
D
ra

ft

Resource Mining: applying process mining to
resource-oriented systems. ? ??

Andrzej Stroiński, Dariusz Dwornikowski, and Jerzy Brzeziński

Institute of Computing Science, Poznań University of Technology
Piotrowo 2, 60-965 Poznań, Poland

{Andrzej.Stroinski, Dariusz.Dwornikowski,

Jerzy.Brzezinski}@cs.put.poznan.pl

Abstract Service Oriented Architecture is an increasingly popular ap-
proach to implement complex distributed systems. It makes it possible to
implement complex functionality just by composing simple functionalit-
ies provided in form of services into so called business processes. Unfor-
tunately, such composition of services may lead to some incorrect system
behavior. In order dicover such depreciances and fix them, process min-
ing methods may be used. Unfortunately, the current state of the art
focuses only on SOAP-based Web Services leaving RESTful Web Service
(resource-oriented) unsupported. In this article the relevance of adapt-
ing the Web Service Mining methods to new resource-oriented domain is
introduced with initial work on process discovery in such systems.

Keywords: process mining, business process, logging, SOA, REST

1 Introduction

Currently, one of the most widely used approach to the implementation of dis-
tributed systems is Service Oriented Architecture (SOA). The approach aims
to reduce costs of development and maintenance of information system. Addi-
tionally, the approach provides an easy integration among various heterogeneous
information systems implemented accordingly to SOA. These benefits are made

? NOTICE: this is the author’s version of a work that was accepted for pub-
lication in 17th International Conference on Business Information Sys-
tems proceedings in Lecture Notes in Business Information Processing
series by Springer Verlag. Changes resulting from the publishing pro-
cess, such as peer review, editing, corrections, structural formatting,
and other quality control mechanisms may not be reflected in this doc-
ument. Changes may have been made to this work since it was sub-
mitted for publication. The original publication is (will be) available at:
www.springer.com

?? This work was supported by the Polish National Science Center under Grant No.
DEC-2012/05/N/ST6/03051

D
ra

ft

possible by splitting simple system functionalities into independently developed
applications called Web Services. Later on, composition of many Web Services
into business processes is used to provide more complex functionality.

Nowadays, two different approaches to SOA are widely recognized [14]. The
first one are SOAP-based Web Services, which are highly standardized, and use
WSDL (Web Services Description Language) to describe their procedural inter-
faces and rely on SOAP (Simple Object Access Protocol) as their communication
protocol. The second approach, introduced in [8] is REST (REpresentational
State Transfer) and RESTful (resource-oriented) Web services, which take a de-
clarative approach, are based on resources rather than functions, and use finite,
known set of CRUD operations [15].

In both of the approaches however, the same problems with composition may
yield incorrect system behavior, i.e. deadlock, livelock. In addition, number of
composed and invoked services during system execution may be tremendous,
making it hard to manage dependencies between them. In order to deal with
this problem, a research of process mining (PM) may be used, i.e. process model
discovery, verification and optimization [3]. Being a prominent and fast develop-
ing research area, PM has been also applied to SOA systems to discover process
models from logs gathered from SOA services [7,6,4], improving Web Service
behavior [1,9] and collecting logs [11]. As it can be seen process discovery, and
generally PM, has been only applied to SOAP-based web services SOA systems.
We believe that REST systems could also benefit from applying PM techniques.
For that to be possible, one first needs to gather logs from a system, which are
always the first step in every process mining method. There are papers that
deal with gathering and collecting logs from SOA systems in order to apply PM
techniques, or Web Service mining techniques. In [11] Authors tackle with the
problem collecting event logs in order to extract process traces from applica-
tion systems and integration portal log files. In [5] and [13] methods to deal
with correlation of events with processes and processes instances are presented.
The first article concerns formalization of interaction patterns in SOA to allow
for assessment of existing systems in context of their ability to correlate event
logs into processes and conversations, whereas the second one discusses differ-
ent approaches to event correlation between interacting services and methods of
correlation discovery. Unfortunatelly, authors are considering only the interac-
tions between services without taking into account local events. Unfortunately,
all the articles focus on SOAP-based systems, so the methods and techniques
they present cannot be directly applied to resource-orinted systems (consisting
of RESTful Web Services), due to different nature of SOAP-WS and REST. In
this article we tackle the problem of adapting the Web Service Mining methods
to RESTFul Web services domain. In addition, we introduce context logging, a
technique of log enrichment in order to make possible to infer process related
data in resource-orinted systems (Section 2). Furthermore, process and process
instance reconstruction algorithm for resource-oriented systems based on ap-
proaches for SOAP-based services is presented (Section 2.1). We also propose
and discuss a prototype framework implementation (Section 3). Finally, utiliza-

D
ra

ft

tion of proposed methods together with classic PM methods in order to achieve
Resource Mining (RESTful Web Service Mining) is shown (Section 4).

