Oracle Designer Generowanie bazy danych

Dane wejściowe

Diagramy związków encji, a w szczególności:

- definicje encji wraz z atrybutami
- definicje związków między encjami
- definicje dziedzin atrybutów encji

Wynik

Baza danych projektowanego systemu

(C) Instytut Informatyki, Politechnika Poznańska

Przebieg procesu

- krok 1. Transformowanie diagramów związków encji do schematu logicznego bazy danych
- krok 2. Generowanie schematu fizycznego bazy danych

Generowanie bazy danych krok 1. Transformowanie diagramów związków encji do schematu logicznego bazy

danych

Reguły transformacji

Jak przetransformować:

- encję?
- hierarchię encji?
- związek?

(C) Instytut Informatyki, Politechnika Poznańska

Transformacja hierarchii encji

Sposoby:

- transformacja do pojedynczej relacji
- transformacja do oddzielnych relacji
- transformacja do oddzielnych relacji połączonych ograniczeniami referencyjnymi w łuku

5

Transformacja encji

- Encja ⇒ relacja
- Atrybut encji ⇒ kolumna relacji
- Typ atrybutu ⇒ typ kolumny
- Dziedzina atrybutu ⇒ ograniczenie *check*

INSTYTUT # ID

* NA7WA

 Unikalny identyfikator encji ⇒ klucz podstawowy relacji

	o ADRES	
	L	
Politechnika Poznańska		

(C) Instytut Informatyki, Politechnika Poznańska

Transformacja hierarchii

Sposób pierwszy

Zasady:

- jedna relacja
- schemat relacji: atrybuty wszystkich encji z hierarchii + dodatkowa kolumna, określająca typ specjalizacji

Kiedy stosować:

- większość atrybutów w nadtypie
- większość związków do nadtypu

Zalety:

- uproszczenie schematu bazy danych

Wady:

 atrybuty obowiązkowe podtypu stają się kolumnami opcjonalnymi

MINSTYTUTY

789¹23 IN ID

А

Α

IN NAZWA

IN_ADRES

Transformacia hierarchii

Sposób drugi

Zasady:

- jedna relacja dla każdego podtypu
- schemat relacii: atrybuty nadtypu + atrybuty podtypu

Kiedy stosować:

- wiekszość atrybutów w podtypach
- większość związków do podtypów

Zalety:

 zachowanie obowiązkowości atrybutów w podtypach

Wady:

- komplikacja schematu
- konieczność powielenia kluczy obcych implementujących zwiazki przyłaczone do nadtypu

(C) Instytut Informatyki, Politechnika Poznańska

Transformacja związków

- Implementacja związku za pomoca ograniczeń referencyjnych (kluczy obcych)
- Sposób transformacji zależy od parametrów zwiazku:
 - krotności (1:1, 1:N, M:N)
 - obowiazkowości/opcjonalności

9

Sposób trzeci

Zasady:

 jedna relacja z atrybutami wspólnymi, dla każdego podtypu osobna relacja z jego atrybutami specyficznymi

* * ⁷⁸⁹ * A

0 20 0 7%

A

- relacje połączone kluczami obcymi w łuku

Kiedy stosować:

 związki przywiązane zarówno do nadtypu jak i podtypów

Zalety:

- zachowanie obowiazkowości atrybutów w podtypach
- łatwy dostęp do informacji z nadtypu

Wady:

komplikacja schematu

PRACOWNIK

* IMIĘ o DATA ZATRUDNIENIA

PRACOWNIK ADMINISTRACYJNY * DODATEK FUNKCYJN

F ID NAZWISKO

(C) Instytut Informatyki, Politechnika Poznańska

połaczeń (SOL)

Transformacja związków

Związek 1:1 jednostronnie obowiązkowy

Zasady:

- do relacji impl. encje wiazana obowiązkowo zostaje dodany klucz obcy, wskazujący na klucz podstawowy relacji impl. encję wiązaną opcjonalnie (z drugiej strony zwiazku)
- na kolumny klucza obcego zostaje nałożone ograniczenie not null

ADLICA	_A (
ID_A	PRIMARY KEY,
ATR_1	NULL)
ABLICA	B (

ID A

NOT NULL REFERENCES TABLICA A(ID A))

