratios, one can notice single
points above the bell curve directly above the zero difference value. This showcases, that
the most common difference between batch and prequential AUC is zero. This is not so
obvious for block-based estimates. When compared with prequential AUC, block estimates
have much “wider” bell curves without such strong peaks around zero.

Looking at 2-dimensional plots, it is worth noticing that for small window sizes, small
compared to the class imbalance ratio, prequential AUC gives a more optimistic estimate
compared to batch AUC. This issue is related to that of lower discriminancy for small
windows or high class imbalance ratios (plots for the 14% minority class dataset have
much fewer distinct points). When there are no positive examples in the window, AUC
for that window is equal to 1, which can lead to overestimating AUC over time. However,
as the plots show, larger windows clearly mitigate this problem. The 2-dimensional plots
also show that, compared to prequential computation, block -based calculations are more
prone to over- and under- estimation of AUC.

The above analyses have shown that prequential AUC averaged over time is highly
consistent and comparably discriminant to AUC calculated on the entire stream. We have
also seen that the absolute difference between these two measures is very small for most
example orderings. Furthermore, we have noticed that the window size used for prequential
calculation should be large enough to contain at least one positive example at all time,
to avoid overly optimistic AUC estimates and, as an effect, low discriminancy. Finally,
prequential AUC proved to be more consistent, more discriminant, and closer in terms of
absolute values to AUC than block-calculated AUC. The following section, evaluates AUC
on real and synthetic data streams, including streams with class distribution changes.

120 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

6.4 Experimental Analysis

In this section, we summarize two groups of experiments: one showcasing the processing
time and monitoring capabilities of AUC as an evaluation measure, and another assessing
online ensembles on data streams with class distribution changes.

In the first group, we compare the processing time required to evaluate a stream
prequentially using AUC and the κ statistic, which has been deemed more appropriate
than AUC due to computational costs [12]. Moreover, we analyze the effectiveness of
prequential AUC as a basis for drift detection, both for real and virtual sudden drifts.

The second group of experiments compares prequential accuracy and AUC on real and
synthetic datasets containing various types of drift. We concentrate on the effect of class
imbalance and class distribution changes during evaluation. As a result, we evaluate online
ensembles analyzed in Chapter 5 on data streams with virtual drift.

6.4.1 Experimental Setup

During the comparison of prequential accuracy and AUC on real and synthetic datasets,
we tested seven different classifiers:
• Online Bagging with an ADWIN change detector (Bag),

• Leveraging Bagging (Lev),

• Dynamic Weighted Majority (DWM),

• Adaptive Classifier Ensemble (ACE),

• Online Accuracy Updated Ensemble (OAUE),

• Naive Bayes (NB),

• and a Very Fast Decision Tree with Naive Bayes leaves (VFDT).

The first five algorithms are online ensembles, whose selection was discussed in Sec-
tion 5.3.3. By using the same algorithms as in the previous chapter, we aim at extending
the analysis of online ensembles by studying their performance in the presence of class
imbalance and virtual drift. Naive Bayes and VFDT were additionally chosen as incre-
mental algorithms without any forgetting mechanism, to showcase the differences between
prequential AUC and accuracy also for single classifiers. For experiments concerning drift
detection and the evaluation time of prequential AUC, we only utilized VFDT with Naive
Bayes leaves, similarly as was done in [69].

All the algorithms and evaluation methods were implemented in Java as part of the
MOA framework [15]. The experiments were conducted on a machine equipped with a
dual-core Intel i7-2640M CPU, 2.8Ghz processor and 16 GB of RAM. For all the ensemble
methods (Bag, Lev, DWM, ACE, OAUE) we used 10 Very Fast Decision Trees as base
learners, each with a grace period nmin = 100, split confidence δ = 0.01, and tie-threshold
ψ = 0.05 [62].

6.4. Experimental Analysis 121

6.4.2 Datasets

Classifier comparison

In experiments using prequential AUC as an evaluation metric, we used 2 real and 12 syn-
thetic datasets (generator scripts are available in Appendix A). For the real-world datasets
we chose two data streams which were used in the previous chapters; see Sections 3.3.1
and 4.5.2 for a detailed description. In particular, we chose Airlines (Air) as a large,
balanced dataset and PAKDD as a smaller but imbalanced dataset.

Additionally, we used the MOA framework [15] to generate 12 artificial datasets with
different types of concept drift. We used modified versions of generators discussed in
Section 3.3.1, which were capable of controlling the class imbalance ratio. More specifically,
the SEA generator [155] was used to create a stream without drifts (SEAND), as well as
three streams with sudden changes and a constant 1:1 (SEA1), 1:10 (SEA10), 1:100 (SEA100)
class imbalance ratio. Similarly, the Hyperplane generator [163] was used to simulate three
streams with different class ratios, 1:1 (Hyp1), 1:10 (Hyp10), 1:100 (Hyp100), but with a
continuous incremental drift rather than sudden changes. We also tested the performance
of prequential accuracy and AUC in the presence of very short, temporary changes in a
stream (RBF) created using the RBF generator [15].

Apart from data containing real drifts, we additionally created four streams with vir-
tual drifts, i.e., class distribution changes over time. SEARC contains three sudden class ra-
tio changes (1:1/1:100/1:10/1:1) appearing every 250 k examples, while SEARC+D contains
identical ratio changes combined with real sudden drifts. Analogously, HypRC simulates a
continuous ratio change from 1:1 to 1:100 throughout the entire stream, while HypRC+D

combines that ratio change with an ongoing incremental drift. It is worth mentioning that
all the synthetic datasets, apart from RBF, contained 5% to 10% examples with class noise
to make the classification task more challenging.

Drift detection

For experiments assessing prequential AUC as a measure for monitoring drift, we created
7 synthetic datasets using the SEA (SEA), RBF (RBF), Random Tree (RT), and Agrawal
(Agr) generators [15]. Each dataset tested for a single reaction (or lack of one) to a sudden
change. SEANoDrift contained no changes, and should not trigger any drift detector, while
RT involved a single sudden change after 30 k examples. The Agr1, Agr10, Agr100 datsets
also contained a single sudden change after 30 k examples, but had a 1:1, 1:10, 1:100 class
imbalance ratio, respectively. Finally, SEARatio included a sudden 1:1/1:100 ratio change
after 10 k examples and RBFBlips contained two short temporary changes, which should
not trigger the detector.

Evaluation time

Additionally, two small data streams created using the RBF generator (RBF20k, RBF20kSD)
were used to showcase the evaluation speed of prequential AUC. The characteristics of all
the datasets are given in Table 6.9.

122 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

Table 6.9: Characteristic of datasets

Dataset #Inst #Attrs Class ratio Noise #Drifts Drift type

SEAND 100 k 3 1:1 10% 0 none
SEA1 1 M 3 1:1 10% 3 sudden
SEA10 1 M 3 1:10 10% 3 sudden
SEA100 1 M 3 1:100 10% 3 sudden
Hyp1 500 k 5 1:1 5% 1 incremental
Hyp10 500 k 5 1:10 5% 1 incremental
Hyp100 500 k 5 1:100 5% 1 incremental
RBF 1 M 20 1:1 0% 2 blips
SEARC 1 M 3 1:1/1:100/1:10/1:1 10% 3 virtual
SEARC+D 1 M 3 1:1/1:100/1:10/1:1 10% 3 sud.+virt.
HypRC 500 k 3 1:1 → 1:100 5% 1 virtual
HypRC+D 500 k 3 1:1 → 1:100 5% 1 inc.+virt.
Air 539 k 7 1:1 - - unknown
PAKDD 50 k 30 1:4 - - unknown

SEANoDrift 20 k 3 1:1 10% 0 none
Agr1 40 k 9 1:1 1% 1 sudden
Agr10 40 k 9 1:10 1% 1 sudden
Agr100 40 k 9 1:100 1% 1 sudden
RT 40 k 10 1:1 0% 1 sudden
SEARatio 40 k 3 1:1/1:100 10% 1 virtual
RBFBlips 40 k 20 1:1 0% 2 blips

RBF20k 20 k 20 1:1 0% 0 none
RBF20kSD 20 k 20 1:1 0% 1 sudden

6.4.3 Prequential AUC Evaluation Time

First, we performed a simple comparison of classifier evaluation time using AUC and
the κ statistic, both calculated prequentially. Although in Section 6.2 we have shown
that the time per example required to calculate prequential AUC is constant, we want
to verify evaluation time on a concrete data stream. Furthermore, some researchers have
argued that AUC is too computationally expensive to be used for evaluating data stream
classifiers. In particular, the inability to calculate AUC efficiently made authors suggest,
for example, that “the Kappa statistic is more appropriate for data streams than a measure
such as the area under the ROC curve” [12]. Therefore, to verify whether AUC calculated
prequentially overcomes these limitations, we compare its processing time with that of the
κ statistic.

We compare the average evaluation time required per example for two small data
streams, one without any drift (RBF20k) and one with a single sudden drift (RBF20kSD). We
use the MOA framework to compare the time required to evaluate a single Hoeffding Tree
using both measures. Originally, the MOA framework calculates several evaluation metrics
per example, therefore, we created two separate evaluation functions which calculate only
prequential AUC and prequential κ, respectively. Both measures require only a window of
past predictions and the number of attributes does not affect calculation time. Therefore,

6.4. Experimental Analysis 123

we calculate evaluation time only on two datasets. However, we average the acquired
results over ten runs to minimize the effect of random measurement variability. Table 6.10
presents evaluation time per example using prequential AUC and prequential κ on a
window of d = 1000 examples.

Table 6.10: Evaluation time per example [ms] using prequential AUC and prequential κ
on a window of d = 1000 examples (averaged over 10 runs ± standard deviation)

Prequential AUC Prequential κ

RBF20k 7.230± 0.158 7.189± 0.246
RBF20kSD 7.344± 0.519 7.287± 0.243

As results in Table 6.10 show, evaluation using prequential AUC is only slightly slower
than using the κ statistic on both datasets. The difference is very small and proportionally
AUC is 0.57% slower for RBF20k and 0.79% for RBF20kSD. It is worth noting that this
difference could be larger for a larger window size, however, due to the properties of
red-black trees it would grow logarithmically with the window size.

Therefore, prequential AUC offers similar evaluation time compared to the κ statistic
for a reasonable window size of d = 1000 examples. Furthermore, this difference can grow
only logarithmically for larger window sizes. Thus, prequential AUC, contrary to AUC
calculated on entire streams, should not be deemed too computationally expensive for
evaluating data stream classifiers.

6.4.4 Drift Detection Using Prequential AUC

The next group of experiments involved using the PH test to detect drifts based on changes
in prequential accuracy and prequential AUC. To compare both metrics, we used window
sizes (1000–5000) and test parameters λ = 100, δ = 0.1, as proposed in [69]. Table 6.11
presents the number of missed versus false detection counts, with average delay time for
correct detections. The results refer to total counts and means over 10 runs of streams
generated with different seeds.

