Ćwiczenie 2. Symulacja przebiegu procesu

W ćwiczeniu spróbujemy zasymulować działanie zbudowanego w ćwiczeniu 1. procesu rozpatrywania wniosku kredytowego. W tym celu wykonamy kopię procesu (proces oryginalny będziemy dalej rozwijać), przygotujemy symulację, przeprowadzimy ją i dokonamy analizy jej wyników.

Cześć 1. Wykonanie kopii procesu.

- 1. W oknie *Project Explorer* zaznacz gałąź *PakietProcesow.xpdl* i z menu kontekstowego wybierz opcję *Copy*.
- 2. Z tego samego menu wybierz opcję *Paste*.
- 3. W oknie informującym o konflikcie nazw podaj nazwę dla nowego pakietu: *PakietProcesowSymulacja.xpdl*.

Mame Conflict	
Enter a new name for 'PakietProcesow.xpdl':	
Copy of PakietProcesow.xpdl	
	OK Cancel

4. Skopiowany proces powiela nazwy i identyfikatory obiektów z procesu źródłowego. Informują o tym komunikaty o błędach, dostępne w oknie *Problems*.

- 5. Kliknij na jeden z problemów i z menu kontekstowego wybierz pozycję Quick Fix.
- 6. Wyświetlone zostanie okno podpowiadające rozwiązanie problemu, w tym przypadku ponowne wygenerowanie identyfikatorów obiektów.

🄊 Quick Fix				X
Quick Fix Select the fix for "XPDL 2.0 : The following /PierwszyProjekt/Procesy/PakietProcesow	i files have v.xpdl (Proc	duplicate process IDs: esy/PakietProcesowSymulacja2.:	xpdl)''.	9
Select a fix:				
Recreate Objects IDs Problems:				
PakietProcesowSymulacja2.xpdl	Unkno			Select <u>All</u> <u>D</u> eselect All Find Similar Problems
0		[OK	Cancel

- 7. Upewnij się, że pole przy nazwie Twojego pakietu zostało zaznaczone i kliknij przycisk *Ok*.
- 8. Sprawdź, czy lista błędów w oknie *Problems* jest obecnie pusta.

Część 2. Przygotowanie symulacji

1. Wyświetl ekran własności procesu *Rozpatrzenie wniosku kredytowego* 1. (oczywiście wchodzącego w skład pakietu *PakietProcesowSymulacja.xpd*). Przejdź do zakładki *Destination* i zaznacz opcję *Simulation*.

Problems Diagram	Fragments 💷 Properties 🗙		
General	°& Process		
Destinations	Destination Environments:		
Description	iProcess Engine 10.x		
Extended	iProcess Modeler	10.×	
Advanced	Simulation	1.2	

- Silnik symulacji w obecnej wersji nie wspiera symulacji zadań typu zadanie wysłania. Dlatego musimy zmienić typy zadań Wysłanie odmowy wnioskodawcy i Wysłanie potwierdzenia przyznania kredytu wnioskodawcy na zadania użytkownika (wybieramy z menu kontekstowego zadania Activity Type -> User Task).
- 3. W kolejnym kroku zdefiniujemy uczestników procesu (ang. participants) osoby lub urządzenia, które będą realizowały czynności w ramach procesu. W tym celu zaznaczamy gałąź Participants w poddrzewie procesu Rozpatrzenie wniosku kredytowego 1 i z menu kontekstowego wybieramy New -> Participant. W polu Name wpisujemy nazwę uczestnika "Urzędnik", pozostawiamy zaznaczony typ (Type: Role).

4. Proces powtarzamy dwukrotnie, definiując kolejnych uczestników procesu: "Administratora" i "Nadzorcę".

Uwaga! Nazwa uczestnika procesu <u>nie musi</u> być taka sama jak nazwa toru.

5. W kolejnym kroku dla każdego uczestnika definiujemy parametry potrzebne do symulacji. W gałęzi *Participants* zaznaczamy uczestnika o nazwie *Administrator*, wyświetlamy jego paletę własności i przechodzimy do zakładki *Simulation*.