11

(C) Instytut Informatyki, Politechnika Poznańska

Transformacja związków

Związek 1:1 obustronnie opcjonalny

Zasady:

- do relacji impl. ta encję ze związku, dla której określono większy średni przyrost wystapień, zostaje dodany klucz obcy, wskazujący na klucz podstawowy z relacji impl. drugą encję w związku
- na kolumny klucza obcego nałożone zostaje ograniczenie null

(C) Instytut Informatyki, Politechnika Poznańska

13

15

Transformacja związków

Zasady:

relacja

Transformacia zwiazków

Związek 1:N

Zasady:

- do relacji impl. encje po stronie "N" związku zostaje dodany klucz obcy, wskazujący na klucz podstawowy relacji impl. encję po stronie "1" związku
- obowiązkowość związku po stronie "N" - ograniczenie not null na kolumny w kluczu obcym
- opcjonalność związku po stronie "N" - ograniczenie *null* na kolumny w kluczu obcym
- obowiazkowość/opcjonalność związku po stronie "1" nie ma wpływu na transformacje

14

(C) Instytut Informatyki, Politechnika Poznańska

Proces transformacji

(C) Instytut Informatyki, Politechnika Poznańska

relacji

zwiazku

Proces transformacji

Krok 1.

17

Databasy

Design

ransform

Uruchomić narzędzie *Database Design Transformer* z grupy *Transform Preliminary Designs*

(C) Instytut Informatyki, Politechnika Poznańska

Proces transformacji

Dostępne ustawienia

- wybór encji do transformacji domyślnie wszystkie
- sposób transformacja hierarchii domyślnie do jednej relacji
- wybór typów tworzonych elementów (relacje, kolumny, klucze, indeksy) domyślnie wszystkie
- wybór typów modyfikowanych elementów (istniejących już w repozytorium relacji, kolumn, kluczy, indeksów) - domyślnie żadne

Proces transformacji

Krok 2 - opcje transformacji

18

- transformacja wg ustawień domyślnych
- transformacja wg ustawień użytkownika

(C) Instytut Informatyki, Politechnika Poznańska

Proces transformacji

Dostępne ustawienia (2)

- opcje ograniczeń referencyjnych:
 - usuwanie kaskadowe domyślnie zabronione
 - modyfikowanie kaskadowe domyślnie zabronione
- tworzenie sztucznych kluczy podstawowych relacji (w postaci dodatkowej kolumny numerycznej) - domyślnie tylko dla encji bez unikalnych identyfikatorów
- przedrostek nazw relacji domyślnie brak
- przedrostki nazw kolumn (na podstawie krótkich nazw encji) - domyślnie brak

(C) Instytut Informatyki, Politechnika Poznańska

19

Krok 3 - uruchomienie procesu Databas Design Fransforme

Proces transformacii

Wynik

22

Umieszczone repozytorium systemu definicje:

Design Editor

transformacji schematu logicznego bazy danych

- utworzenie diagramu schematu modelu relacyjnego pokazuje połączenia między relacjami (ograniczenia

- przeglądanie i ręczną modyfikację powstałego w wyniku

- definiowanie dodatkowych obiektów schematu logicznego:

- relacji
- kolumn
- ograniczeń integralnościowych
- indeksów
- liczników dla sztucznych kluczy podstawowych

(C) Instytut Informatyki, Politechnika Poznańska

Umożliwia:

Proces transformacji

Wynik (2)

Podgląd definicji w repozytorium - narzędzie Design Editor z grupy Design and Generate

⇒ <u>101 100 1</u>				
Model System Requ	Dataflow Dataflow Diagrammer Brithy Relationship Diagrammer	Transform Prefiminary Des Database Design Transformer	Appleation Design Transformer	ssign and Generate
Repository Tools	Matrix Diagrammer	Repository Administration Utility	Repository Object Navigator	Repository Reports

 liczników perspektyw • kodu PL/SQL

referencyjne)

Design Editor

Przeglądanie i modyfikacja schematu logicznego

Design Editor

Zakładka Server Model, gałęzie:

- *Relational Table Definitions* - relacje, kolumny, ograniczenia itegralnościowe, inne
- Relational View
 Definition perspektywy
- Sequence Definitions liczniki
- PL/SQL Definitions kod składowany

(C) Instytut Informatyki, Politechnika Poznańska

Design Editor

Tworzenie diagramu schematu logicznego

- Zaznaczyć obiekty (relacje lub perspektywy), które mają być uwidocznione na diagramie
- Z menu kontekstowego wybrać *Show on New Diagram*

(C) Instytut Informatyki, Politechnika Poznańska

Jak to zrobić?