Concerning datasets with balanced classes (SEANoDrift, RT, Agr1, RBFBlips), both eval-
uation metrics provide similar drift detection rates and delays. However, for datasets with
high class imbalance (Agr10, Agr100) the PH test notes more missed detections for accu-
racy. This is probably due to the plot “flattening” caused by promoting majority class
predictions. On the other hand, detectors which use AUC have less missed detections for
highly imbalanced streams, but still suffer from a relatively high number of false alarms.
This suggests that detectors using AUC should probably be parametrized differently than
those using accuracy.

However, the most visible difference is for the stream with class ratio changes
(SEARatio). The PH test misses all virtual drifts when using accuracy as the base metric,
but detects all the drifts when prequential AUC is used. This confirms, that in imbalanced
evolving environments the use of AUC as an evaluation measure could be of more value
than standard accuracy.

124 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

Table 6.11: Number of missed and false detections (in the format missed:false) obtained
using the PH test with prequential accuracy (Acc) and prequential AUC (AUC). Average
delays of correct detections are given in parenthesis, where (-) means that the detector
was not triggered or the dataset did not contain any change. Subscripts in column names
indicate the number of examples used for estimating errors.

Acc1k Acc2k Acc3k Acc4k Acc5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agr1 0:2 (1040) 0:1 (1859) 0:0 (2843) 1:0 (4033) 5:0 (4603)
Agr10 0:9 (1202) 0:3 (1228) 0:2 (1679) 0:2 (2190) 0:2 (2817)
Agr100 2:12 (1610) 2:17 (2913) 2:10 (3136) 3:12 (3903) 3:10 (4612)
RT 6:0 (1843) 7:0 (2621) 8:0 (2933) 8:0 (3754) 8:0 (4695)
SEARatio 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-)
RBFBlips 0:2 (-) 0:1 (-) 0:0 (-) 0:0 (-) 0:0 (-)

AUC1k AUC2k AUC3k AUC4k AUC5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agr1 2:2 (1042) 3:1 (1760) 4:1 (2726) 4:0 (3773) 7:0 (4640)
Agr10 0:5 (868) 0:5 (1539) 0:1 (1506) 0:1 (1778) 1:1 (2197)
Agr100 0:19 (1548) 0:18 (2461) 1:9 (2664) 1:11 (3563) 2:9 (4835)
RT 3:0 (1815) 5:0 (2407) 6:0 (3105) 6:0 (4121) 7:0 (4725)
SEARatio 0:0 (1339) 0:0 (2249) 0:0 (3152) 0:0 (4057) 0:0 (4959)
RBFBlips 0:3 (-) 0:1 (-) 0:0 (-) 0:0 (-) 0:0 (-)

6.4.5 Classifier Comparison

Finally, we compared the predictive performance of five online ensembles discussed in
Chapter 5 (DWM, ACE, Bag, Lev, OAUE) and two additional single classifiers (NB,
VFDT). All of the analyzed algorithms were tested in terms of accuracy (Acc.) and the
area under the ROC curve (AUC). The results were obtained using the prequential eval-
uation procedure [62], with a sliding window of d = 1000 examples. Table 6.12 presents a
comparison of average prequential accuracy and prequential AUC.

By comparing average values of the analyzed evaluation measures, we can see that for
datasets with a balanced class ratio (SEA, SEA1, Hyp1, RBF, Air) both measures have similar
values. However, as expected, for datasets with class imbalance (SEA10, SEA100, Hyp10,
Hyp100, PAKKD, SEARC , SEARC+D, HypRC , HypRC+D) accuracy does not demonstrate the
difficulties the classifiers have with recognizing minority class examples, while AUC clearly
showcases this problem. The differences between accuracy and AUC are even more visible
on graphical plots depicting algorithm performance in time. Figures 6.11–6.16 present
selected plots, which best characterize the differences between both measures.

Comparing Figures 6.11 and 6.12, we can notice how the class imbalance ratio affects
both prequential accuracy and AUC. The accuracy plot visibly flattens when the class
imbalance ratio rises, but absolute values almost do not change. AUC on the other hand
flattens but its value drastically changes, showing more clearly the classifiers’ inability to
recognize the minority class.

6.4. Experimental Analysis 125

Table 6.12: Average prequential accuracy (Acc.) and AUC (AUC)

NB VFDT DWM ACE Bag Lev OAUE

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

SEAND 0.86 0.90 0.89 0.89 0.88 0.90 0.86 0.89 0.89 0.90 0.90 0.90 0.89 0.90
SEA1 0.84 0.88 0.85 0.87 0.89 0.88 0.86 0.87 0.89 0.88 0.89 0.89 0.89 0.88
SEA10 0.84 0.74 0.87 0.73 0.89 0.74 0.87 0.72 0.89 0.74 0.89 0.75 0.89 0.74
SEA100 0.89 0.54 0.89 0.54 0.90 0.54 0.88 0.52 0.90 0.54 0.90 0.57 0.90 0.54
Hyp1 0.78 0.85 0.81 0.87 0.88 0.92 0.78 0.83 0.88 0.93 0.86 0.92 0.88 0.93
Hyp10 0.88 0.80 0.89 0.75 0.91 0.76 0.88 0.71 0.91 0.81 0.91 0.80 0.91 0.82
Hyp100 0.94 0.57 0.93 0.53 0.94 0.52 0.89 0.50 0.94 0.56 0.94 0.55 0.94 0.55
RBF 0.74 0.83 0.97 0.99 0.98 1.00 0.87 0.89 0.99 1.00 0.99 1.00 0.99 1.00
SEARC 0.86 0.77 0.89 0.77 0.89 0.77 0.87 0.75 0.90 0.77 0.90 0.78 0.90 0.77
SEARC+D 0.82 0.77 0.85 0.76 0.89 0.77 0.86 0.75 0.89 0.77 0.89 0.77 0.89 0.77
HypRC 0.93 0.67 0.93 0.63 0.93 0.61 0.89 0.55 0.94 0.66 0.93 0.66 0.93 0.66
HypRC+D 0.92 0.64 0.92 0.61 0.93 0.63 0.88 0.59 0.93 0.65 0.93 0.64 0.93 0.65
Air 0.65 0.66 0.64 0.66 0.65 0.65 0.65 0.61 0.64 0.65 0.62 0.60 0.67 0.68
PAKKD 0.56 0.64 0.73 0.57 0.80 0.50 - - 0.80 0.63 0.80 0.62 0.80 0.62

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

P
re

q
u
e
n
ti
a
l
A

c
c
u
ra

c
y

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(a) Prequential accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

P
re

q
u
e
n
ti
a
l
A

U
C

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(b) Prequential AUC

Figure 6.11: Comparison of prequential accuracy and AUC on a data stream with sudden
drifts and a balanced class ratio (SEA1)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

P
re

q
u
e
n
ti
a
l
A

c
c
u
ra

c
y

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(a) Prequential accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

P
re

q
u
e
n
ti
a
l
A

U
C

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(b) Prequential AUC

Figure 6.12: Comparison of prequential accuracy and AUC on a data stream with sudden
drifts and a 1:100 class imbalance ratio (SEA100)

126 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

50 k 100 k 150 k 200 k 250 k 300 k 350 k 400 k 450 k 500 k

P
re

q
u
e
n
ti
a
l
A

c
c
u
ra

c
y

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(a) Prequential accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

50 k 100 k 150 k 200 k 250 k 300 k 350 k 400 k 450 k 500 k

P
re

q
u
e
n
ti
a
l
A

U
C

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(b) Prequential AUC

Figure 6.13: Comparison of prequential accuracy and AUC on a data stream with incre-
mental drift and a balanced class ratio (Hyp1)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

50 k 100 k 150 k 200 k 250 k 300 k 350 k 400 k 450 k 500 k

P
re

q
u
e
n
ti
a
l
A

c
c
u
ra

c
y

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(a) Prequential accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

50 k 100 k 150 k 200 k 250 k 300 k 350 k 400 k 450 k 500 k

P
re

q
u
e
n
ti
a
l
A

U
C

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(b) Prequential AUC

Figure 6.14: Comparison of prequential accuracy and AUC on a data stream with incre-
mental drift and a 1:100 class imbalance ratio (Hyp100)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

P
re

q
u
e
n
ti
a
l
A

c
c
u
ra

c
y

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(a) Prequential accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1 M

P
re

q
u
e
n
ti
a
l
A

U
C

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(b) Prequential AUC

Figure 6.15: Comparison of prequential accuracy and AUC on a data stream with sudden
class ratio changes (SEARC)

6.4. Experimental Analysis 127

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

50 k 100 k 150 k 200 k 250 k 300 k 350 k 400 k 450 k 500 k

P
re

q
u
e
n
ti
a
l
A

c
c
u
ra

c
y

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(a) Prequential accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

50 k 100 k 150 k 200 k 250 k 300 k 350 k 400 k 450 k 500 k

P
re

q
u
e
n
ti
a
l
A

U
C

Processed instances

NB
VFDT
DWM
ACE
Bag
Lev

OAUE

(b) Prequential AUC

Figure 6.16: Comparison of prequential accuracy and AUC on a data stream with a gradual
class ratio change (HypRC)

A similar situation is visible on Figures 6.13 and 6.14, where the classifiers were subject
to an ongoing slow incremental drift. When classes are balanced, the plots are almost
identical, both in terms of shape and absolute values. However, when the class ratio
is 1:100, the accuracy plot flattens and its average value rises, while the AUC plot still
clearly differentiates classifiers and additionally its average value signals poor performance.
These results coincide with the study performed by Huang and Ling, who have proven
and experimentally shown that AUC is statistically more discriminant than accuracy,
especially on imbalanced datasets [79].

Finally, Figures 6.15 and 6.16 depict classifier performance on data streams with class
ratio changes. During sudden changes, all the tested classifiers, apart from NB, kept the
same accuracy after each drift making the changes invisible on the performance plot.
However, on the AUC plot, ratio changes are clearly visible providing valuable information
about the ongoing processes in the stream. In fact, the absolute values of AUC hint the
severity of class imbalance in a given moment in time. Similarly, during gradual ratio
changes the accuracy plot does not signal any changes in the stream while on the AUC
plot the drift is clearly visible. Plots for datasets containing simultaneously real and virtual
drifts (SEARC+D, HypRC+D) showcased identical properties — AUC plots depicted both
real and virtual drifts while accuracy plots were only capable of showing real drifts. These
scenarios clearly illustrate the advantages of prequential AUC as a measure for indicating
class ratio changes.

Apart from analyzing single performance values and plots, we decided to check
whether, for the analyzed algorithms and datasets, choosing AUC over accuracy would
change the classifier ranking in terms of predictive performance. In order to verify this,
we performed the non-parametric Friedman test [45]. The average ranks of the analyzed
algorithms are presented in Table 6.13 (the lower the rank the better).

The null-hypothesis of the Friedman test, that there is no difference between the
performance of all the tested algorithms, can be rejected both for accuracy and AUC
at p < 0.0001. To verify which algorithms perform better than the other, we compute the
critical difference chosen by the Bonferroni-Dunn post-hoc test [45] as CD = 2.15.