Problems Diagram	m Fragments 🔲 Properties 🔉	< ▽□□
General	8 Participant	
Simulation	Number Of People/Machines:	1
Description	Cost Dev Lisity	
Extended	Cost Per Unit:	50
Advanced	Unit:	HOUR
	Minimum Utilisation SLA (%)	
	Maximum Utilisation SLA (%)	

Znaczenie poszczególnych własności:

- Number Of People/Machines liczba "jednostek" uczestnika (np. liczba pracowników w danej roli, liczba serwerów, itd.),
- Cost Per Unit jednostkowy koszt pracy uczestnika (np. w przypadku pracownika może to być wysokość stawki godzinowej),
- *Unit* jednostka, w której koszt został określony (np. w przypadku stawki godzinowej jednostką będzie godzina).

Dla uczestnika o nazwie Administrator określamy następujące wartości własności:

Własność	Wartość
Number Of People/Machine	1
Cost Per Unit	50
Unit	HOUR

6. Określ parametry potrzebne do symulacji dla dwóch pozostałych uczestników:

Własność	Urzędnik	Nadzorca
Number Of People/Machine	1	1
Cost Per Unit	25	40
Unit	HOUR	HOUR

- 7. W kolejnym kroku musimy przypisać uczestników do realizowanych przez nich zadań. Przypisanie uczestnika do zadania realizuje się w palecie własności zadania, na zakładce General, ustawiając własność Participants lub wybierając uczestnika z menu kontekstowego zadania. Dla zadań: Wprowadzanie danych wniosku kredytowego, Wysłanie odmowy wnioskodawcy i Wysłanie potwierdzenia przyznania kredytu wnioskodawcy jako uczestnika wybierz Urzędnika. Zadania Sprawdzenie historii kredytowej wnioskodawcy, Sprawdzenie dochodów wnioskodawcy i Uaktualnienie danych systemu bankowego wykonuje Administrator. Zadanie Dodatkowa kontrola wniosku jest realizowane przez Nadzorcę.
- 8. Przejdź do własności zadania *Wprowadzenie danych wniosku kredytowego*. i otwórz zakładkę *Simulation*. W polu *Duration Distribution* wybierz wartość *Constant*, w polu *Time Unit* wartość *Minute*, w polu *Value* wpisz wartość 5.

Properties ×			
General	🗖 Task		
Parameters	Duration Distribution:	CONSTANT	~
Scripts	Time unit:	MINUTE	~
Simulation	Mariana Dalar Clar		
Appearance	Maximum Delay SLA:		
Description	Value: 5		
Extended			

Znaczenie poszczególnych własności jest następujące:

- Duration Distribution jaki rozkład określa ew. rozrzut wartości czasu realizacji zadania. Możliwe wartości to:
 - Constant zadanie trwa zawsze dokładnie tyle co określony we własności Value okres czasu.
 - Uniform zadanie może trwać okres czasu określony przedziałem Value Min i Value Max.
 - Normal czas realizacji zadania jest określony przez rozkład normalny ze średnią wartością w polu *Mean* i odchyleniem standardowym w polu *Standard Deviation*.
 - Exponential 50% przypadków czasu realizacji zadania przypada poniżej wartości średniej (pole *Mean*), pozostałe 50% przypada powyżej wartości średniej.
- Time Unit jednostka, w jakiej wyrażony jest czas trwania zadania.
- Value czas trwania zadania dla rozkładu Constant.