2 Resource Mining: the resource-oriented approach to
Web Service Mining

In order to discover process models in resource oriented distributed systems
there is a need to adopt already existing methods of Web Service Mining and/or
develop new ones in respect to differences between resource-oriented systems
and SOAP-oriented. Unfortunately, because of lack standards like BPEL, WS-
Addressing or WS-Coversation, the correlation patterns formalized in [5] are
hard to fulfill. In addition also solutions presented in [13], are not sufficient for
resource-orineted sytems. Main differences between both approaches are as fol-
lows: (1) In resource-oriented approach the concept of service is not the central
one. It only serves as the application component which is composed of a callable
set of resources. Not services but individual resources are important from a cli-
ent’s perspective, therefore individual resources need only to be considered. Next
(2), in contrary to SOAP-based services execution state is stored on the client’s
side (active), not on the server side (resources). Thus, underlying process logic is
executed in the client by operating on resources by invoking them using finite set
of predefined CRUD operations. (3) Resources are passive, i.e. they only provide
data representation and implementation of available operations. Executing them
is only possible on client’s demand. Such an approach introduces unique and of-
ten desirable properties: stateless communication and unified interface [8]. (4)
Business process is a resource. In order to achieve complex functionality in a
resource-oriented system, client must compose system resources invocations into
so called workflow or business processes. Upon client’s action, a passive resource
may on behalf of that client act as client for other resources, we call it a pro-
cess resource. (5) Resources are hierarchically dependent on each other, some
of resource representations may be included in other resource representations.
Correctly modeled and implemented resource-oriented system will use URIs to
pinpoint such inclusion [15]. (6) HTTP protocol is used as communication layer,
so the semantic of HTTP messages is used in order to determine request handling.
In the case of SOAP-based services, HTTP protocol only serves as a simple trans-
port layer to ensure delivery of SOAP messages. (7) Additional consequence of
using HTTP protocol is a synchronous communication model, which guarantees
receiving response for every request. In this article we assume only synchronous
communication as a basis for further discussion about more complex commu-
nication patterns (sequence of synchronous interactions modeling asynchronous
communication). (8) In contrary to SOAP, HTTP lacks one-way communication
so there is no such type of communication in resource-oriented systems (standard
request-response model). Next (9), there are no standards like WS-Addressing
or WS-Conversation, so there is no support for using and logging process related
informations like process IDs and process instance IDs. Finally, (10) process re-
source may be nested, what mean that each process resource may be further

D
ra

ft

orchestarte into more complex process resource. Because of that, process logic
also may be nested in internal events at such resources. In consequence there
is need to dicovering not only traces of process of communication events and
correlete them into process instances, but also internal resource events that are
available in the log.

The crucial problem in gathering logs in resource-oriented systems is the lack
of appropriate logging level available in the current SOA implementations [6].
This problem occurs due to usage of application servers designed and developed
exclusively for request-response model of interaction. In this model, server pass-
ively awaits for client requests. Upon receiving request, the server processes it
and sends a response back to the client. As a result, only information about re-
ceived message and returned response is stored in an event log. What is lacking
is process related data, such as process instance id and process id. In addition,
resources may act as clients and such events are usually not stored in log (dif-
ference (4)).

Next, there is a need to group events concerning each of the resources be-
longing to the particular RESTful service (difference (1)). Usually, services store
invoked URI address in log so this information may be used, or if application
server does not support such feature, a solution is presented in Section 3. Next,
there is also a problem of handling resources by parallel instances. In the current
application servers like Apache Tomcat, new instance of resource is created for
each incoming request to its URI. In consequence, each of instances log informa-
tion concurrently into a log file, so event log interleaving problem occurs (Figure
1).