128 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes

Table 6.13: Average algorithm ranks used in the Friedman tests

NB VFDT DWM ACE Bag Lev OAUE

Accuracy 6.08 5.46 3.15 6.00 2.85 2.46 2.00
AUC 3.62 5.23 4.54 6.84 2.23 2.38 3.15

As we can see, in our experiments AUC and accuracy suggest different algorithm
rankings. If we take into account accuracy, OAUE has the highest rank with Lev, Bag, and
DWM achieving comparable results. This ranking is concordant with results on balanced
datasets [32], discussed in Chapter 5. However, if we take into account AUC, we can
see that the differentiation between algorithms is not so clear. In particular, NB achieves
results comparable to Bag, Lev and OAUE. This promotion in the ranking is probably due
to the fact that the Naive Bayes algorithm is usually capable of producing more diverse
scores than decision trees. Nevertheless, the ranking based on prequential AUC seems to
suggest that none of the analyzed online ensembles was prepared for handling imbalanced
data or reacting to class distribution changes, since their results are comparable with
single classifiers without any drift reaction mechanisms.

6.5 Conclusions

In case of static data, AUC is a useful measure for evaluating classifiers both on balanced
and imbalanced classes. However, up till now it has not been sufficiently popular in data
stream mining, due to its costly calculation. In this chapter, we introduced an new efficient
method for calculating AUC incrementally with forgetting on evolving data streams.

The proposed algorithm, called prequential AUC, proved to be computationally ef-
ficient and useful for evaluating classifier performance over time. In particular, we have
compared its processing speed against the κ statistic and positively assessed its visualiza-
tions and drift detection with that of prequential accuracy. Furthermore, we have shown
that for stationary streams prequential AUC averaged over the entire stream is statisti-
cally consistent and comparably discriminating to AUC calculated using all examples at
once. This comparison also involved AUC calculated in blocks, which proved inferior in
terms of the degree of consistency and discriminancy.

Finally, experiments involving real and synthetic datasets have shown that prequential
AUC is capable of correctly identifying poor classifier performance on imbalanced streams
and detecting virtual drifts, i.e., changes in class ratio over time. As a result we have
noticed that existing online ensembles are not prepared to deal with class imbalanced data
and class distribution changes. Therefore, the topic of classifiers for drifting imbalanced
data streams constitutes an interesting line of future research.

Chapter 7

Conclusions and Future Work

This dissertation concerned learning ensemble classifiers from concept-drifting data
streams. As stated in Section 1.1, our main goal was to propose efficient block-based
and online ensembles, which are capable of reacting to various types of concept drift.
This involved analyzing the properties of both processing schemes as well as tackling the
problem of accurate classifier evaluation in the context of real and virtual drift. In our
opinion, the main goal as well as the aforementioned sub-tasks have been accomplished.
To support this claim, we summarize the main contributions of this dissertation.

Reacting to various types of drift in block-based environments

In Chapter 3, we have analyzed the implications of introducing elements of incremen-
tal learning in block-based ensembles. As a result, we have proposed and experimentally
validated the Accuracy Updated Ensemble (AUE), a block-based ensemble classifier de-
signed to react to different types of concept drift. The main novel contribution of AUE
is the introduction of incremental updating of component classifiers, which improves the
ensemble’s reactions to concept drifts, as well as reduces the impact of block sizes on
the predictive performance of the ensemble. Incremental updates allow all ensemble mem-
bers to adapt to the most recent concept simultaneously and, therefore, change the basic
idea behind existing block-based algorithms. Such a hybrid approach allows AUE to react
to various types of concept changes, such as sudden, gradual, recurring, short-term, and
mixed drifts, which was one of the main goals of this thesis.

Additional contributions of AUE include the proposal of a new component weight-
ing function and the investigation of different strategies concerning ensemble member
updates. Our experiments have shown that, in terms of classification accuracy, all com-
ponent classifiers in AUE should be updated after each incoming data block. Such an
approach promotes the creation of strong component classifiers, which is concordant with
results presented in [52]. This suggests that concept-drifting data streams provide natural
diversity and the premise of weaklearnability does not fully apply to them.

To verify the performance of the proposed approach, we carried out an experimen-
tal study comparing AUE with 11 state-of-the-art data stream methods, including single
classifiers, ensembles, and hybrid approaches, on a large set of streams simulating differ-

129

130 Conclusions and Future Work

ent drift scenarios. The experimental study has demonstrated that AUE can offer very
high classification accuracy in environments with various types of changes, as well as in
stationary environments. Notably, AUE provided best average classification accuracy out
of all the tested algorithms, while proving to be faster and less memory consuming than
competitive ensemble approaches.

Relations between block-based and online ensembles

The thesis has also contributed to the study of relations between drift reaction mecha-
nisms of block-based and online ensembles. In particular, in Chapter 4 we verified if it
is possible to transform block-based ensembles into online learners and proposed three
general strategies for this purpose:

I) the use of a windowing technique which updates component classifier weights online,

II) the extension of the ensemble by an incremental classifier,

III) and the use of an online drift detector.

Experimental results have demonstrated that all three strategies can be beneficial to
the performance of a block-based ensemble using both static and incremental base classi-
fiers, however, not all of them are equally effective. In particular, we have observed that
online component reweighting is the best transformation strategy in terms of average pre-
quential accuracy, but is also the costliest one in terms of processing time. Moreover, we
have noticed that elements of incremental learning are crucial to the improvement of classi-
fication accuracy in online environments. Finally, we have noticed that the transformation
of a block-based ensemble to an online learner should be tailored to a given algorithm.

Reacting to various types of concept drift in online environments

Based on the analysis of ensemble transformation strategies, in Chapter 5 we have pro-
posed a new incremental stream classifier, called Online Accuracy Updated Ensemble
(OAUE). The main novelty of the OAUE algorithm is the proposal of a cost-effective
component weighting function, which estimates a classifier’s error on a window of last
seen instances in constant time and memory without the need of remembering past exam-
ples. By weighting components according to their mean square error on the most recent
predictions, OAUE aims at retaining the positive elements of AUE, while adding the
capability of processing streams online. The fact that this capability was achieved with
negligible overhead in terms of memory usage and processing time, makes OAUE a much
better choice for streams with online labeling.

The predictive performance of OAUE, was experimentally compared with four repre-
sentative online ensembles: the Adaptive Classifier Ensemble, Dynamic Weighted Majority,
Online Bagging, and Leveraging Bagging. The obtained results have demonstrated that
OAUE can offer very accurate predictions in online environments, regardless of the exis-
tence or type of drift. In particular, OAUE provided best average classification accuracy
out of all the tested algorithms and was among the least time and memory consuming ones.

Conclusions and Future Work 131

The demonstrated ability to react comparably well regardless of the type and severity of
concept drift was also one of the main goals of this dissertation.

Prequential AUC as a measure for evaluating data stream classifiers

In Chapter 6, we have extended the analysis of adaptive ensembles to streams with class-
distribution changes as a special type of virtual drift. To perform this analysis, we first
surveyed existing methods for evaluating data stream classifiers, concentrating on their
applicability to imbalanced data with changing class distributions. In particular, we show-
cased that existing methods for computing of the most popular evaluation measure for
batch imbalanced data, the area under the ROC curve (AUC), are unfeasible for data
streams. These limitations were overcome by introducing a novel algorithm for computing
a time-oriented area under the ROC curve.

The proposed algorithm, called prequential AUC, proved to be computationally effi-
cient and suitable for evaluating classifier performance over time. We have compared its
visualizations, computation time, and drift detection accuracy with that of the currently
most popular measures, prequential accuracy and the κ statistic. More importantly, we
have shown that for stationary data, prequential AUC averaged over the entire stream is
statistically consistent and comparably discriminating to AUC calculated using all exam-
ples at once. Finally, experiments involving real and synthetic datasets have demonstrated
that prequential AUC is capable of correctly identifying poor classifier performance on im-
balanced streams and detecting class distribution changes.

All these results have shown that, contrary to prior assumptions, AUC, which is one the
most popular classifier evaluation measures in traditional data mining, can also be adapted
to data stream processing. In the context of adaptive classifiers, by using prequential
AUC we have noticed that existing online ensembles are not prepared to deal with class
imbalanced data and class distribution changes.

Lines of further research

The above contributions open several directions for future studies. As it was signaled in
Chapter 3, combinations of different types of drift constitute an interesting line of further
research. Current works in the field of data stream classification concentrate mostly on
single, separated changes. However, as it was shown during experiments involving block-
based ensembles, combinations of gradual and sudden drifts are particularly difficult to
react to. This is only one possible combination, and many others might be worth analyzing.

Concerning different types of drift, we have also seen that class distribution changes
pose challenges to current data stream classifiers. To the best of our knowledge, class
distribution changes have not been previously analyzed in the literature. However, in the
context of analyzing multiple distributed data streams, such types of virtual drift can
be seen in practice. For example, if several sensors in a monitored environment fail or
malfunction, the classification algorithm might be left with only part of examples of a
given class [63]. This in turn might be reflected in a change in the class distribution,
which, as we have seen in Chapter 6, can easily deteriorate the predictive performance of

132 Conclusions and Future Work

a classifier. Therefore, we believe that methods for handling class distribution changes are
also worth investigating.

Finally, the proposal and positive assessment of prequential AUC should open many
new possibilities anticipated in the literature [98]. First of all, we believe that the proposed
measure should facilitate the evaluation of classifiers learning from imbalanced streams and
help visualize their performance over time. Furthermore, the computational feasibility of
prequential AUC may lead to its application in classifier optimization. For example, many
current adaptive ensembles use classification accuracy (or prediction errors) to weight
or select ensemble members. With prequential AUC such operations could also be done
using the ranking, rather than predictive, performance of a classifier. This is particularly
interesting as AUC has been shown to be a better optimization criterion than accuracy
for many scenarios in traditional data mining [79].

Appendix A

Experiment scripts

Below we present excerpts from experiment scripts used for classifier comparisons in this
thesis. The aim of these excerpts is to give insight into basic algorithm and stream genera-
tor parameters. Full scripts, including additional experiments, source code, Java Runtime
parameters, and precompiled MOA packages with the discussed algorithms, are available
at http://www.cs.put.poznan.pl/dbrzezinski/software.php. Were appropriate, we
will indicate direct links to software packages for concrete experiments.

A.1 Accuracy Updated Ensemble

Full scripts used for tests comparing of the Accuracy Updated Ensemble with other
classifiers are available at: http://www.cs.put.poznan.pl/dbrzezinski/software/

AUE2DatasetScripts.zip. The real-world datasets are available at: http://moa.cms.

waikato.ac.nz/datasets/, while the synthetic datasets were generated by MOA. List-
ing A.1 presents the parameters of each generated dataset with non-default parameters
described in comments. Descriptions of generator parameters are listed in the MOA Man-
ual (http://moa.cms.waikato.ac.nz/documentation/).