- Value Min, Value Max przedział czasu trwania zadania dla rozkładu Uniform.
- *Mean, Standard Deviation* średnia i odchylenie standardowe dla rozkładów *Normal* i *Exponential*.
- 9. Określ czasy realizacji pozostałych zadań:

Zadanie		Rozkład czasu	Jednostka	Pozostałe parametry
		trwania		
Sprawdzenie	historii	Constant	minuta	wartość: 5
kredytowej wn	ioskodawcy			
Sprawdzenie	dochodów	Normal	minuta	średnia: 5,
wnioskodawcy				odchylenie standardowe: 2
Uaktualnienie danych		Constant	minuta	wartość: 5
systemu bankowego				
Dodatkowa kor	ntrola wniosku	Constant	minuta	wartość: 10
Wysłanie odmowy		Normal	minuta	średnia: 2,
wnioskodawcy				odchylenie standardowe: 0,5
Wysłanie	potwierdzenia	Normal	minuta	średnia: 2,
przyznania kredytu				odchylenie standardowe: 0,5
wnioskodawcy				

10. Przejdź do zakładki *Simulation* we własności zdarzenia początkowego *Wpłynięcie wniosku kredytowego*.

🔲 Properties 🗙	
General	🔾 Start Event
Input To Process	Number of Cases: 100
Simulation	
Appearance	Distribution: EXPONENTIAL
Description	
Extended	
	Mean: 10

Określ liczbę zdarzeń rozpoczęcia procesu na 100 (*Number of Cases*), z czasem odstępu pomiędzy zdarzeniami określonym rozkładem wykładniczym (*Distribution: Exponential*) i średnią wartością czasu równa 10 minut. Oznacza to, że w czasie symulacji pojawi się 100 wniosków kredytowych, w 50% przypadków czas odstępu pomiędzy zgłoszeniem kolejnych wniosków będzie krótszy niż 10 minut, w pozostałych przypadkach czas ten przekroczy 10 minut.

11. W kolejnym kroku musimy ustalić zasady symulacji rozgałęzień procesu. W tym celu konieczne jest utworzenie zbioru parametrów. Zaznacz gałąź *Parameters* w poddrzewie procesu *Rozpatrzenie wniosku kredytowego* i z menu kontekstowego wybierz pozycję *New ->*

Parameter. Nazwa nowego parametru to "WnioskowanaKwota", tryb parametru: *In/Out*, typ: liczba (*Decimal Number*) o długości 12 i liczbie miejsc ułamkowych równej 2.

🤊 New Pa	rameter 🛛 🔀					
Parameter Details Enter name and select type of Parameter						
Name: Mode:	WnioskowanaKwota					
Туре:	Basic Type Declared Type External Reference Length: 12 Decimal Places: 2					
?	<back next=""> Finish Cancel</back>					

- 12. W ten sam sposób zdefiniuj drugi parametr o następujących właściwościach: nazwa "CzyHistoriaKredytowaOK", tryb: *In/Out*, typ: ciąg znaków, długość: 10.
- 13. Wyświetl własności bramki Czy historia kredytowa w porządku? i przejdź na zakładkę Rule Parameter. Wartość własności Parameter ustaw na CzyHistoriaKredytowaOK. Następnie, w celu dodania dwóch wartości dla parametru CzyHistoriaKredytowaOK, dwukrotnie kliknij przycisk Add Value. Wartości staną się widoczne, gdy klikniesz + przy nazwie parametru w oknie Flow (From/To). Zmień wartości parametru na takie jak na poniższym rysunku.

	🔷 Gateway				
D	ependent on parameter:	V			
Ρ	arameter Name:	CzyHistoriaKredytowaOK			
	Flow (From/To)	Weighting	. Percentage Tra	ansitions	Add Value
	🖃 CzyHistoriaKredytow	aOK			
	nie	25.0	25 %		Remove
	tak	75.0	75 %		

Waga określa stosunek wystąpień poszczególnych wartości parametru. Te wartości będą służyły do wyboru przepływu wychodzącego z bramki.