Jak przetransformować hierarchię encji w sposób inny niż domyślny?

PRACOWNIK # ID * NAZWISKO * IMIĘ 0 DATA_ZATRUDNIENIA
PRACOWNIK ADMINISTRACYJNY * DODATEK_FUNKCYJNY
PRACOWNIK NAUKOWY * TYTUŁ_NAUKOWY

(C) Instytut Informatyki, Politechnika Poznańska

Transformacja do oddzielnych relacji

krok 1. Uruchomić *Database Design Transformer* krok 2. Zaznaczyć opcję *Customize the Database Transformer* i wybrać zakładkę *Table Mappings*

Jak to zrobić - hierarchia encji

Transformacja do oddzielnych relacji

krok 4. Przystąpić do transformacji

Jak to zrobić - hierarchia encji

Transformacja do oddzielnych relacji

krok 3. Zmienić zbiór encji do transformacji wyłączyć ze zbioru encję-nadtyp, dodać encjepodtypy

Included

No Mapping No Mapping

o Mapping

No Mapping

--PRACOWNIK NAUKOWY

INSTYTUT

PRACOWNIK

-PRACOWNIK ADMINISTRATION ded

-PRACOWNIK NAUKOWY Included -PRACOWNIK ADMINISTRATIncluded

	INSTYTUT	No Mapping	
	ZESPÓŁ	No Mapping	

(C) Instytut Informatyki, Politechnika Poznańska

Jak to zrobić - hierarchia encji

Transformacja do relacji w łuku

krok 1. Uruchomić *Database Design Transformer* krok 2. Zaznaczyć opcję *Customize the Database Transformer* i wybrać zakładkę *Table Mappings*

Database Design Transformer PLOUG1 (PLOUG1)	×		Database De	sign Transformer PLOUG1	(PLOUG1)			×
Mode Table Mappings Other Mappings Ryn Options			Mode Ist	le Mappings Other Mappings	Bun Options			
			In Set	Entity	Map Type	Arc	Table	
C Run the Transformer in Default Mode			×	PROJEKT	No Mapping			
Running the Transformer in detault mode creates database design elements based on:	CH21-		V	PRACOWNIK	No Mapping			
C Calculation				-PRACOWNIK NAUKOWY	Included		_	
C Description		N	무무	-PRACOWNIK ADMINISTR	RAIncluded		<u> </u>	
C Al entites		$ - \rangle$		INSTYTUT	No Mapping			
			<u> </u>	LESPUE .	No Mapping		<u> </u>	
 Customize the Database Design Transformer 								
Customizing the Transformer enables you to select	Summers of up and							
elements, specify how they are transformed, and define settings to meet include a requirements	Julinay or for set							
	Entities 4							
Show this tab at starture	Tables (Mapped) 0							
	· · · · · · · ·							
·			-					-
Bun Dammit Show Run Set Setting	23 Cancel Pomoc		Bun	Donnit Sh	ow Run Set Settin	(C):	Gancel Pomoc	1

(C) Instytut Informatyki, Politechnika Poznańska

30

Transformacja do relacji w łuku

krok 3. Zmienić zbiór encji do transformacji - włączyć do zbioru encję-nadtyp wraz z encjami-podtypami

In Set	Entity	Мар Туре	Arc	Table
	PROJEKT	No Mapping		
7	PRACOWNIK	No Mapping		
	PRACOWNIK NAUKOWY	Included		[
	-PRACOWNIK ADMINISTRA	Included		
	INSTYTUT	No Mapping		
	ZESPÓŁ	No Mapping		