Listing A.1: AUE experiment datasets

RBF_ND (size =1M, drift=none)

generators . RandomRBFGenerator

LED_ND (size =10M, noise =20% , drift=none)

generators . LEDGenerator -n 20

#Hyp_S (size =1M, classes =4, noise =5%, rotationSpeed =0.001 ,

drift= gradual)

generators . HyperplaneGenerator -c 4 -k 5 -t 0.001

#Hyp_F (size =1M, classes =4, noise =5%, rotationSpeed =0.1 ,

drift= gradual)

generators . HyperplaneGenerator -c 4 -k 5 -t 0.10

133

http://www.cs.put.poznan.pl/dbrzezinski/software.php
http://www.cs.put.poznan.pl/dbrzezinski/software/AUE2DatasetScripts.zip
http://www.cs.put.poznan.pl/dbrzezinski/software/AUE2DatasetScripts.zip
http://moa.cms.waikato.ac.nz/datasets/
http://moa.cms.waikato.ac.nz/datasets/
http://moa.cms.waikato.ac.nz/documentation/

134 Experiment scripts

Tree_S (size =1M, classes =4, driftPointInEachStream =200000 ,

driftWidth =1, drift= sudden recurring)

ConceptDriftStream -s (generators . RandomTreeGenerator -c 4) -

d (ConceptDriftStream -s (generators . RandomTreeGenerator -

i 2 -r 2 -c 4) -d ... repeated 4 more times with different

-i and -r... -a 90.0 -p 200000 -w 1 -r 2) -a 90.0 -p

200000 -w 1

#SEA_S (size =1M, driftPointInEachStream =250000 , driftWidth

=50, drift= sudden)

ConceptDriftStream -s (generators . SEAGenerator -f 1) -d (

ConceptDriftStream -s (generators . SEAGenerator -f 2) -d (

ConceptDriftStream -s (generators . SEAGenerator -f 3) -d

(generators . SEAGenerator -f 4) -w 50 -p 250000) -w 50 -p

250000) -w 50 -p 250000

#SEA_F (size =1M, driftPointInEachStream =100000 , driftWidth

=50, drift= sudden)

ConceptDriftStream -s (generators . SEAGenerator -i 1 -f 1 -b)

-d (ConceptDriftStream -s (generators . SEAGenerator -i 2 -

f 2 -b) ... repeated 7 more times with different -i and -f

... -w 50 -p 100000) -w 50 -p 100000

RBF_GR (size =1M, classes =4, attrs =20, driftPointInEachStream

=125000 , driftWidth =250000 , drift= gradual)

ConceptDriftStream -s (generators . RandomRBFGenerator -c 4 -a

20) -d (ConceptDriftStream -s (generators .

RandomRBFGenerator -r 5 -i 5 -c 4 -a 20 -n 25) -d ...

repeated 4 more times with different -i and -r... -a 45.0

-p 125000 -w 250000 -r 2) -a 45.0 -p 125000 -w 250000

#LED_M (size =1M, attrs =20, driftPointInStream =500000 ,

driftWidth =10, noiseAfterDrift =30% , drift= gradual drifts

with a sudden concept change)

ConceptDriftStream -s (generators . LEDGeneratorDrift -d 3) -d

(generators . LEDGeneratorDrift -d 2 -i 4 -n 30) -a 90.0 -p

500000 -w 10

#RBF_B (size =1M, classes =4, attrs =20, driftPointInEachStream

=249900 , driftWidth =200 , drift=blips)

A.1. Accuracy Updated Ensemble 135

ConceptDriftStream -s (generators . RandomRBFGenerator -c 4 -a

20) -d (ConceptDriftStream -s (generators .

RandomRBFGenerator -r 5 -i 5 -c 4 -a 20 -n 25) -d ...

repeated 3 more times with different -i, -r, and -n... -a

80.0 -p 249900 -w 200 -r 2) -a 80.0 -p 249900 -w 200

Tree_F (size =100k, classes =6, driftPointInEachStream =3000 ,

driftWidth =1, drift= sudden recurring)

ConceptDriftStream -s (generators . RandomTreeGenerator -c 6) -

d (ConceptDriftStream -s (generators . RandomTreeGenerator -

i 2 -r 2 -c 6) -d ... repeated 17 more times with different

-i and -r... -a 90.0 -p 3000 -w 1 -r 2) -a 90.0 -p 3000 -

w 1

Most of the tested algorithms, including the proposed Accuracy Updated Ensemble, are
a part of the MOA framework and therefore their parameter meanings are also described in
the aforementioned MOA manual. However the DWM and Learn++.NSE algorithms are
only available as extensions which need to be added to MOA. They are already included
in the precompiled version of MOA attached to the scripts for these testes on the authors
website, but additional information can also be found at: https://sites.google.com/

site/moaextensions/.
Listing A.2 presents algorithm parameters used for the experimental comparison in

Chapter 3. It is worth noting taht in newer versions of MOA certain algorithm names
might have changed and the presented script is compatible with the precompiled version
of MOA attached to the scripts.

Listing A.2: AUE experiment algorithms

meta. AccuracyUpdatedEnsemble1 -n 10 -c 500

meta. AccuracyUpdatedEnsemble2 -n 10 -c 500

meta. AccuracyWeightedEnsemble -n 10

meta. OzaBagAdwin -l (trees. HoeffdingTree -e 1000 -g 100 -c

0.01)

meta. LeveragingBag -l (trees. HoeffdingTree -e 1000 -g 100 -c

0.01)

trees. AdaHoeffdingOptionTree -o 10 -c 0.01

drift. SingleClassifierDrift -l (trees. HoeffdingTree -e 1000 -

g 100 -c 0.01)

bayes. NaiveBayes

StaticWindow -l (trees. HoeffdingTree -e 1000 -g 100 -c 0.01)

-w 500

meta. DynamicWeightedMajority -l (trees. HoeffdingTree -e 1000

-g 100 -c 0.01) -p 500

meta. LearnNSE -l (trees. HoeffdingTree -e 1000 -g 100 -c 0.01)

-p 500

https://sites.google.com/site/moaextensions/
https://sites.google.com/site/moaextensions/

136 Experiment scripts

A.2 Transformation strategies

The transformations of AUEpre and AWE are not a part of the MOA framework. How-
ever, their source code is available under: http://www.cs.put.poznan.pl/dbrzezinski/

software/Strategies_20120808.zip. Datasets used for the comparison of these strate-
gies were the same as for evaluation of the Online Accuracy Updated Ensemble, which is
described in the following section. Listing A.3 prestens algorithm parameters.

Listing A.3: Transformation strategies

meta. AccuracyWeightedEnsemble -l (meta. WEKAClassifier -l (

weka. classifiers .trees.J48 -C 0.25 -M 2)) -n 10.0 -r 10.0

-c 1000

meta. IncrementalAWECandidate -l (meta. WEKAClassifier -l (weka

. classifiers .trees.J48 -C 0.25 -M 2)) -n 10.0 -r 10.0 -c

1000

meta. IncrementalAWEDetector -b (trees. HoeffdingTree -e

2000000 -g 100 -c 0.01) -l (meta. WEKAClassifier -l (weka.

classifiers .trees.J48 -C 0.25 -M 2)) -n 10.0 -r 10.0 -c

1000

meta. AccuracyUpdatedEnsemble1 -l (trees. HoeffdingTree -e

2000000 -g 100 -c 0.01) -n 10.0 -r 10.0 -c 1000

meta. IncrementalAUE1Candidate -l (trees. HoeffdingTree -e

2000000 -g 100 -c 0.01) -n 10.0 -r 10.0 -c 1000

meta. IncrementalAUE1Detector -b (trees. HoeffdingTree -e

2000000 -g 100 -c 0.01) -l (trees. HoeffdingTree -e 2000000

-g 100 -c 0.01) -n 10.0 -r 10.0 -c 1000

meta. IncrementalAUE1Window -l (trees. HoeffdingTree -e 2000000

-g 100 -c 0.01) -n 10.0 -r 10.0 -c 1000

meta. IncrementalAWEWindow -l (meta. WEKAClassifier -l (weka.

classifiers .trees.J48 -C 0.25 -M 2)) -n 10.0 -r 10.0 -c

1000

A.3 Online Accuracy Updated Ensemble

Full test scripts for the experimental comparison from Chapter 5 are available at: http://

www.cs.put.poznan.pl/dbrzezinski/software/OAUEScripts_20130910.zip. The real-
world datasets were downloaded from http://moa.cms.waikato.ac.nz/datasets/ and
http://www.cse.fau.edu/~xqzhu/stream.html, while the synthetic datasets were gen-
erated by MOA.

Listings A.4 and A.5 present the parameters of datasets and algorithm, respectively.
Datasets not described in this listing were identical with those used for AUE (Listing A.1).
As with previous experiment scripts, descriptions of generator parameters are described
in the MOA Manual.

http://www.cs.put.poznan.pl/dbrzezinski/software/Strategies_20120808.zip
http://www.cs.put.poznan.pl/dbrzezinski/software/Strategies_20120808.zip
http://www.cs.put.poznan.pl/dbrzezinski/software/OAUEScripts_20130910.zip
http://www.cs.put.poznan.pl/dbrzezinski/software/OAUEScripts_20130910.zip
http://moa.cms.waikato.ac.nz/datasets/
http://www.cse.fau.edu/~xqzhu/stream.html

A.4. Prequential AUC 137

Listing A.4: OAUE experiment datasets

#Hyp_F (size =1M, classes =4, noise =5%, rotationSpeed =0.25 ,

drift= gradual)

generators . HyperplaneGenerator -c 4 -k 5 -t 0.25

#Wave (size =1M, driftingAttributes =20, instanceRandomSeed =5,

noise=random , drift=none)

generators . WaveformGeneratorDrift -d 20 -i 5 -n

#SEA_G (size =1M, driftPointInEachStream =100250 , driftWidth

=50000 , driftAngle =45 deg , drift= gradual)

ConceptDriftStream -s (generators . SEAGenerator -i 1 -f 1 -b)

-d (ConceptDriftStream -s (generators . SEAGenerator -i 2 -

f 2 -b) -d ... repeated 6 more times with different -i and

-f... -w 50000 -a 45.0 -p 100250) -w 50000 -a 45.0 -p

100250

Wave_M (size =500k, driftingAttributes =20/30 ,

instanceRandomSeed =5/11 , noise=random , driftPoint =250000 ,

driftWidth =250000 , driftAngle =45 deg , drift=none)

ConceptDriftStream -s (generators . WaveformGeneratorDrift -d

20 -i 5 -n) -d (generators . WaveformGeneratorDrift -d 30 -i

11 -n) -a 45.0 -p 250000 -w 250000

Listing A.5: OAUE experiment algorithms

meta. OzaBagAdwin -l (trees. HoeffdingTree -e 2000000 -g 100 -c

0.01) -s 10

meta. LeveragingBag -l (trees. HoeffdingTree -e 2000000 -g 100

-c 0.01) -s 10

meta. DynamicWeightedMajority -l (trees. HoeffdingTree -e

2000000 -g 100 -c 0.01) -e 10 -p 1000

meta. OnlineAccuracyUpdatedEnsemble -l (trees. HoeffdingTree -e

2000000 -g 100 -c 0.01) -n 10 -w 1000

AdaptiveClassifiersEnsemble -n 10 -c 1000

A.4 Prequential AUC

Finally, scripts used for testing prequential AUC are available at: http://www.cs.put.

poznan.pl/dbrzezinski/software/AUCScripts_20150128.zip. Since algorithm param-
eters did not differ from previous experiments, we only present excerpts from data genera-
tor scripts. It is worth noting taht in order to control the class imbalance ratio, data stream

http://www.cs.put.poznan.pl/dbrzezinski/software/AUCScripts_20150128.zip
http://www.cs.put.poznan.pl/dbrzezinski/software/AUCScripts_20150128.zip

138 Experiment scripts

generators available in MOA had to be changed. Therefore, some parameters presented in
Listing A.6 apply only to modified versions of generators available in the software package.