- Wykonaj analogiczne operacje dla bramki *Czy kwota pożyczki przekracza 150 000 zł?*. Użyj parametru *WnioskowanaKwota*, dodaj dwie wartości: ">150000" i "<150000", obie z wagami 10.
- 15. Następnie z menu kontekstowego procesu wybierz pozycję PrepareSimulation.
- 16. Przejdź ponownie do własności bramki *Czy kwota pożyczki przekracza 150000 zł?* i zakładki *Rule Parameter*. Pojawiła się tam kolejna wartość ("0:tak") parametru *WnioskowanaKwota*, inna niż te, które wcześniej zdefiniowałeś. Usuń ją przyciskiem *Remove*.

	🔶 Gateway						
D	Dependent on parameter: 🔽						
Pa	arameter Name:	WnioskowanaKwot	ta				
[Flow (From/To)	W	eighting	Percentage	Transitions	Add Value	
	😑 WnioskowanaKwota						
	>150000	10.	.0	33,3 %		Remove	
	<150000	10.	.0	33,3 %			
	0 : tak	10.	.0	33,3 %	tak		

17. Wyświetl własności przepływu warunkowego (ang. *conditional*) z etykietą *tak*, wychodzącego z bramki *Czy kwota pożyczki przekracza 150000 zł?* i przejdź na zakładkę *Rule*. Wskaż wartość ">150000" dla parametru *WnioskowanaKwota*. Oznacza to, że ten przepływ zostanie uruchomiony z bramki *Czy kwota pożyczki przekracza 150000 zł?* jeśli parametr *WnioskowanaKwota* przyjmie wartość ">150000" (czyli stanie się tak w ok. 50% przypadków symulacji).

	→ Sequence Flow			
1	Process will follow this transition when:	WnioskowanaKwota =	>150000	
	Flow (From/To)	Weighting Percentage Transitions		Add Value
	🖅 WnioskowanaKwota			Remove

18. Wyświetl ponownie własności bramki *Czy kwota pożyczki przekracza 150000 zł?* i przejdź na zakładkę *Rule Parameter*. Zwróć uwagę, że przy wartości ">150000" parametru w kolumnie *Transitions* pojawiła się etykieta przepływu, który zostanie uruchomiony.

	🛇 Gateway								
D	Dependent on parameter: 🗹								
Parameter Name:		Wnioskowanak	(wota						
	Flow (From/To)		Weighting	Percentage	Transitions				
	🖃 WnioskowanaKwota								
	>150000		10.0	50 %	tak				
	<150000		10.0	50 %					

19. Wykonaj analogiczne operacje dla drugiej bramki *Czy historia kredytowa w porządku?* i jej przepływu warunkowego zaetykietowanego "nie".

→ Sequence Fl	ow	
Process will follow this	transition when: CzyHistoriaKredytowaOK = ine .	
Flow (From/To) CzyHistoriaKred	Weighting Percentage Transitions Add Value ytowaOK Remove	
Gateway Dependent on parameter	n 🗸	
Parameter Name:	CzyHistoriaKredytowaOK]
Flow (From/To) CzyHistoriaKredyto nie tak	Weighting Percentage Transitions Add Val pwaOK 25.0 25 % nie 75.0 75 %	ue e

- 20. W naszym procesie mamy jedną pętlę: Uaktualnienie danych systemu bankowego -> Czy kwota pożyczki przekracza 150 000 zł? -> Dodatkowa kontrola wniosku. Przed uruchomieniem symulacji należy wskazać strategię, jaka zostanie wybrana do zakończenia takiej pętli (ma to znaczenie w przypadku nieskończonych pętli nie ma żadnego zdarzenia, które by zasygnalizowało zakończenie pętli). Wyświetl własności aktywności Uaktualnienie danych systemu bankowego (aktywność rozpoczynająca pętlę) i przejdź do zakładki Simulation Control. Kliknij w link Simulation Control i wskaż strategię zakończenia pętli. Dostępne strategie to:
 - Max Loop Count pętla zostanie zakończona po wykonaniu wskazanej liczby przejść,
 - Max Elapse Time pętla zostanie zakończona po upływie zadanego czasu symulacji,
 - *Normal Distribution* pętla zostanie zakończona po upływie czasu symulacji, którego parametry określa rozkład normalny.
- 21. Wybieramy strategię *Max Loop Count*. W polu *Max Loop Count* wpisujemy 2 (pętla zostanie zakończona po dwóch przejściach). Decyzję o zakończeniu pętli podejmie aktywność wskazana w polu *Decision Activity* (*Czy kwota pożyczki przekracza 150 000 zł?*). Aktywność, która zostanie uruchomiona po zakończeniu pętli, wskazujemy we własności *To Activity* (*Wysłanie potwierdzenia przyznania kredytu wnioskodawcy*).
- 22. Jeśli symulacja została przygotowana poprawnie, nie powinno być żadnych informacji o błędach w oknie *Problems*. Ewentualne ostrzeżenia należy przejrzeć i zignorować.

