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Introduction

Motivation

Why we use the interval arithmetic and interval methods?

Inexact initial data can be enclosed in an appropriate interval which
endpoints depend on the measurement uncertainties.

For a real number that cannot be represented exactly in a given
floating-point format, we can always find an interval that include such
number inside. Furthermore, its left and right endpoints are two neighboring
machine numbers.

Rounding errors are enclosed in a final interval value, if computations are
performed in the floating-point interval arithmetic.

Finally, for the interval method we assume that the error term of the
corresponding conventional method (which is normally neglected) is also
included in the final interval solution.
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Heat Conduction Problem

One-Dimensional Heat Conduction Problem

Consider the one-dimensional heat conduction problem given by the governing
equation

∂u

∂t
(x , t)− α2 ∂

2u

∂x2
(x , t) = 0, 0 < x < L, t > 0, (1)

subject to the initial condition and the Dirichlet boundary conditions

u (x , 0) = f (x) , 0 ≤ x ≤ L, (2)

u (0, t) = ϕ1 (t) , u (L, t) = ϕ2 (t) , t > 0. (3)
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Heat Conduction Problem

One-Dimensional Heat Conduction Problem

The heat conduction problem concerns the distribution of heat along an
isotropic rod of length L (an isotropic infinite plate of thickness L) over time.

A function u = u(x , t) describes the temperature at a given location x and
time t.

We assume that a temperature within each cross-sectional element of the rod
is uniform.

Moreover, the rod is perfectly insulated on its lateral surface.

The constant α =
√
κ is a material-specific quantity. It depends on the

thermal diffusivity κ = λ/(cρ), where λ is the thermal conductivity, c is the
specific heat and ρ is the mass density of the body. It is assumed that λ, c
and ρ are independent of the position x in the rod.
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Conventional and Interval Backward Finite Difference Methods

Conventional Backward Finite Difference Scheme

Now we establish a grid on the domain. We set the maximum time Tmax. Then,
we choose two integers n, m and we find the mesh constants h, k such as

h = L/n, k = Tmax/m.

Hence the grid points are

(xi , tj),

where xi = ih for i = 0, 1, . . . , n and tj = jk for j = 0, 1, . . . ,m.
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Conventional and Interval Backward Finite Difference Methods

Conventional Backward Finite Difference Scheme

We express the terms of (1) at the grid points (xi , tj) and we use the backward
finite difference formula for (∂u/∂t) (xi , tj) and the central finite difference
formula for

(
∂2u/∂x2

)
(xi , tj), together with the appropriate local truncation

errors. Hence, if we introduce the notation λ = α2
(
k/h2

)
, we get

(1 + 2λ) u(xi , tj)− λu(xi−1, tj)− λu(xi+1, tj) = u(xi , tj−1)

−k2

2

∂2u

∂t2
(xi , ηj)− α2 kh2

12

∂4u

∂x4
(ξi , tj) , (4)

i = 1, 2, . . . , n − 1, j = 1, 2, . . . ,m,

where ηj ∈ (tj−1, tj), ξi ∈ (xi−1, xi+1) and for the initial and boundary conditions
(2)-(3) we have

u(xi , 0) = f (xi ) , i = 0, 1, . . . , n, (5)

u(0, tj) = ϕ1 (tj) , u(L, tj) = ϕ2 (tj) , j = 1, 2, . . . ,m. (6)

M. Jankowska, A. Marciniak, T. Hoffmann (PUT) Interval Backward Finite Difference Method SMI 2013 7 / 26



Conventional and Interval Backward Finite Difference Methods

Conventional Backward Finite Difference Scheme

For the subsequent formulation of the interval couterpart of the conventional
backward finite difference method considered, we transform the exact formula (4)
with (5)-(6) into the appropriate separate forms in according to the position in the
grid. We have

(1 + 2λ) u(x1, tj)− λu(x2, tj) = λu(x0, tj) + u(x1, tj−1) + R̂1,j , (7)

i = 1, j = 1, 2, . . . ,m,

(1 + 2λ) u(xi , tj)− λu(xi−1, tj)− λu(xi+1, tj) = u(xi , tj−1) + R̂i,j , (8)

i = 2, 3, . . . , n − 2, j = 1, 2, . . . ,m,

(1 + 2λ) u(xn−1, tj)− λu(xn−2, tj) = λu(xn, tj) + u(xn−1, tj−1) + R̂n−1,j ,

i = n − 1, j = 1, 2, . . . ,m, (9)

where

R̂i,j = −k2

2

∂2u

∂t2
(xi , ηj)− α2 kh2

12

∂4u

∂x4
(ξi , tj) . (10)
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Conventional and Interval Backward Finite Difference Methods