Listing A.6: Prequential AUC experiment datasets

#Hyp_1

generators . HyperplaneGenerator -c 2 -k 5 -t 0.001

Hyp_10

generators . HyperplaneGenerator -c 2 -k 5 -t 0.001 -r 10 -b

Hyp_100

generators . HyperplaneGenerator -c 2 -k 5 -t 0.001 -r 100 -b

Hyp_RC

generators . HyperplaneGenerator -c 2 -k 5 -t 0.0 -r 100 -b -g

500 -l 499000

Hyp_RC +D

generators . HyperplaneGenerator -c 2 -k 5 -t 0.1 -r 100 -b -g

500 -l 499000

SEA_ND

generators . SEAGenerator -i 111 -f 1 -b

#SEA_1

ConceptDriftStream -s (generators . SEAGenerator -f 1) -d (

ConceptDriftStream -s (generators . SEAGenerator -f 2) -d (

ConceptDriftStream -s (generators . SEAGenerator -f 3) -d

(generators . SEAGenerator -f 4) -w 50 -p 250000) -w 50 -p

250000) -w 50 -p 250000

SEA_10

ConceptDriftStream -s (generators . SEAGenerator -f 1 -r 10 -b)

-d (ConceptDriftStream -s (generators . SEAGenerator -f 2 -

r 10 -b) -d (ConceptDriftStream -s (generators .

SEAGenerator -f 3 -r 10 -b) -d (generators . SEAGenerator

-f 4 -r 10 -b) -w 50 -p 250000) -w 50 -p 250000) -w 50 -

p 250000

SEA_100

ConceptDriftStream -s (generators . SEAGenerator -f 1 -r 100 -b

) -d (ConceptDriftStream -s (generators . SEAGenerator -f 2

-r 100 -b) -d (ConceptDriftStream -s (generators .

SEAGenerator -f 3 -r 100 -b) -d (generators . SEAGenerator

-f 4 -r 100 -b) -w 50 -p 250000) -w 50 -p 250000) -w 50

-p 250000

SEA_RC

ConceptDriftStream -s (generators . SEAGenerator -f 1 -r 1 -b)

-d (ConceptDriftStream -s (generators . SEAGenerator -f 1 -r

A.4. Prequential AUC 139

100 -b) -d (ConceptDriftStream -s (generators .

SEAGenerator -f 1 -r 10 -b) -d (generators . SEAGenerator

-f 1 -r 1 -b) -w 50 -p 250000) -w 50 -p 250000) -w 50 -p

250000

SEA_RC +D

ConceptDriftStream -s (generators . SEAGenerator -f 1 -r 1 -b)

-d (ConceptDriftStream -s (generators . SEAGenerator -f 3 -r

100 -b) -d (ConceptDriftStream -s (generators .

SEAGenerator -f 2 -r 10 -b) -d (generators . SEAGenerator

-f 4 -r 1 -b) -w 50 -p 250000) -w 50 -p 250000) -w 50 -p

250000

Appendix B

List of publications

This Appendix presents a list of author’s publications related to research carried out in
this dissertation. The papers are grouped according to Chapters which they relate to.

Chapter 3:
• Dariusz Brzezinski and Jerzy Stefanowski. Reacting to different types of concept
drift: The accuracy updated ensemble algorithm. IEEE Transactions on Neural
Networks and Learning Systems, 25:81–94, 2014.

• Dariusz Brzezinski and Jerzy Stefanowski. Accuracy updated ensemble for data
streams with concept drift. In Proceedings of the 6th International Conference on
Hybrid Artificial Intelligence Systems, volume 6679 of Lecture Notes in Computer
Science, pages 155–163. Springer, 2011.

Chapters 4 and 5:
• Dariusz Brzezinski and Jerzy Stefanowski. Combining block-based and online meth-

ods in learning ensembles from concept drifting data streams. Information Sciences,
265:50–67, 2014.

• Dariusz Brzezinski and Jerzy Stefanowski. From Block-based Ensembles to Online
Learners In Changing Data Streams: If- and How-To, Proceedings of the 2012 ECML
PKDD Workshop on Instant Interactive Data Mining, available at: http://adrem.

ua.ac.be/iid2012/.

Chapter 6:
• Dariusz Brzezinski and Jerzy Stefanowski. Prequential AUC for classifier evaluation
and drift detection in evolving data streams. In Proceedings of the 3rd International
Workshop on New Frontiers in Mining Complex Patterns, 2014.

• Georg Krempl, Indrė Žliobaitė, Dariusz Brzezinski, Eyke Hüllermeier, Mark Last,
Vincent Lemaire, Tino Noack, Ammar Shaker, Sonja Sievi, Myra Spiliopoulou, and
Jerzy Stefanowski. Open challenges for data stream mining research. SIGKDD
Explorations, 16(1):1–10, 2014.

141

http://adrem.ua.ac.be/iid2012/
http://adrem.ua.ac.be/iid2012/

142 List of publications

• Dariusz Brzezinski and Maciej Piernik. Adaptive XML Stream Classification using
Partial Tree-edit Distance, In Proceedings of ISMIS 2014, the 21st International
Symposium on Methodologies for Intelligent Systems, volume 8502 of Lecture Notes
in Computer Science, pages 10–19. Springer, 2014.

• Dariusz Brzezinski and Jerzy Stefanowski. Classifiers for concept-drifting data
streams: Evaluating things that really matter. In Proceedings of the 1st Interna-
tional Workshop on Real-World Challenges for Data Stream Mining, pages 10–14.
Otto-von-Guericke University Magdeburg, 2013.

Bibliography

[1] Hanady Abdulsalam, David B. Skillicorn, and Patrick Martin. Classification using
streaming random forests. IEEE Trans. Knowl. Data Eng., 23(1):22–36, 2011.

[2] Charu C. Aggarwal. On change diagnosis in evolving data streams. IEEE Trans.
Knowl. Data Eng., 17(5):587–600, 2005.

[3] Charu C. Aggarwal, editor. Data Streams - Models and Algorithms, volume 31 of
Advances in Database Systems. Springer, 2007.

[4] David W. Aha, Dennis F. Kibler, and Marc K. Albert. Instance-based learning
algorithms. Machine Learning, 6:37–66, 1991.

[5] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In Proceedings of the 21st
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 1–16. ACM, 2002.

[6] Manuel Baena-García, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, Ricard
Gavaldá, and Rafael Morales-Bueno. Early drift detection method. In Proceedings
of the 4th International Workshop on Knowledge Discovery from Data Streams, 2006.

[7] Rudolf Bayer. Symmetric binary B-trees: Data structure and maintenance algo-
rithms. Acta Inf., 1:290–306, 1972.

[8] Robert M. Bell, Yehuda Koren, and Chris Volinsky. The bellkor solution to the
netflix prize, 2008. http://www.research.att.com/~volinsky/netflix/.

[9] Ricardo J. Bessa, Vladimiro Miranda, and João Gama. Entropy and correntropy
against minimum square error in offline and online three-day ahead wind power
forecasting. IEEE Trans. Power Syst., 24(4):1657–1666, 2009.

[10] Alain Biem, Eric Bouillet, Hanhua Feng, Anand Ranganathan, Anton Riabov,
Olivier Verscheure, Haris N. Koutsopoulos, Mahmood Rahmani, and Baris Güç.
Real-time traffic information management using stream computing. IEEE Data
Eng. Bull., 33(2):64–68, 2010.

[11] Albert Bifet. Adaptive learning and mining for data streams and frequent patterns.
PhD thesis, Universitat Politécnica de Catalunya, 2009.

143

http://www.research.att.com/~volinsky/netflix/

144 Bibliography

[12] Albert Bifet and Eibe Frank. Sentiment knowledge discovery in twitter streaming
data. In Proceedings of the 13th Discovery Science International Conference, volume
6332 of Lecture Notes in Computer Science, pages 1–15. Springer, 2010.

[13] Albert Bifet and Ricard Gavaldà. Kalman filters and adaptive windows for learning
in data streams. In Proceedings of the 9th Discovery Science International Confer-
ence, volume 4265 of Lecture Notes in Computer Science, pages 29–40. Springer,
2006.

[14] Albert Bifet and Ricard Gavaldà. Learning from time-changing data with adap-
tive windowing. In Proceedings of the 7th SIAM International Conference on Data
Mining. SIAM, 2007.

[15] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Massive
online analysis. Journal of Machine Learning Research, 11:1601–1604, 2010.

[16] Albert Bifet, Geoffrey Holmes, and Bernhard Pfahringer. Leveraging bagging for
evolving data streams. In Proceedings of the 2010 European Conference on Machine
Learning and Knowledge Discovery in Databases, volume 6321 of Lecture Notes in
Computer Science, pages 135–150. Springer, 2010.

[17] Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, and Ricard Gavaldà. Improving
adaptive bagging methods for evolving data streams. In Proceedings of the 1st
Asian Conference on Machine Learning, volume 5828 of Lecture Notes in Computer
Science, pages 23–37. Springer, 2009.

[18] Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, and Ricard Gavaldà. Detecting
sentiment change in twitter streaming data. In Proceedings of the 2nd Workshop
on Applications of Pattern Analysis, volume 17 of JMLR Proceedings, pages 5–11.
JMLR, 2011.

[19] Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard
Gavaldà. New ensemble methods for evolving data streams. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 139–148. ACM, 2009.

[20] Albert Bifet and Richard Kirkby. Data stream mining: a practical approach. Tech-
nical report, The University of Waikato, August 2009.

[21] Albert Bifet and Richard Kirkby. Massive Online Analysis, August 2009.

[22] Albert Bifet, Jesse Read, Indre Zliobaite, Bernhard Pfahringer, and Geoff Holmes.
Pitfalls in benchmarking data stream classification and how to avoid them. In
Proceedings of the 2013 European Conference on Machine Learning and Knowledge
Discovery in Databases, volume 8188 of Lecture Notes in Computer Science, pages
465–479. Springer, 2013.

145

[23] Daniel Billsus and Michael J. Pazzani. User modeling for adaptive news access. User
Model. User-Adapt. Interact., 10(2-3):147–180, 2000.