Część 3. Przeprowadzenie symulacji procesu

 Zaznacz proces, którego symulację chcesz uruchomić. Z menu kontekstowego wybierz pozycję Run As -> Run Simulation. Narzędzie proponuje przejście do perspektywy Simulation i uruchamia symulację. Zatrzymanie, ponowne uruchomienie i zmianę prędkości przebiegu symulacji można wykonać w oknie Simulation Control.

😚 si 🗙	0u 🗖 🗖			
Q	🗖 🕕 🕩 🎽			
I Rozpatrzenie wniosk				
Simulation speed:				
[slower] [faster]				
·				
Simulation progress:				
)			

2. W czasie symulacji przy każdej aktywności wyświetlany jest wykres, pokazujący wartości parametrów charakteryzujących przebieg danej aktywności.

Pierwszy słupek (*Observed Cases*) pokazuje liczbę przypadków przez aktywność już przetworzonych i aktualnie przetwarzanych. Drugi słupek (*Current Queue Size*) pokazuje liczbę przypadków, które oczekują w kolejce do obsługi przez aktywność. Trzeci słupek (*Activity Delay*) przedstawia opóźnienie aktywności, tj. średnią liczbę minut, którą przypadek musi czekać na obsługę przez aktywność. Ostatni słupek (*Participant Utilization %*) pokazuje, jaki procent czasu uczestnik, przypisany do danej aktywności, spędza na realizacji czynności związanych z wykonaniem wszystkich aktywności, do których został przypisany (a więc nie tylko tej aktywności, przy której słupek jest wyświetlany).

- 3. Dane zakończonej symulacji są zapisywane. Można je obejrzeć w oknie *Project Explorer* w poddrzewie *Simulation* projektu.
- 4. Zmień liczbę uczestników symulacji typu *Urzędnik* na 2 a *Administrator* na 3 i ponownie uruchom symulację.
- 5. Po zakończeniu drugiej symulacji zaznacz oba wyniki symulacji (poddrzewo *Simulation*) i z menu kontekstowego wybierz pozycję *Compare Simulation Results*. W wyświetlonym oknie *Compare Simulation Results* zaznacz oba wyniki symulacji, zaznacz *Case Cost-Time Analysis* i wciśnij przycisk *Display Report*.

🖓 Compare Simulation Results 🗙 🖓 🗖						
☑ ∰ 2008-10-06_15-42-12.sim ☑ ∰ 2008-10-06_16-25-21.sim	Name Case Cost-Time Analysis Participant Utilisation Simulation Results Report	Type Birt Report Birt Report XSLT Report				
E 🚱 Display Report Save HTML Report Save P	⋥ DF Report					

Zostanie wyświetlony raport, w którym porównane zostały średnie czasy i koszty realizacji aktywności w obu przebiegach symulacji.

- 6. W podobny sposób wyświetl raport pokazujący wykorzystanie uczestników procesu (raport *Participation Utilisation*).
- 7. Spróbuj wykonać kilka symulacji we własnym zakresie, zmieniając nie tylko liczbę uczestników ale również parametry określające czasy trwania poszczególnych aktywności.
- 8. Po zakończeniu eksperymentów zamknij projekt.