In Set	Entity	Мар Туре	Arc	Table
	PROJEKT	No Mapping		
7	PRACOWNIK.	No Mapping		
< <	PRACOWNIK NAUKOWY	Included		
7	PRACOWNIK ADMINISTRA	Included		-
	INSTYTUT	No Mapping		
	ZESPÓŁ	No Mapping		

(C) Instytut Informatyki, Politechnika Poznańska

Jak to zrobić - hierarchia encji

Transformacja do relacji w łuku

krok 6. Przy encjach-podtypach zaznaczyć opcję Arc

In Set	Entity	Мар Туре	Arc	Table
	PROJEKT	No Mapping		
~	PRACOWNIK	Mapped		PRACOWNICY
~	PRACOWNIK NAUKOWY	Arc		PRACOWNICY_NAU
~	-PRACOWNIK ADMINISTRA	Arc	V	PRACOWNICY_ADM
	INSTYTUT	No Mapping		
	ZESPÓŁ	No Mapping		•

krok 7. Zmienić typ elementów do transformacji zakładka *Run Options* - wszystkie elementy

Mode Table Mappings Other Mappings	Run Options		
Types of elements that you want to create	•		
Tables	Columns	V Keys	I Indexes

Jak to zrobić - hierarchia encji

Transformacja do relacji w łuku

krok 4. Zmienić typ elementów do transformacji zakładka *Run Options* - tylko definicje relacji (bez kolumn i ograniczeń integralnościowych)

Types of elements that you want to create	

krok 5. Uruchomić transformację. Wygenerowane zostaną jedynie definicje relacji. Pozostać w narzędziu

(C) Instytut Informatyki, Politechnika Poznańska

34

Jak to zrobić - hierarchia encji

Transformacja do relacji w łuku

krok 8. Przystąpić do transformacji

Wynik:

33

Generacia bazy danych

Przebieg procesu

krok 1. Uruchomić narzedzie Design Editor. Przejść na zakładke Server Model, rozwinać gałaź

systemu aplikacji

krok 2. Wybrać pozycję Generate Database from Server Model z menu Generate

ilities	<u>G</u> enerate	$\underline{I}ools$	<u>Options</u>	<u>B</u> un	<u>W</u> indow	Help	
	<u>G</u> ener Gener	ate Mod ate Mod	ule ule <u>A</u> s			ļ	4 S
	Gener	ate Data	base from	Serve	Model	erti	es
ا منط	Genera	ate <u>D</u> ata	abase Adm	iinistrati	on Objects		PL
1015	Gener	ate Tabl	e API				IN
	Gener	ate <u>M</u> od	ule Compo	onent A	PI		NA
e De	Gener	ate <u>R</u> efe	erence Coo	de Tabl	es		
	Captur	e Desig	n of			•	2
s		e Applic					Ye
VATA				Dom	ain		
ES			<u>à</u>	Def1	emplate/	Library Ob)je
/Key				l sc	alar		

(C) Instytut Informatyki, Politechnika Poznańska

Generacja bazy danych

Przebieg procesu

krok 4. Wybrać obiekty do generacji - zakładka Objects:

• Typ obiektu:

- relacie
- liczniki
- perspektywy i inne
- Konkretny obiekt

(C) Instytut Informatyki, Politechnika Poznańska

Generowanie bazy danych krok 2. Generowanie schematu fizycznego bazy danych

(C) Instytut Informatyki, Politechnika Poznańska

Generacja bazy danych

Przebieg procesu

krok 3. Ustalić parametry generacji - zakładka Target:

• Cel generacji:

- skrypty DDL (różne formaty)
- wskazany użytkownik bazy danych Oracle
- baza danych *ODBC*
- Lokalizacja skryptów

rate Server Model Definitions (no user). (PL

rget Objects

37

Design Edito

Generacja bazy danych

Przebieg procesu

Design Editor

41

krok 5. Uruchomić proces - przycisk Start

Wynik - w zależności od parametrów generacji:

- skrypty DDL we wskazanym katalogu
- obiekty w schemacie wskazanego użytkownika
- obiekty w bazie danych przyłączonej za pomocą *ODBC*

(C) Instytut Informatyki, Politechnika Poznańska