[24] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[25] Remco R. Bouckaert. Efficient AUC learning curve calculation. In Proceedings of the
19th Australian Joint Conference on Artificial Intelligence, volume 4304 of Lecture
Notes in Computer Science, pages 181–191. Springer, 2006.

[26] Remco R. Bouckaert. Voting massive collections of bayesian network classifiers for
data streams. In Proceedings of the 19th Australian Joint Conference on Artificial
Intelligence, volume 4304 of Lecture Notes in Computer Science, pages 243–252.
Springer, 2006.

[27] Max Bramer. Principles of Data Mining. Springer, 2007.

[28] Leo Breiman, Jerome H. Friedman, Charles J. Stone, and R. A. Olshen. Classifica-
tion and Regression Trees. Wadsworth Statistics/Probability. Wadsworth, 1984.

[29] Dariusz Brzezinski. Mining data streams with concept drift. Master’s thesis, Poznan
University of Technology, Poznań, Poland, 2010.

[30] Dariusz Brzezinski and Jerzy Stefanowski. Accuracy updated ensemble for data
streams with concept drift. In Proceedings of the 6th International Conference on
Hybrid Artificial Intelligence Systems, volume 6679 of Lecture Notes in Computer
Science, pages 155–163. Springer, 2011.

[31] Dariusz Brzezinski and Jerzy Stefanowski. Classifiers for concept-drifting data
streams: Evaluating things that really matter. In Proceedings of the 1st Interna-
tional Workshop on Real-World Challenges for Data Stream Mining, pages 10–14.
Otto-von-Guericke University Magdeburg, 2013.

[32] Dariusz Brzezinski and Jerzy Stefanowski. Combining block-based and online meth-
ods in learning ensembles from concept drifting data streams. Inf. Sci., 265:50–67,
2014.

[33] Dariusz Brzezinski and Jerzy Stefanowski. Prequential AUC for classifier evaluation
and drift detection in evolving data streams. In Proceedings of the 3rd International
Workshop on New Frontiers in Mining Complex Patterns, 2014.

[34] Dariusz Brzezinski and Jerzy Stefanowski. Reacting to different types of concept
drift: The accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn.
Syst., 25:81–94, 2014.

[35] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal al-
gorithm for computing the entropy of a stream. In Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 328–335. SIAM, 2007.

146 Bibliography

[36] Darryl Charles, Aphra Kerr, Moira McAlister, Michael McNeill, Julian Kücklich,
Michaela M. Black, Adrian Moore, and Karl Stringer. Player-centred game design:
Adaptive digital games. In Proceedings of the 2005 Digital Games Research Confer-
ence, 2005.

[37] Edith Cohen and Martin J. Strauss. Maintaining time-decaying stream aggregates.
J. Algorithms, 59(1):19–36, 2006.

[38] Lior Cohen, Gil Avrahami, Mark Last, and Abraham Kandel. Info-fuzzy algorithms
for mining dynamic data streams. Appl. Soft Comput., 8(4):1283–1294, 2008.

[39] Magdalena Deckert. Batch weighted ensemble for mining data streams with concept
drift. In Proceedings of the 20th ISMIS International Symposium on Foundations
of Intelligent Systems, volume 6804 of Lecture Notes in Computer Science, pages
290–299. Springer, 2011.

[40] Magdalena Deckert. Incremental rule-based learners for handling concept drift: An
overview. Foundations of Computing and Decision Sciences, 38(1):35–65, 2013.

[41] Magdalena Deckert and Jerzy Stefanowski. Comparing block ensembles for data
streams with concept drift. In Mykola Pechenizkiy and Marek Wojciechowski, edi-
tors, Workshop Proceedings of the 16th East European ADBIS Conference, volume
185 of Advances in Intelligent Systems and Computing, pages 69–78. Springer, 2012.

[42] Magdalena Deckert and Jerzy Stefanowski. RILL: algorithm for learning rules from
streaming data with concept drift. In Proceedings of the 21st ISMIS International
Symposium on Foundations of Intelligent Systems, volume 8502 of Lecture Notes in
Computer Science, pages 20–29. Springer, 2014.

[43] Sarah Jane Delany, Padraig Cunningham, and Alexey Tsymbal. A comparison of
ensemble and case-base maintenance techniques for handling concept drift in spam
filtering. In Proceedings of the 19th International Florida Artificial Intelligence Re-
search Society Conference, pages 340–345. AAAI Press, 2006.

[44] Sarah Jane Delany, Padraig Cunningham, Alexey Tsymbal, and Lorcan Coyle. A
case-based technique for tracking concept drift in spam filtering. Knowl.-Based Syst.,
18(4-5):187–195, 2005.

[45] Janez Demsar. Statistical comparisons of classifiers over multiple data sets. J.
Machine Learning Research, 7:1–30, 2006.

[46] Thomas G. Dietterich. Ensemble methods in machine learning. In Proceedings of
the 1st International Workshop on Multiple Classifier Systems, pages 1–15. Springer,
2000.

[47] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings of the 2005
ACM CIKM International Conference on Information and Knowledge Management,
pages 485–492. ACM, 2005.

147

[48] Gregory Ditzler and Robi Polikar. Incremental learning of concept drift from stream-
ing imbalanced data. IEEE Trans. Knowl. Data Eng., 25(10):2283–2301, 2013.

[49] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings
of the 6th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 71–80. ACM, 2000.

[50] Steve Donoho. Early detection of insider trading in option markets. In Proceedings
of the 10th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 420–429. ACM, 2004.

[51] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Whiley,
2001.

[52] Ryan Elwell and Robi Polikar. Incremental learning of concept drift in nonstationary
environments. IEEE Trans. Neural Netw., 22(10):1517–1531, Oct. 2011.

[53] Wei Fan. Systematic data selection to mine concept-drifting data streams. In Pro-
ceedings of the 10th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 128–137. ACM, 2004.

[54] Wei Fan, Yi an Huang, Haixun Wang, and Philip S. Yu. Active mining of data
streams. In Proceedings of the 4th SIAM International Conference on Data Mining.
SIAM, 2004.

[55] Tom Fawcett. Using rule sets to maximize ROC performance. In Proceedings of the
1st IEEE International Conference on Data Mining, pages 131–138, 2001.

[56] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy
Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining.
AAAI/MIT Press, 1996.

[57] Francisco J. Ferrer-Troyano, Jesús S. Aguilar-Ruiz, and José Cristóbal Riquelme
Santos. Discovering decision rules from numerical data streams. In Proceedings of
the 2004 ACM Symposium on Applied Computing, pages 649–653. ACM, 2004.

[58] Peter A. Flach. ROC analysis. In Claude Sammut and Geoffrey I. Webb, editors,
Encyclopedia of Machine Learning, pages 869–875. Springer, 2010.

[59] John H. Flavell. Piaget’s legacy. Psychological Science, 7(4):200–203, 1996.

[60] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[61] Mohamed M. Gaber and João Gama. State of the art in data streams mining.
Tutorial during the 8th European Conference on Machine Learning, 2007.

[62] João Gama. Knowledge Discovery from Data Streams. Chapman and Hall/CRC,
2010.

148 Bibliography

[63] João Gama and Mohamed M. Gaber. Learning from Data Streams: Processing
Techniques in Sensor Networks. New generation computing. Springer, 2007.

[64] João Gama and Pedro Medas. Learning decision trees from dynamic data streams.
J. UCS, 11(8):1353–1366, 2005.

[65] João Gama, Pedro Medas, Gladys Castillo, and Pedro P. Rodrigues. Learning with
drift detection. In Proceedings of the 17th Brazilian Symposium on Artificial Intelli-
gence, volume 3171 of Lecture Notes in Computer Science, page 286–295. Springer,
2004.

[66] João Gama, Pedro Medas, and Ricardo Rocha. Forest trees for on-line data. In
Proceedings of the 2004 ACM Symposium on Applied Computing, pages 632–636.
ACM, 2004.

[67] João Gama, Ricardo Rocha, and Pedro Medas. Accurate decision trees for mining
high-speed data streams. In Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 523–528. ACM, 2003.

[68] João Gama and Pedro P. Rodrigues. Stream-based electricity load forecast. In Pro-
ceedings of the 11th European Conference on Principles and Practice of Knowledge
Discovery in Databases, volume 4702 of Lecture Notes in Computer Science, pages
446–453. Springer, 2007.

[69] João Gama, Raquel Sebastião, and Pedro P. Rodrigues. On evaluating stream learn-
ing algorithms. Machine Learning, 90(3):317–346, 2013.

[70] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM Computing Surveys, 46(4),
2014.

[71] Jing Gao, Wei Fan, Jiawei Han, and Philip S. Yu. A general framework for mining
concept-drifting data streams with skewed distributions. In Proceedings of the 7th
SIAM International Conference on Data Mining, pages 3–14. SIAM, 2007.

[72] Valerio Grossi and Franco Turini. Stream mining: a novel architecture for ensemble-
based classification. Knowl. Inf. Syst., 30(2):247–281, 2012.

[73] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The WEKA data mining software: An update. SIGKDD Explor.
Newsl., 11(1):10–18, 2009.

[74] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005.

[75] Michael Harries. Splice-2 comparative evaluation: Electricity pricing. Technical
report, The University of South Wales, 1999.

149

[76] Haibo He and Yunqian Ma. Imbalanced Learning: Foundations, Algorithms, and
Applications. Wiley-IEEE Press, 1st edition, 2013.

[77] Constantinos S. Hilas. Designing an expert system for fraud detection in private
telecommunications networks. Expert Syst. Appl., 36(9):11559–11569, 2009.

[78] Thomas Ryan Hoens and Nitesh V. Chawla. Learning in non-stationary environ-
ments with class imbalance. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 168–176. ACM, 2012.

[79] Jin Huang and Charles X. Ling. Using AUC and accuracy in evaluating learning
algorithms. IEEE Trans. Knowl. Data Eng., 17(3):299–310, 2005.

[80] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data
streams. In Proceedings of the 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 97–106. ACM, 2001.

[81] Elena Ikonomovska, Suzana Loskovska, and Dejan Gjorgjevik. A survey of stream
data mining. In Proceedings of the 8th ETAI National Conference with International
Participation, 2007.

[82] Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms: A Classifi-
cation Perspective. Cambridge University Press, 2011.

[83] Ruoming Jin and Gagan Agrawal. Efficient decision tree construction on stream-
ing data. In Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 571–576. ACM, 2003.

[84] Matthew T. Karnick, Metin Ahiskali, Michael Muhlbaier, and Robi Polikar. Learn-
ing concept drift in nonstationary environments using an ensemble of classifiers
based approach. In Proceedings of the 2008 International Joint Conference on Neu-
ral Networks, pages 3455–3462. IEEE, 2008.

[85] Ioannis Katakis, Grigorios Tsoumakas, Evangelos Banos, Nick Bassiliades, and Ioan-
nis P. Vlahavas. An adaptive personalized news dissemination system. J. Intell. Inf.
Syst., 32(2):191–212, 2009.

[86] Mark G. Kelly, David J. Hand, and Niall M. Adams. The impact of changing
populations on classifier performance. In Proceedings of the 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 367–371.
ACM, 1999.