Conventional Backward Finite Difference Scheme

Note that the formulas (7)-(9) with (10) can be transformed to the following
matrix representation

Cu(j) = u(j−1) + Ê
(j)
C + Ê

(j)
L , j = 1, 2, . . . ,m, (11)

where

u(j) = [u (x1, tj) , u (x2, tj) , . . . , u (xn−1, tj)]T , (12)

Ê
(j)
C = [λu(x0, tj), 0, . . . , 0, λu(xn, tj)]T, Ê

(j)
L =

[
R̂1,j , R̂2,j , . . . , R̂n−1,j

]T
,

The vectors of coefficients ÊC
(j), j = 1, 2, . . . ,m, in the formulas (12) depend on

the stepsizes h, k, the problem parameter α and the values of the functions ϕ1,
ϕ2. They are different for each j = 1, 2, . . . ,m. On the other hand, the vectors
ÊL

(j), j = 1, 2, . . . ,m, depend on the stepsizes h, k and the values of the
appropriate derivatives of u at the midpoints considered. What is most important,
the components of ÊL

(j) represent the local truncation error terms of the
conventional finite-difference method at each mesh point.
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Conventional and Interval Backward Finite Difference Methods

Conventional Backward Finite Difference Scheme

C =



1 + 2λ −λ 0
... 0 0 0

−λ 1 + 2λ −λ
... 0 0 0

0 −λ 1 + 2λ
... 0 0 0

· · · · · · · · ·
. . . · · · · · · · · ·

0 0 0
... 1 + 2λ −λ 0

0 0 0
... −λ 1 + 2λ −λ

0 0 0
... 0 −λ 1 + 2λ


. (13)

Note that the matrix C is tridiagonal and symmetric. It is also positive definite
and strictly diagonally dominant, due to the fact that λ > 0.
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Conventional and Interval Backward Finite Difference Methods

Interval Backward Finite Difference Scheme

Subsequently, we propose an interval backward finite difference method. It is
formulated on the basis of the equations (7)-(9) with (10) or the appropriate
matrix representation (11) with (12)-(13). Before that we introduce some
assumptions about the values of the derivatives of u at some midpoints considered.
Hence, for the interval approach we suppose that there exists the intervals Si,j ,
Qi,j , i = 1, 2, . . . , n − 1, j = 1, 2, . . . ,m, such that the following relations hold

∂2u

∂t2
(xi , ηj) ∈ Si,j ,

∂4u

∂x4
(ξi , tj) ∈ Qi,j . (14)

Hence, applying (14) to (10), we have R̂i,j ∈ Ri,j , where

Ri,j = −k2

2
Si,j − α2 kh2

12
Qi,j . (15)
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Conventional and Interval Backward Finite Difference Methods

Interval Backward Finite Difference Scheme

Then, we can formulate the interval backward finite difference method, related to
the equations (7)-(9) with (10), as follows

(1 + 2λ) U1,j − λU2,j = λU0,j + U1,j−1 + R1,j ,

i = 1, j = 1, 2, . . . ,m, (16)

(1 + 2λ) Ui,j − λUi−1,j − λUi+1,j = Ui,j−1 + Ri,j ,

i = 2, 3, . . . , n − 2, j = 1, 2, . . . ,m, (17)

(1 + 2λ) Un−1,j − λUn−2,j = λUn,j + Un−1,j−1 + Rn−1,j ,

i = n − 1, j = 1, 2, . . . ,m, (18)

where

Ui,0 = F (Xi ) , i = 0, 1, . . . , n, (19)

U0,j = Φ1 (Tj) , Un,j = Φ2 (Tj) , j = 1, 2, . . . ,m. (20)
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Conventional and Interval Backward Finite Difference Methods

Interval Backward Finite Difference Scheme

Similarly, the matrix representation of (16)-(18) with (15) is given as follows

CU(j) = U(j−1) + E
(j)
C + E

(j)
L , j = 1, 2, . . . ,m, (21)

where

U(j) = [U1,j ,U2,j , . . . ,Un−1,j ]
T
, (22)

