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Abstract

Many scientific and engineering problems are described in the form of partial differential
equations. If such equations cannot be solved analytically, we use approximate methods to solve
them, usually providing all calculations in floating-point arithmetic. Using approximate methods
we obtain solutions including some errors of methods, and floating-point arithmetic causes
representation errors and rounding errors. Interval arithmetic makes it possible to represent any
input data in the form of machine interval and perform all calculations in floating-point interval
arithmetic which includes rounding errors. If an interval method used to solve a problem includes
also the error of the method, then we can obtain a solution (in the form of interval) which
contains all possible numerical errors.

In our previous papers [2, 3] we have considered an interval difference method for solving
the Poisson equation

In (1) the function f describes the input to the problem on a plane region R whose boundary will
be denoted by '. We assume that this function is continuous together with its partial derivatives
up to the second order.

To obtain a unique solution to (1), we usually apply the Dirichlet boundary conditions

for all (x, y) on '. In general, the plane region R may be arbitrary, but further we will assume that
R is a rectangular:

Thus, the problem is to find u = u(x, y) satisfying the equation

with boundary conditions
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where

Partitioning the interval [0, "] into n equal parts of width h and the interval [0, $] into m equal
parts of width k provides a means of placing a grid on the rectangle R with mesh points (xi, yj)
= (ih, jk), where h = "/n, k = $/m, i = 0, 1, ... , n and j = 0, 1, ... , m. Assuming that the fourth
order partial derivatives of u exist, for each mesh point in the interior of the grid we use the
Taylor series in the variable x about xi and in the variable y about yj. This allows us to express
the Poisson equation at the points (xi, yj) as

where  and the boundary conditions asξ ηi i i j j jx x y y∈ ∈− + − +( , ), ( , ),1 1 1 1

Omitting in (4) the partial derivatives, this results in a method, called the central-difference
method, with local truncation error of order O(h2 + k2).

Let us assume that there exists a constant M such that

and let

Since from the Poisson equation (1) it follows that

then it is obvious that we have
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where Q(X, Y) and S(X, Y) denote interval extensions of  and  res-∂
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pectively. If we recall the Poisson equation at the mesh points (4) and write the partial deri-
vatives at the right-hand side, it is easy now to write and interval equivalent to this equation. We
have

where Fi, j = F(Xi, Yj), and where

(M1(Y), M2(X), M3(Y) and M4(X) denote interval extensions of the functions n1(y), n2(x), n3(y) and
n4(x), respectively.)

The system of linear interval equations (8) – (9) can be solved in conventional (proper)
floating-point interval arithmetic (see e.g. [1]) since all intervals are proper, i.e. for any interval
[a, b] we have a # b.

But we can consider another interval equivalent of (4). Namely, we can write (also using (7))

Using directed interval arithmetic (see e.g. [4] and [5]), we can add at both sides of this equation
the opposites to

(the opposite of an interval, like the inverse of an interval, does not exist in proper interval arith-
metic). We get

The equation (10) differs from the equation (8) only by the last term on the right-hand side
which is an improper interval. But using the directed floating-point interval arithmetic we can
solve the system of equations (10) (together with (9)). If the interval solutions of this system are
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in the form of improper intervals, to get the proper intervals we can use the so-called proper
projection of intervals, i.e. transform each interval [a, b], for which b < a, to the interval [b, a].

We have carried out a number of numerical experiments for various functions f(x, y) occurring
in the Poisson equation (2) and various boundary conditions (3) using both: the method (8) with
the conventional floating-point interval arithmetic and the method (10) with the directed floating-
point interval arithmetic. In all examples considered and in both these methods, the exact
solutions (if they are known) are included in the interval solutions obtained. It is important that
although the calculations by the method (10) in directed floating-point interval arithmetic are
longer in time than by the method (8) in conventional one, the method (10) yields interval
solutions with smaller widths.
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