[87] Richard Kirkby. Improving Hoeffding Trees. PhD thesis, Department of Computer
Science, University of Waikato, 2007.

[88] Ralf Klinkenberg and Thorsten Joachims. Detecting concept drift with support
vector machines. In Proceedings of the 17th International Conference on Machine
Learning, pages 487–494. Morgan Kaufmann, 2000.

150 Bibliography

[89] Milosz Kmieciak and Jerzy Stefanowski. Handling sudden concept drift in Enron
message data streams. Control and Cybernetics, 40(3):667–695, 2011.

[90] Ron Kohavi and Clayton Kunz. Option decision trees with majority votes. In
Proceedings of the 14th International Conference on Machine Learning, pages 161–
169. Morgan Kaufmann, 1997.

[91] J. Zico Kolter and Marcus A. Maloof. Dynamic weighted majority: An ensemble
method for drifting concepts. J. Machine Learning Research, 8:2755–2790, Dec.
2007.

[92] Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 447–456. ACM, 2009.

[93] Yehuda Koren. Collaborative filtering with temporal dynamics. Commun. ACM,
53(4):89–97, 2010.

[94] Petr Kosina and João Gama. Handling time changing data with adaptive very fast
decision rules. In Proceedings of the 2012 European Conference on Machine Learning
and Knowledge Discovery in Databases, volume 7523 of Lecture Notes in Computer
Science, pages 827–842. Springer, 2012.

[95] Petr Kosina and João Gama. Very fast decision rules for multi-class problems. In
Proceedings of the 2012 ACM Symposium on Applied Computing, pages 795–800.
ACM, 2012.

[96] Petr Kosina and João Gama. Very fast decision rules for classification in data
streams. Data Min. Knowl. Discov., 29(1):168–202, 2015.

[97] Petr Kosina, João Gama, and Raquel Sebastião. Drift severity metric. In Proceedings
of the 19th European Conference on Artificial Intelligence, volume 215 of Frontiers
in Artificial Intelligence and Applications, pages 1119–1120. IOS Press, 2010.

[98] Georg Krempl, Indrė Žliobaitė, Dariusz Brzezinski, Eyke Hüllermeier, Mark Last,
Vincent Lemaire, Tino Noack, Ammar Shaker, Sonja Sievi, Myra Spiliopoulou, and
Jerzy Stefanowski. Open challenges for data stream mining research. SIGKDD
Explorations, 16(1):1–10, 2014.

[99] Ludmila I. Kuncheva. Classifier ensembles for changing environments. In Proceedings
of the 5th International Workshop on Multiple Classifier Systems, volume 3077 of
Lecture Notes in Computer Science, pages 1–15. Springer, 2004.

[100] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.
Wiley-Interscience, 2004.

[101] Ludmila I. Kuncheva. Classifier ensembles for detecting concept change in streaming
data: Overview and perspectives. In Proceedings of the 2nd SUEMA Workshop, pages
5–10, 2008.

151

[102] Terran Lane and Carla E. Brodley. Temporal sequence learning and data reduction
for anomaly detection. ACM Trans. Inf. Syst. Secur., 2(3):295–331, 1999.

[103] Mark Last. Online classification of nonstationary data streams. Intell. Data Anal.,
6(2):129–147, 2002.

[104] Andreas D. Lattner, Andrea Miene, Ubbo Visser, and Otthein Herzog. Sequential
pattern mining for situation and behavior prediction in simulated robotic soccer. In
Proceedings of RoboCup 2005: Robot Soccer World Cup IX, volume 4020 of Lecture
Notes in Computer Science, pages 118–129. Springer, 2005.

[105] Yan-Nei Law and Carlo Zaniolo. An adaptive nearest neighbor classification algo-
rithm for data streams. In Proceedings of the 9th European Conference on Principles
and Practice of Knowledge Discovery in Databases, volume 3721 of Lecture Notes in
Computer Science, pages 108–120. Springer, 2005.

[106] Mihai Lazarescu, Svetha Venkatesh, and Hung Hai Bui. Using multiple windows to
track concept drift. Intell. Data Anal., 8(1):29–59, 2004.

[107] Daniel Leite, Pyramo Costa Jr., and Fernando Gomide. Evolving granular neural
network for semi-supervised data stream classification. In Proceedings of the 2010
International Joint Conference on Neural Networks, pages 1–8. IEEE, 2010.

[108] Daniel Leite, Pyramo Costa Jr., and Fernando Gomide. Evolving granular neural
networks from fuzzy data streams. Neural Networks, 38:1–16, 2013.

[109] Pei-Pei Li, Xuegang Hu, and Xindong Wu. Mining concept-drifting data streams
with multiple semi-random decision trees. In Proceedings of the 4th International
Conference on Advanced Data Mining and Applications, volume 5139 of Lecture
Notes in Computer Science, pages 733–740. Springer, 2008.

[110] Ryan Lichtenwalter and Nitesh V. Chawla. Adaptive methods for classification in
arbitrarily imbalanced and drifting data streams. In Proceedings of the PAKDD
2009 International Workshops on New Frontiers in Applied Data Mining, volume
5669 of Lecture Notes in Computer Science, pages 53–75. Springer, 2009.

[111] Patrick Lindstrom, Sarah Jane Delany, and Brian Mac Namee. Handling concept
drift in a text data stream constrained by high labelling cost. In Proceedings of
the 23rd International Florida Artificial Intelligence Research Society Conference.
AAAI Press, 2010.

[112] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Inf.
Comput., 108(2):212–261, 1994.

[113] Konrad Lorincz, David J. Malan, Thaddeus R. F. Fulford Jones, Alan Nawoj, Antony
Clavel, Victor Shnayder, Geoffrey Mainland, Matt Welsh, and Steve Moulton. Sensor
networks for emergency response: Challenges and opportunities. IEEE Pervasive
Comput., 3(4):16–23, 2004.

152 Bibliography

[114] F. Lotte, M. Congedo, A. Laccuyer, F. Lamarche, and B. Arnaldi. A review of
classification algorithms for eeg-based brain-computer interfaces. J. Neural Eng.,
4(2):R1, 2007.

[115] Oded Maimon and Lior Rokach, editors. Data Mining and Knowledge Discovery
Handbook, 2nd ed. Springer, 2010.

[116] Markos Markou and Sameer Singh. Novelty detection: a review - part 1: statistical
approaches. Signal Process., 83(12):2481–2497, 2003.

[117] Frank J. Massey. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat.
Assoc., 46(253):68–78, 1951.

[118] Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal, Jing Gao,
Jiawei Han, Ashok N. Srivastava, and Nikunj C. Oza. Classification and adaptive
novel class detection of feature-evolving data streams. IEEE Trans. Knowl. Data
Eng., 25(7):1484–1497, 2013.

[119] Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal, Jing Gao, Ji-
awei Han, and Bhavani M. Thuraisingham. Addressing concept-evolution in concept-
drifting data streams. In Proceedings of the 10th IEEE International Conference on
Data Mining, pages 929–934. IEEE Computer Society, 2010.

[120] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani M. Thu-
raisingham. A practical approach to classify evolving data streams: Training with
limited amount of labeled data. In Proceedings of the 8th IEEE International Con-
ference on Data Mining, pages 929–934. IEEE Computer Society, 2008.

[121] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani M. Thu-
raisingham. A multi-partition multi-chunk ensemble technique to classify concept-
drifting data streams. In Proceedings of the 13th Pacific-Asia Conference on Ad-
vances in Knowledge Discovery and Data Mining, volume 5476 of Lecture Notes in
Computer Science, pages 363–375. Springer, 2009.

[122] Pawel Matuszyk, Georg Krempl, and Myra Spiliopoulou. Correcting the usage of
the hoeffding inequality in stream mining. In Proceedings of the 12th International
Symposium on Advances in Intelligent Data Analysis, volume 8207 of Lecture Notes
in Computer Science, pages 298–309. Springer, 2013.

[123] Oleksiy Mazhelis and Seppo Puuronen. Comparing classifier combining techniques
for mobile-masquerader detection. In Proceedings of the the 2nd International Con-
ference on Availability, Reliability and Security, pages 465–472. IEEE Computer
Society, 2007.

[124] João Mendes-Moreira, Carlos Soares, Alípio Mário Jorge, and Jorge Freire de Sousa.
The effect of varying parameters and focusing on bus travel time prediction. In Pro-
ceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery

153

and Data Mining, volume 5476 of Lecture Notes in Computer Science, pages 689–
696. Springer, 2009.

[125] Leandro L. Minku, Allan P. White, and Xin Yao. The impact of diversity on online
ensemble learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng.,
22(5):730–742, May 2010.

[126] Leandro L. Minku and Xin Yao. DDD: A new ensemble approach for dealing with
concept drift. IEEE Trans. Knowl. Data Eng., 24(4):619–633, Apr. 2012.

[127] Tom M. Mitchell. Machine learning. McGraw Hill series in computer science.
McGraw-Hill, 1997.

[128] Vahid Moosavi and Ludger Hovestadt. Modeling urban traffic dynamics in coexis-
tence with urban data streams. In Proceedings of the 2nd ACM SIGKDD Interna-
tional Workshop on Urban Computing. ACM, 2013.

[129] H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi. Test of page-hinkley, an approach
for fault detection in an agro-alimentary production system. In Proceedings of the
5th Asian Control Conference, volume 2, pages 815–818, 2004.

[130] Kyosuke Nishida, Koichiro Yamauchi, and Takashi Omori. ACE: Adaptive
classifiers-ensemble system for concept-drifting environments. In Proceedings of the
6th International Workshop on Multiple Classifier Systems, volume 3541 of Lecture
Notes in Computer Science, pages 176–185. Springer, 2005.

[131] Nikunj C. Oza. Online Ensemble Learning. PhD thesis, The University of California,
Berkeley, CA, Sep 2001.

[132] Nikunj C. Oza and Stuart J. Russell. Experimental comparisons of online and
batch versions of bagging and boosting. In Proceedings of the 7th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 359–364,
2001.

[133] E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

[134] PAKDD 2009 data mining competition. URL http://sede.neurotech.com.br:443/PA-
KDD2009/.

[135] Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer Networks, 51(12):3448–
3470, 2007.

[136] Mykola Pechenizkiy, Jorn Bakker, Indre Zliobaite, Andriy Ivannikov, and Tommi
Kärkkäinen. Online mass flow prediction in CFB boilers with explicit detection of
sudden concept drift. SIGKDD Explorations, 11(2):109–116, 2009.

[137] R. Pelossof, M. Jones, I. Vovsha, and C. Rudin. Online coordinate boosting. In
Proceedings of the 12th IEEE International Conference on Computer Vision, pages
1354–1361. IEEE Computer Society, 2009.

154 Bibliography

[138] Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby. New options for hoeffd-
ing trees. In Proceedings of the 20th Australian Joint Conference on Artificial Intel-
ligence, volume 4830 of Lecture Notes in Computer Science, pages 90–99. Springer,
2007.