Figure 1: Interleaving of events in process log by multiple instances of resource

Instance 1 of Resource A is invoked and sends a request to resource B, an
appropriate log entry in log is stored. Next, instance 2 is created upon second
request to resource A. The instance 2 request to resource B is sent, and
response for that request is received (line 2 and 3 at Figure 1). Next, instance
1 receives response and logs this information (line 4). As the example shows, if
there is no information about instances in the log, that create log entry, there is
no possibility to tie the receiving of message to sending it. In addition, log also

D
ra

ft

includes information about incoming messages like msg 1 and returned messages
msg 2. There is a need to correlate thes messages with each other and with
outcoming messages, in order to associate them with proper service instances,
as well as to keep log ordering relation [2]. This allows to discover local process
of each resource (Figure 2b):

a �L b if and only if there is trace where event b immediately precedes event a (1)

This relation orders all local events of some resource (local process at Figure 2b).
In order to deal with above problems we introduce context logging. The main
concept is to add a unique ID (Context ID) of the resource instance to each
logged event. As a result each service instance will add additional field to event
log during logging called context. This context simply correlates incoming mes-
sages, with outgoing messages, and some local events. Such a context log allows
to specify events that take place within different instances of resources allowing
to generate an independent event log files for each resource in the service, and
each instance of that resource (local log at Figure 2b). In addition, if we enforce
adding local context as a additional HTTP header (it is possible because of dif-
ference (6)) it is also possible to correctly preserve ordering (correlation) relation
introduced in [13] (atomic correlation condition) or in [5] (reference-based cor-
relation) between interacting resources based on context information in HTTP
header (Equation 2).

a �ctx b if and only if there is trace in event log where #ctx(a) = #hctx(b) ∧

∧ #res(a) = resourceA ∧#res(b) = resourceB, where resourceA, resourceB ∈ Res∧

∧ resourceA 6= resourceB, where Res is a set of all resources in the system, and

#ctx(e) = A means value of field ctx of event e is A (2)

These relations describe a situation where resourceA invokes resourceB and
logs this information with #ctx(a) label as event a and resourceB receives this
message and logs this event with context label passed by resourceA (#hctx(b) =
#ctx(a)) and with local context label #ctx(b). Next step is to reconstruct ses-
sion and a global process and generate appropriate processID and instanceID,
basing on context information (session reconstruction and global process in Fig-
ure 2b). In order to reconstruct session one needs to apply information about
which resource instance invokes other resource instance. Such information al-
lows to retrieve the whole workflow information of interacting resources during
business process execution. In order to achieve that, we ask each resource to
send its local context in HTTP header to its callees. Then each callee needs to
log this header as a receiving event log entry with its own local context. As a
result, each of invoked service has information about local context within it was
called. Based on the context ordering relation and partial context information,
the algorithm for session reconstruction can be applied.

2.1 Simple process and instance reconstruction algorithm for
resource-oriented systems

The main idea behind session reconstruction is to add appropriate processID

and instanceID to events in the log. The main problem is to tie events with
a process instance, i.e. process run. In our approach we are using the idea of

D
ra

ft

context logging from Section 2. We are assuming that each resource enriches its
log entries with context field generated by each of its instances. This allows us
to distinguish event log entries created by different resource instances (even if
they are in the same log file). Next, if resource plays client role during process
execution, it must include context information into its all outgoin messages. This
ensure that context information is transfered to nearest neighbors, and allows to
tie interacting resource instances with each other. We use HTTP header (hctx)
to transfer context. The example of log entries generated by resources during
interaction is presented in The Figure 2a.