E
(j)
C = [λU0,j , 0, . . . , 0, λUn,j ]

T, E
(j)
L = [R1,j ,R2,j , . . . ,Rn−1,j ]

T
.
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Conventional and Interval Backward Finite Difference Methods

Interval Backward Finite Difference Scheme

Theorem

Let us assume that the local truncation error of the backward finite difference
scheme can be bounded by the appropriate intervals at each step. Moreover, let
F = F (X ), Φ1 = Φ1 (T ), Φ2 = Φ2 (T ) denote interval extensions of the functions
f = f (x), ϕ1 = ϕ1 (t), ϕ2 = ϕ2 (t), given in the initial and boundary conditions
of the heat conduction problem (1)-(3). If u (xi , 0) ∈ Ui,0, i = 0, 1, . . . , n,
u(0, tj) ∈ Φ1 (Tj), u(L, tj) ∈ Φ2 (Tj), j = 1, 2, . ,m and the linear system of
equations (21) with (22) can be solved with some direct method, then for the
interval solutions considered we have u (xi , tj) ∈ Ui,j , i = 1, 2, . . . , n − 1,
j = 1, 2, . . . ,m.
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Conventional and Interval Backward Finite Difference Methods

Interval Backward Finite Difference Scheme

Remark

Taking into consideration the formulas (7)-(9) and (16)-(18) with their
appropriate matrix representations (11) and (21), we conclude that the proof of
the above theorem is a natural consequence of the thesis of Theorem 2.

Consider a finite system of linear algebraic equations of the form Ax = b, where A
is an n-by-n matrix, b is an n-dimensional vector and the coefficients of A and b
are real or interval values. The existence of the solution to Ax = b is provided by
Theorem 2.

Theorem

If we can carry out all the steps of a direct method for solving Ax = b in the
interval arithmetic (if no attempted division by an interval containing zero occurs,
nor any overflow or underflow), then the system has a unique solution for every
real matrix in A and every real matrix in b, and the solution is contained in the
resulting interval vector X .
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Conventional and Interval Backward Finite Difference Methods

Approximation of the Error Terms

Note that determination of the exact values of the endpoints of the error
term intervals Si,j , Qi,j is possible only for some selected examples of the
heat conduction problem (1)-(3).

Generally, for any other case, such issue is still an open problem that deserves
further investigation.

Subsequently, we propose the method of approximation of the endpoints
considered. It is based on finite differences that are used to find a minumum
and maximum value of the derivatives (present in the error terms) at the
points dependent on the intervals that the given midpoints ηj , ξi belong to.
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Conventional and Interval Backward Finite Difference Methods

Approximation of the Error Terms

We assumed that the relations (14) hold for the appropriate intervals Si,j , Qi,j ,
i = 1, 2, . . . , n − 1, j = 1, 2, . . . ,m. They are such that for ηj ∈ (tj−1, tj),
ξi ∈ (xi−1, xi+1), we have

∂2u

∂t2
(xi , ηj) ∈ Si,j =

[
S i,j ,S i,j

]
,

∂4u

∂x4
(ξi , tj) ∈ Qi,j =

[
Q

i,j
,Q i,j

]
.

We can choose the endpoints S i,j and S i,j as

S i,j ≈ min
(

S∗
i,j−1,S

∗
i,j−1/2,S

∗
i,j

)
, S i,j ≈ max

(
S∗
i,j−1,S

∗
i,j−1/2,S

∗
i,j

)
, (23)

and then, in the similar way, the endpoints Q
i,j

and Q i,j

Q
i,j
≈ min

(
Q∗

i−1,j ,Q
∗
i,j ,Q

∗
i+1,j

)
, Q i,j ≈ max

(
Q∗

i−1,j ,Q
∗
i,j ,Q

∗
i+1,j

)
, (24)

where

S∗
i,j =

∂2u

∂t2
(xi , tj) , Q∗

i,j =
∂4u

∂x4
(xi , tj) . (25)
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Results

Numerical experiment

Consider the heat conduction problem given by the governing equation

∂u

∂t
(x , t)− 1

π2

∂2u

∂x2
(x , t) = 0, 0 < x < 1, t > 0, (26)

and the initial and boundary conditions

u (x , 0) = 1− 0.8x + sinπx , 0 ≤ x ≤ 1, (27)

u (0, t) = 1, u (1, t) = 0.2, t > 0. (28)