[139] Michael J. Procopio, Jane Mulligan, and Gregory Z. Grudic. Learning terrain seg-
mentation with classifier ensembles for autonomous robot navigation in unstructured
environments. J. Field Robotics, 26(2):145–175, 2009.

[140] Foster J. Provost and Pedro Domingos. Tree induction for probability-based ranking.
Machine Learning, 52(3):199–215, 2003.

[141] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[142] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[143] S. W. Roberts. Control chart tests based on geometric moving averages. Techno-
metrics, 42(1):97–101, 1956.

[144] Gordon J. Ross, Niall M. Adams, Dimitris K. Tasoulis, and David J. Hand. Ex-
ponentially weighted moving average charts for detecting concept drift. Pattern
Recognit. Lett., 33(2):191–198, 2012.

[145] Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, and Piotr Duda. The CART
decision tree for mining data streams. Inf. Sci., 266:1–15, 2014.

[146] Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, and Piotr Duda. Decision
trees for mining data streams based on the gaussian approximation. IEEE Trans.
Knowl. Data Eng., 26(1):108–119, 2014.

[147] Leszek Rutkowski, Lena Pietruczuk, Piotr Duda, and Maciej Jaworski. Decision trees
for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data
Eng., 25(6):1272–1279, 2013.

[148] Marcos Salganicoff. Tolerating concept and sampling shift in lazy learning using
prediction error context switching. Artif. Intell. Rev., 11(1-5):133–155, 1997.

[149] Jeffrey C. Schlimmer and Richard H. Granger. Incremental learning from noisy
data. Machine Learning, 1(3):317–354, 1986.

[150] Ammar Shaker and Eyke Hüllermeier. Recovery analysis for adaptive learning from
non-stationary data streams. In Proceedings of the 8th International Conference on
Computer Recognition Systems, volume 226 of Advances in Intelligent Systems and
Computing, pages 289–298. Springer, 2013.

[151] Ammar Shaker and Eyke Hüllermeier. Recovery analysis for adaptive learning from
non-stationary data streams: Experimental design and case study. Neurocomputing,
150:250–264, 2015.

155

[152] Jasmina Smailovic, Miha Grcar, Nada Lavrac, and Martin Znidarsic. Stream-based
active learning for sentiment analysis in the financial domain. Inf. Sci., 285:181–203,
2014.

[153] Myra Spiliopoulou and Georg Krempl. Tutorial on mining multiple threads of
streaming data. In Proceedings of the Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, PAKDD, 2013.

[154] Frank-Florian Steege and Horst-Michael Groß. Comparison of long-term adaptivity
for neural networks. In Proceedings of the 22nd International Conference on Arti-
ficial Neural Networks, volume 7553 of Lecture Notes in Computer Science, pages
50–57. Springer, 2012.

[155] W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (SEA) for
large-scale classification. In Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 377–382, 2001.

[156] Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael Hamilton, Alan M. Main-
waring, and Deborah Estrin. Habitat monitoring with sensor networks. Commun.
ACM, 47(6):34–40, 2004.

[157] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining.
Addison Wesley, May 2005.

[158] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei
Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Kenny Lau, Celia
Oakley, Mark Palatucci, Vaughan Pratt, Pascal Stang, Sven Strohb, Cedric Dupont,
Lars erik Jendrossek, Christian Koelen, Charles Markey, Carlo Rummel, Joe Van
Niekerk, Eric Jensen, Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler,
Ara Nefian, and Pamela Mahoney. The robot that won the DARPA grand challenge.
J. Field Rob., 23:661–692, 2006.

[159] Alexey Tsymbal. The problem of concept drift: definitions and related works. Tech-
nical report, Dept. Comput. Sci., Trinity College Dublin, 2004.

[160] Alexey Tsymbal, Mykola Pechenizkiy, Padraig Cunningham, and Seppo Puuronen.
Dynamic integration of classifiers for handling concept drift. Information Fusion,
9(1):56–68, 2008.

[161] Ranga Raju Vatsavai, Olufemi A. Omitaomu, Joao Gama, Nitesh V. Chawla, Mo-
hamed Medhat Gaber, and Auroop R. Ganguly. Knowledge discovery from sensor
data (SensorKDD). SIGKDD Explorations, 10(2):68–73, 2008.

[162] Boyu Wang and Joelle Pineau. Online ensemble learning for imbalanced data
streams. CoRR, abs/1310.8004, 2013.

[163] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting
data streams using ensemble classifiers. In Proceedings of the 9th ACM SIGKDD

156 Bibliography

International Conference on Knowledge Discovery and Data Mining, pages 226–235.
ACM, 2003.

[164] Hua Wang, Feiping Nie, Heng Huang, Jingwen Yan, Sungeun Kim, Shannon L.
Risacher, Andrew J. Saykin, and Li Shen. High-order multi-task feature learning
to identify longitudinal phenotypic markers for alzheimer’s disease progression pre-
diction. In Proceedings of a meeting held at the 26th Annual Conference on Neural
Information Processing Systems, pages 1286–1294, 2012.

[165] Weka Machine Learning Project. URL http://www.cs.waikato.ac.nz/˜ml/weka.

[166] Gerhard Widmer and M. Kubat. Learning in the presence of concept drift and
hidden contexts. In Machine Learning, pages 69–101, 1996.

[167] Gerhard Widmer and Miroslav Kubat. Effective learning in dynamic environments
by explicit context tracking. In Proceedings of the 1993 European Conference on
Machine Learning, volume 667 of Lecture Notes in Computer Science, pages 227–
243. Springer, 1993.

[168] B. Widrow and M.A. Lehr. 30 years of adaptive neural networks: perceptron, mada-
line, and backpropagation. Proceedings of the IEEE, 78(9):1415–1442, 1990.

[169] Shaomin Wu, Peter A. Flach, and Cèsar Ferri Ramirez. An improved model selection
heuristic for AUC. In Proceedings of the 8th European Conference on Machine Learn-
ing, volume 4701 of Lecture Notes in Computer Science, pages 478–489. Springer,
2007.

[170] Yuang Yao, Lin Feng, and Feng Chen. Concept drift visualization. Journal of
Information and Computational Science, 10(10):3021–3029, 2013.

[171] Shin-ichi Yoshida, Kohei Hatano, Eiji Takimoto, and Masayuki Takeda. Adaptive
online prediction using weighted windows. IEICE Transactions, 94-D(10):1917–
1923, 2011.

[172] Indrė Žliobaitė. Combining time and space similarity for small size learning under
concept drift. In Proceedings of the 18th ISMIS International Symposium on Foun-
dations of Intelligent Systems, volume 5722 of Lecture Notes in Computer Science,
pages 412–421. Springer, 2009.

[173] Indrė Žliobaitė. Instance selection method (fish) for classifier training under concept
drift. Technical report, Vilnius University, Faculty of Mathematics and Informatic,
2009.

[174] Indrė Žliobaitė. Learning under concept drift: an overview. Technical report, Vilnius
University, Faculty of Mathematics and Informatic, 2009.

[175] Indrė Žliobaitė. Adaptive training set formation. PhD thesis, Vilnius University,
2010.

157

[176] Indrė Žliobaitė. Controlled permutations for testing adaptive learning models.
Knowl. Inf. Syst., pages 1–14, 2013.

[177] Indrė Žliobaitė, Albert Bifet, Bernhard Pfahringer, and Geoff Holmes. Active learn-
ing with evolving streaming data. In Proceedings of the 2011 European Conference
on Machine Learning and Knowledge Discovery in Databases, volume 6913 of Lecture
Notes in Computer Science, pages 597–612. Springer, 2011.

[178] Indrė Žliobaitė, Albert Bifet, Jesse Read, Bernhard Pfahringer, and Geoff Holmes.
Evaluation methods and decision theory for classification of streaming data with
temporal dependence. Machine Learning, 98:455–482, 2015.

[179] Indrė Žliobaitė, Marcin Budka, and Frederic Stahl. Towards cost-sensitive adapta-
tion: When is it worth updating your predictive model? Neurocomputing, 150:240–
249, 2015.

c© 2015 Dariusz Brzeziński

Poznan University of Technology
Faculty of Computing Science
Institute of Computing Science

Typeset using LATEX in Latin Modern.

BibTEX:

@PHDTHESIS{BrzezPhd2015,
author = {Dariusz Brzezinski},
title = {Block-based and Online Ensembles for Concept-drifting Data Streams},
school = {Poznan University of Technology},
address = {Poznan, Poland},
year = {2015}

}

	Notation
	Acronyms
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Main Contributions
	1.3 Thesis Structure

	2 Data Stream Classification
	2.1 Definitions and Terminology
	2.2 Concept Drift
	2.3 Classifiers for Concept-drifting Data Streams
	2.3.1 Single Classifiers
	2.3.2 Windowing Techniques
	2.3.3 Drift Detectors
	2.3.4 Ensemble Approaches

	3 The Accuracy Updated Ensemble
	3.1 Classification in Block-based Environments
	3.2 The Accuracy Updated Ensemble
	3.3 Experimental Evaluation
	3.3.1 Datasets
	3.3.2 Experimental Setup
	3.3.3 Component Analysis of the Proposed Algorithm
	3.3.4 Comparative Study of Classifiers
	3.3.5 Statistical Analysis of Results

	3.4 Conclusions

	4 Strategies for Transforming Block-based Ensembles into Online Learners
	4.1 Generalization of Block-based Ensembles
	4.2 Strategy I: Online Evaluation of Components
	4.3 Strategy II: Introducing an Additional Incremental Learner
	4.4 Strategy III: Using a Drift Detector
	4.5 Experimental Evaluation
	4.5.1 Experimental Setup
	4.5.2 Datasets
	4.5.3 Analysis of Ensemble Transformation Strategies

	4.6 Conclusions

	5 The Online Accuracy Updated Ensemble
	5.1 Block-based Weighting in Online Environments
	5.2 The Online Accuracy Updated Ensemble
	5.3 Experimental Evaluation
	5.3.1 Experimental Setup
	5.3.2 Analysis of OAUE Components
	5.3.3 Comparison of OAUE and Other Ensembles

	5.4 Conclusions

	6 Classifier Evaluation Methods for Imbalanced Streams with Class Distribution Changes
	6.1 Classifier Evaluation Methods in the Context of Concept Drift
	6.1.1 Evaluation Measures
	6.1.2 Error-estimation Procedures

	6.2 Prequential Area Under the ROC Curve
	6.3 Properties of Prequential AUC
	6.3.1 AUC Visualizations Over Time
	6.3.2 Prequential AUC Averaged Over Entire Streams

	6.4 Experimental Analysis
	6.4.1 Experimental Setup
	6.4.2 Datasets
	6.4.3 Prequential AUC Evaluation Time
	6.4.4 Drift Detection Using Prequential AUC
	6.4.5 Classifier Comparison

	6.5 Conclusions

	7 Conclusions and Future Work
	A Experiment scripts
	A.1 Accuracy Updated Ensemble
	A.2 Transformation strategies
	A.3 Online Accuracy Updated Ensemble
	A.4 Prequential AUC

	B List of publications
	Bibliography