(a) Log entries example (b) Idea and limitation

Figure 2: Context logging

Therefore, based on the relation in equation 2, and the obtained context log,
we are construct a chain of connected resource instances. First, we generate a set
CTX that contains information about the dependence among resource instances
occurring in the log:

CTX = {(e1, e2) | ∃e1,e2∈L #hctx(e2) = #ctx(e1)} (3)

We are looking a pair of events in the event log that represent communication
between two resource. Such events in resource-oriented (RESTful) log are easy
to find because they include additional data related to HTTP protocol (header,
method etc.). The sender of message will include its local context into hctx
header of message, so as a result the receiver will log in event e2 the sender
local context (it is included in HTTP header) next to its own local context.
Into set CTX we put tuples of events between communication resources, where
local context of first event (e1) is equals to received form communication invoker
context in event e2. Next, we search the log for global process starting events
(sent by process principal), according to:

F = {f | ∀f∈L #hctx(f) = null} (4)

Global process starting event is recognized be empty hctx HTTP header value
(#hctx(f) = null). This occurs when #res(f) resource is invoked by a process
principal, because process principal is not a part of process so it does not include
context information in invoke messages. Each event in F represents the initial
event in global process execution so the size of set |F | represents a number of
process instances occurring in event log. Next, all so called context chains of

D
ra

ft

events are calculated (based at correlation condition in [13]). The context chain
is an ordered set of events that represents context flow during process execution
in one global process instance (one chain represents one global process instance).

foreach fj ∈ F do CHAINj = {fj, Ej, CTXj}

, where fj is a starting event in this chain , and Ej is a set of events in this j-th chain and

CTXj is a set of context dependency between events in Ej ∪ {f}

, where j = 1...|F |(|F | is a number of process instances occurring in log). (5)

In order to do that, we need to find all events sets of context dependent events
in each of the context chains (one context chain for each starting event):

Ej = {e | (∀e∈L ∃
e′∈L∧e′∈Ej

(e �ctx e
′ ∨ e

′ �ctx e)) ∧ (∃e∈L fj �ctx e)} (6)

Set E contains events e, such that all events in this set are context dependent on
at least one other event in this set, additionally at least one event from this set
is context dependent on starting event fj . Next, the set of context dependencies
between events of set Ej ∪ {fj} CTXj is calculated as follows:

CTXj = {(e1, e2) | ∃e1,e2∈Ej
#hctx(e2) = #ctx(e1)} (7)

Set CTX consists of tuples (e1, e2) where event e2 is context dependent on event
e1. In consequence, each context chain shows mutually interacting process instan-
cess in some (still unknown) global process. As a result, the process instanceID
may be generated and added to each of context chains. Further, each event can
obtain instanceID from context chain it belongs to. Unlike most of approaches,
other events (not only communication events) must be added in order to take
local processing of resources under consideration (differences (10)). This results
in more accurate process models because sending messages may be dependent
on some local resource event. This results in the Instance set:

Instancej = {(fj, Ej ∪ {e | ∀e∈L∃e′∈Ej
#ctx(e) = #ctx(e

′
)}, CTXj, SUCCj)} , where

fj is a starting event in chain CHAINj and Ej is a set of events in chain CHAINj, and

CTXj is a set of context dependency occurring in this process instance,

and SUCCj is a local resource events ordering set (8)

SUCCj is a set of tuples showing local order relation among events of the same
resource instance. It contain all the events belonging to the resources involved
in j − th context chain.

SUCCj = {(e1, e2)|∀e1,e2∈L∃e′∈CHAINj

(#ctx(e1) = #ctx(e
′
) ∨#ctx(e2) = #ctx(e

′
)) ∧ (#ctx(e1) = #ctx(e2)∧

(#res(e1) = #res(e2) = r ∧ e1 � e2)} (9)

The final step is to determine which of the found instances belong to which
process. The idea to discover processes, and correlate instances with them is
based on differences (1) and (4) that everything is represented in form of re-
source. Even business process must be provided in form of resource callable by
HTTP protocol operations. In resource-oriented systems, business processes are
executed by invoking resources call other resources on behalf of the process prin-
cipal. Therefore, the final step is to analyze resource property of each first log

D
ra

ft

entry (#res(fj)) of each of Insancej in order to find such process resources. We
are analyzing only the first event in each instance, as they are invoked by process
principals (#hctx(f) = null), so they are the starting point of process execution.
Next, for each unique resource (called process resources) we are generate pro-
cessID, because each instance starting from the same resource is an instance of
the same process resource. Therefore this allows us to correlate instances with
process. Next, we are calculate sets of processes instances for each of process
resources occurring in the log:

Processn = {i | ∀i1,i2∈AllInstancesInLog (#resfirst(i1) = #resfirst(i2) ∧ i1 6= i2) ⊕ i1 = i2)}

, where function first() returns fj for CHAINj (10)