The analytical solution of the problem is of the following form

u (x , t) = 1− 0.8x + e−t sinπx . (29)
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Results

Numerical experiment

(a) (b)

Figure: Temperature distribution described by the heat conduction problem for: (a)
selected values of t; (b) t ∈ [0, 1]
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Results

Numerical experiment

(a) (b)

Figure: Widths of the interval solutions: (a) U(x , t = 0.5), (b) U(x , t = 1) obtained
with the interval backward finite difference method for the heat conduction problem and
different values of n = m.
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Results

Numerical experiment

(a) (b)

Figure: Widths of the interval solutions: (a) U(x , t = 0.5), (b) U(x , t = 1) obtained
with the interval backward finite difference method for the heat conduction problem and
different values of n, where m are such as k ≤ h2/(2α2).
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Results

Numerical experiment

x u (x , t = 1) UC (x , t = 1) width

0.1 1.033680E+0 [ 1.034256351106E+0, 1.034256351106E+0] 1.15E-15
0.2 1.056234E+0 [ 1.057328494495E+0, 1.057328494495E+0] 1.98E-15
0.3 1.057620E+0 [ 1.059127010626E+0, 1.059127010626E+0] 2.52E-15
0.4 1.029874E+0 [ 1.031644890817E+0, 1.031644890817E+0] 2.79E-15
0.5 9.678794E-1 [ 9.697413190404E-1, 9.697413190404E-1] 2.79E-15
0.6 8.698741E-1 [ 8.716448908170E-1, 8.716448908170E-1] 2.57E-15
0.7 7.376207E-1 [ 7.391270106263E-1, 7.391270106263E-1] 2.15E-15
0.8 5.762341E-1 [ 5.773284944951E-1, 5.773284944951E-1] 1.56E-15
0.9 3.936809E-1 [ 3.942563511061E-1, 3.942563511061E-1] 8.31E-16

Table: Values of the exact solution and the interval solution UC (x , t = 1) obtained with
the interval realization of the conventional backward finite difference method for the heat
conduction problem, where h = 1E-2 and k = 1E-2.
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Results

Numerical experiment

x u (x , t = 1) U (x , t = 1) width

0.1 1.033680E+0 [ 1.033679103041E+0, 1.033685254214E+0] 6.15E-6
0.2 1.056234E+0 [ 1.056230573203E+0, 1.056242133869E+0] 1.15E-5
0.3 1.057620E+0 [ 1.057615928504E+0, 1.057631686586E+0] 1.57E-5
0.4 1.029874E+0 [ 1.029868569829E+0, 1.029886969356E+0] 1.83E-5
0.5 9.678794E-1 [ 9.678736104334E-1, 9.678929051603E-1] 1.92E-5
0.6 8.698741E-1 [ 8.698685698291E-1, 8.698869693562E-1] 1.83E-5
0.7 7.376207E-1 [ 7.376159285043E-1, 7.376316865860E-1] 1.57E-5
0.8 5.762341E-1 [ 5.762305732034E-1, 5.762421338693E-1] 1.15E-5
0.9 3.936809E-1 [ 3.936791030410E-1, 3.936852542143E-1] 6.15E-6

Table: Values of the exact solution and the interval solution U(x , t = 1) obtained with
the interval backward finite difference method for the heat conduction problem, where
h = 1E-2 and k = 1E-2.
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Conclusions

Conclusions

The main features of the conventional backward finite difference method are given
as follows:

the method is based on some finite difference representation of the derivatives
given in the governing equation and the initial and boundary conditions,

the local truncation error of the method is known for each step of the
method, but it is neglected in the conventional approach,

the finite difference scheme obtained, is of second order with space and first
in time, i.e. O(h2 + k),

since the error term is neglected, the method produces only approximations
of u(xi , tj).
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Conclusions

Conclusions

The main features of the interval backward finite difference method are given as
follows:

the interval method is based on the conventional scheme,

it is developed in terms of interval arithmetic and interval analysis,

the local truncation error of the conventional method is bounded by some
error term intervals, hence we can prove that the exact solution of the
problem belongs to the appropriate interval solutions obtained,

all interval methods have to be implemented in the floating-point interval
arithmetic.
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Conclusions

Thank you very much for
your attention!
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