As a result the algorithm returns a set of Processn sets that include several
Instancej . Based on this, there is a need to review all events in event logs of all re-
sources in the system, and add to them instanceID accordingly to ID of Instancej
that this event belongs to. Then add processID accordingly to ID of Processn to
which that event Instancej belongs to. As presented in Figure 2a there is only
one global process (Process0 = {Instance0}) and one instance (Instance0 =
{{a1}, E0, CTX0, SUCC0}, where E0 = {a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, d1, d2},
and CTX0 = {(a2, b1), (b2, c1), (a3, d1)}, and SUCC0 = {(a1, a2), (a2, a3) . . . (d1, d2)})

3 Non-invasive context logging for JSR-311 with
AspectJ: a case study

As it has been shown, context logging can be used to differentiate between seper-
ate resource instances in seperate process instances of multiple processes. The
idea behind context logging is to inject HTTP headers into messages that pass
through the system. This simple technique can be implemented in three ways:
service instrumentation, proxy servers introduction, and semi non-invasive way.

We show that non-invasive logging is possible for a wide range of enterprise
systems, i.e. Java based RESTFul Web services, implemented according to the
JSR-311 standard [10]. We use AspectJ [12], a reference implementation of aspect
oriented programming (AOP) language for Java virtual machine, and Apache
Tomcat application server.

Jersey comprises to JAX-RS, a JSR-311 stanardized API of implementing
RESTful Web services in Java. Both, the standard, and Jersey are widely used
in a number of enterprise application servers and frameworks. We present a proof
of concept implementation of our AspectJ context logger for RESTful systems
implememented according to JSR-311, and in fact, this is our only technical
requirement. Our approach will work for any java application server and imple-
mentation of JAX-RS. On the other hand, we believe that the same approach
can be used for any other technology that offers support for AOP, such as .NET,
Python or Ruby.

We take advantage of the fact that in JAX-RS (Jersey), every RESTful Web
service needs to be defined in a class, annotated with certain decorators, e.g.
@Path. The listing below shows an exemplary Web service implemented in Jersey.

D
ra

ft

@Path("/hello") annotation says that the Web service will be accessible under
"/hello" URI resource. The method annotated with @GET and @Path handles
every GET operation issued on "/hello/world" resource, @GET can be sub-
stituted with any other HTTP operation. @Produces or @Consumes in thecase
of POST,PUT defines what content type the resource returns or accepts.

@Path(”/ h e l l o ”) // every c l a s s has @Path
public c lass Hel lo {

// every method has @OP annotation
@Produces (”text /html ”) @GET @Path(”/world ”)
public Resource handler (@Context HttpHeader headers , @Context HttpServletRequest r eques t) {}

Thanks to the standardized API, a universal AspectJ context logger for in-
coming messages can be implemented in a quite simple way. One needs only to
define pointcut, which catches every execution of any method placed in any class
annotated with @Path, @Produces and @GET. In our implementation an advice
is called when the pointcut is reached. First local context is generated, which in
our case is the hash-code of a current object instance. Next, if the HCTX header
is present in the request, it is stored and logged alongside with the local context,
remote caller IP, HCTX value, and request URI taken from the @Path. Local
context is then appended to every outgoing request from the current service
instance in a HCTX header.

execut ion (@javax . ws . r s .GET @javax . ws . r s . Produces public ∗ ∗ (. .)) &&
within (@javax . ws . r s . Path ∗)

The situation gets more complicated when we want to catch and log mes-
sages sent from a service. In that case, not only we have to alter the outgoing
message with context logging HTTP header HCTX but also the HTTP client call
can be done in some arbitrary way. In our case study, we assume that these
external calls are done from the same thread that handles the incoming request,
i.e. synchronously. We also assume that JSR-311 client API is be used. There-
fore, a pointcut can be defined to catch all calls to methods named request

within classes annotated with @Path. Such an approach allows us to alter the
request headers originating from the Web service, and thus pass the context to
external Web services, according to context logging approach. Assuming that
external Web services are also equipped with our aspect context logger, logs of
all messages received and sent in the whole system can be created.

c a l l (public ∗ ∗ . r eques t (. .)) && within (@javax . ws . r s . Path ∗)

There are some requirements we need to impose on how services are im-
plemented with Jersey. We require that every method handling requests needs
to return Resource object, and take the following arguments: @Context Http-

Header and @Context HttpServletRequest. This is needed to extract inform-
ation, such as remote caller IP, request headers, and to inject our own header.
Another difficulty we came across is the way the situation when service we equip
with aspects calls some external service. In our approach we assumed that the
call is done in the same thread as incoming request handling but this does not
need to be the case. If it’s not the case, it is still possible to implement a logger,
by examining the call stack to determine how the current thread was called. By

D
ra

ft

comparing this with the call list kept in aspects, it is possible to determine which
service instance was the original caller.

4 Applying alpha algorithm for resource-oriented context
preprocessed log

After preprocessing the context log by the process and instance reconstruction
algorithm, it is now possible to apply classic process mining algorithms. In our
initial work on service mining in resource-oriented systems, we have used basic
alpha algorithm [2]. It is a simple algorithm that allows to discover process model
in form of a petri net. The idea behind this approach is to use simple ordering
relation (Equation 1) that occurs in the event log file. Unfortunately, in the real
case scenario in resource-oriented systems, it is very unlikely that each resource
in the system will log into the same log file with respect to some global clock
and with respect to some global ordering relation. Therefore the problem of
gathering logs from distributed resources with respect to global ordering arises.
In addition, the basic version of alpha algorithm does not take the resource
perspective into account. So the first step is to make logs unique globally (usually
events IDs are only unique locally at resource). Without distinction of resources,
two events occurring at different resources may leave identical log entries, so as
a global identifier is the concatenation of resource URI (it must be unique by the
definition) and its local identifier (unique at the resource). Lets consider example
shown in Figure 3.

(a) original process (b) discovered
process

Figure 3: Process model

The resource A is a process resource and invokes resource B during its ex-
ecution. Next, two events with IDs a occurr in two different resources resource
A and resource B. If we omit resource information they are indistinguishable
form each other. In order to use basic alpha algorithm we need to flatten the
log, to make sure ID of each event in the system is unique, we are concatenate
resource URI and local ID — A::a and B::a. Alpha algorithm takes one log file

D
ra

ft

with multiple traces (instances) of exactly one process as its input. In order to
use this method, first we need to gather distributed resource log files and con-
catenate them into one file for each process found by algorithm from Section 2.1.
The first problem with concatenation, of independently generated log files, is the
order in which concatenation is performed. Different approaches to deal with this
problem have different impact on the results. It is because the alpha algorithm
only uses flat order of events in a log file to determine if two events are executed
in parallel, in some order, or are independent on each other. In consequence,
simple concatenation of resource log files will result in violation of causal de-
pendency of events. In the considered example (Figure 3a) adding resourse B
log file at the and of resource A file will result in incorrect dependency relation
between event A::e and B::a. This will lead to incorrect conclusion that these
events are not independent. In order to deal with this problem there we need
to perform another preprocessing phase of the event log in order to identify the
communicing resources and appropriately concatenate event logs of subinvoked
resources. We consider only synchronous communication so if a resource does
not execute multiple parallel threads, all invocation events must be followed by
corresponding response events (A::b and A::c). If there are two parallel threads,
then all events in the second thread must be parallel to both the invocation and
the response handling event (A::d). In order to concatenate log files and respect
ordering relation among events in both resources (context dependency between
two events in different resource A::b and B::a), and in addition to respect local
ordering of events, we use previously calculated sets of context chains in Equation
5. For each chain, and for each resource instance occurring in context chain, we
look for communication events invoking and handling response (communication
pair CP = (start, end, ctx1, ctx2)). Each of such pairs consists of: start - start-
ing event (invoking event), end - ending event (response handling event), ctxA -
context of invoking resource and ctxB - context of invoked resource. Thanks to
that, during pre-processing phase we put all events in the invoked resource event
log file between the starting event and the ending event. Additionaly, not to dis-
turb parallel relation of concurrent events there is a need to generate additional
traces, not originally included in log file. Lets consider example in Figure 3. We
search for all communication pairs in the log. The only found communication
pair is: A::b, A::c, A::07C and B::AGF. Because we are dealing with synchron-
ous communication, we add all events of resource instance B::AGF between the
events A::b and A::c of resource instance A::07C. The problem occurs with
event A::d, which is parallel to communication events in resourceA. In order to
respect the parallel relation, we need to generate new traces (the minimal set of
them) that will render all events in log file of resourceB to be also parallel to
event A::d. To do that, we need to generate new process traces (instances) with
respect to the following condition:

∀CP∈LogA
((e || start ∧ e || end) =⇒ (∀f∈LogB

(f || e))

, where LogA is invoking resource log and LogB is invoked resource log

, and a || b ⇔ a �L b ∧ b �L a , where L is some log (11)

As a result, new traces are generated and we can execute the alpha algorithm
for each process occurring in the log. The discovered petri net is shown at Figure
3b. In comparison to the original model in Figure 3a, the dotted places and arcs
are not present. It is because, there is no longer relation between events b and c

at resource A afer log preprocessing. This is a side effect of adding resource

B log. In conclusion, presented example shows that alpha algorithm is able to
mine processes based on a preprocessed resource-oriented log. Some drawback

D
ra

ft

of this approach is that during mining interaction between resources, some local
dependencies are lost. In context of global process mining this is not an issue,
because from a global point of view the workflow is in fact transfered to invoked
resource.

5 Conclusions and future work

We have shown our initial work on applying Web Service Mining into a do-
main of resource-oriented systems. The approach shows how current methods
must be adjusted in order to discover process models based on event log obtain
from a RESTful system. Presented considerations leads to several conclusions
and feature challenges. First, practical framework to obtain context enriched log
concerns only the case where all resources are implemented in JAVA accordingly
to JSR-311 standard. Unfortunately, in the case of resource implemented in dif-
ferent technology more work may be required. In future we would like to address
this problem. Another direction of research is to develop algorithms dedicated
resource-oriented systems that do not need to preprocess event log. This may
lead to more accurate process models by using all information available in the log,
like hierarchy relation along resources and/or message semantics. Finally, cur-
rent process mining methods work only with global process. In our approach to
reconstruct process related information we discover multiple process resources
but later we execute process discovery algorithm for each of them separately.
Our current work concerns developing methods for discovering processes models
based on multiple process logs.

References

1. van der Aalst, W.: Service mining: Using process mining to discover, check, and im-
prove service behavior. IEEE Transactions on Services Computing 99(PrePrints),
1 (2012)

2. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering
16(9), 1128–1142 (2004)

3. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer Publishing Company, Incorporated, 1st edn. (2011)

4. van der Aalst, W., Verbeek, H.: Process Mining in Web Services: The WebSphere
Case. IEEE Bulletin of the Technical Committee on Data Engineering 31(3), 45–48
(2008)

5. Barros, A.P., Decker, G., Dumas, M., Weber, F.: Correlation patterns in service-
oriented architectures. Proceedings of the 10th international conference on Funda-
mental approaches to software engineering (2006)

6. Dustdar, S., Gombotz, R.: Discovering web service workflows using web services
interaction mining. International Journal of Business Process Integration and Man-
agement (2007)

7. Dustdar, S., Gombotz, R., Baina, K.: Web services interaction mining (2004)
8. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. Ph.D. thesis, University of California, Irvine (2000)

D
ra

ft

9. Gaaloul, W., Bhiri, S., Godart, C.: Research challenges and opportunities in web
services mining (2006)

10. Hadley, M., Sandoz, P.: Jax-rs: Java api for restful web services (2008)
11. Khan, A., Lodhi, A., Köppen, V., Kassem, G., Saake, G.: Applying process min-

ing in soa environments. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/Ser-
viceWave Workshops. Lecture Notes in Computer Science, vol. 6275, pp. 293–302
(2009)

12. Kiczales, G., Hilsdale, E., Hugunin, J., at. al: An overview of aspectj. In: Pro-
ceedings of the 15th European Conference on Object-Oriented Programming. pp.
327–353. ECOOP ’01, Springer-Verlag, London, UK, UK (2001)

13. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event correl-
ation for process discovery from web service interaction logs. The VLDB Journal
20(3), 417–444 (Jun 2011)

14. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big’web
services: making the right architectural decision. In: Proceedings of the 17th inter-
national conference on World Wide Web. pp. 805–814. ACM (2008)

15. Richardson, L., Ruby, S.: RESTful Web Services (2007)

