
THE FIRST APPROACH TO THE INTERVAL
GENERALIZED FINITE DIFFERENCES

Malgorzata A. Jankowska 1, Andrzej Marciniak 2,3

1Institute of Applied Mechanics, Poznan University of Technology, Poland

2Institute of Computing Science, Poznan University of Technology

3Department of Computer Science, State University of Applied Sciences in Kalisz

The 13th International Conference on
Parallel Processing and Applied Mathematics

Bialystok, Poland, September 8-11, 2019

PPAM 2019

Jankowska, Marciniak (PUT, Poznan-Poland) Interval generalized finite differences PPAM 2019 1 / 30



Outline

Outline

Conventional generalized finite differences

Interval generalized finite differences

Numerical examples

Discussion of results and final conclusions

Jankowska, Marciniak (PUT, Poznan-Poland) Interval generalized finite differences PPAM 2019 2 / 30



Outline

Literature overview

Jensen, P.S., Finite difference techniques for variable grids, Computers &
Structures 2 (1-2), 17–29 (1972)

Orkisz, J.: Computer approach to the finite difference method (in Polish).
Computer and Mechanics 2, 7–69 (1979)

Orkisz, J.: Meshless finite difference method I – Basic approach. Meshless finite
difference method II – Adaptative approach. In: Idelsohn, S.R., Oñate, E.N.,
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Conventional generalized finite differences

In the area of conventional finite differences we can indicate two main classes
of methods. They differ, in particular, in the way the points of a grid are located
in the domain:

the classical finite differences (FD)

a regular grid of points is generated (the distances between two neighbouring
points in a given direction are equal); otherwise, we have to apply different
formulas of classical FD for these points;
the formulas are derived on the bases of the Taylor series expansion;
an approximation of one particular derivative at a given point is obtained;

the generalized finite differences (GFD)

an arbitrary (irregular) arrangement of points in the region is allowed,
although the regular distribution can be also applied;
the formulas are derived on the bases of the Taylor series expansion;
an approximation of a complete set of derivatives up to the order n is obtained
at one time.
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Examples of regular and irregular grids
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Conventional generalized finite differences

Consider the derivatives of a function u = u(x , y)

∂u

∂x
(p0) ,

∂u

∂y
(p0) ,

∂2u

∂x2
(p0) ,

∂2u

∂y2
(p0) ,

∂2u

∂x∂y
(p0) . (1)

We assume that the function u has continuous derivatives up to the third order
with respect to x and y in a region Ω ⊂ R2.

The values of these derivatives at some point p0 can be computed with
generalized finite differences as described in detail in [Benito, et al.]1.

1Benito, J.J., Urena, F., Gavete, L.: Solving parabolic and hyperbolic equations by the
generalized finite difference method. Journal of Computational and Applied Mathematics
209 (2), 208–233 (2007)
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Conventional generalized finite differences

We generate a grid (cloud) of points such that the point p0 = (x0, y0) is the
central node and the points pi = (xi , yi ), i = 1, 2, . . . n are the i-th nodes of
the star. We have hi = xi − x0, ki = yi − y0.

We expand the function u in the Taylor series about the point p0 and evaluate it
at the points pi , i = 1, 2, . . . n. For each point pi we have

u (pi ) = u (p0) + hi
∂u

∂x
(p0) + ki

∂u

∂y
(p0)

+
1

2!

(
h2
i

∂2u

∂x2
(p0) + k2

i

∂2u

∂y2
(p0) + 2hiki

∂2u

∂x∂y
(p0)

)
+

1

3!

(
h3
i

∂3u

∂x3
(qi ) + k3

i

∂3u

∂y3
(qi ) + 3h2

i ki
∂3u

∂x2∂y
(qi ) + 3hik

2
i

∂3u

∂x∂y2
(qi )

)
,

(2)

where qi = (ξi , ηi ) is an intermediate point of the remainder term such that
ξi ∈

(
ξmin
i , ξmax

i

)
, ηi ∈

(
ηmin
i , ηmax

i

)
. Furthermore, we have ξmin

i = min {xi , x0} ,
ξmax
i = max {xi , x0} and ηmin

i = min {yi , y0}, ηmax
i = max {yi , y0}.
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Conventional generalized finite differences

If we add the above expressions, we obtain

N∑
i=1

(u (pi )− u (p0)) =
N∑
i=1

hi
∂u

∂x
(p0) +

N∑
i=1

ki
∂u

∂y
(p0)

+
1

2

(
N∑
i=1

h2
i

∂2u

∂x2
(p0) +

N∑
i=1

k2
i

∂2u

∂y2
(p0) + 2

N∑
i=1

hiki
∂2u

∂x∂y
(p0)

)

+
1

6

N∑
i=1

r (qi ) ,

(3)

where

r (qi ) = h3
i

∂3u

∂x3
(qi ) + k3

i

∂3u

∂y3
(qi ) + 3h2

i ki
∂3u

∂x2∂y
(qi ) + 3hik

2
i

∂3u

∂x∂y2
(qi ) . (4)
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Conventional generalized finite differences

We define the function F as follows

F (u) =
N∑
i=1

{[
u (p0)− u (pi ) + hi

∂u

∂x
(p0) + ki

∂u

∂y
(p0) +

1

2
h2
i

∂2u

∂x2
(p0)

+
1

2
k2
i

∂2u

∂y2
(p0) + hiki

∂2u

∂x∂y
(p0) +

1

6
r (qi )

]
w (hi , ki )

}2

,

(5)

where w = w (hi , ki ) are the weight functions simply denoted by wi . We minimize
F with respect to the values of the derivatives at the point p0. We have

∂F (u)

∂A
=
∂F (u)

∂B
=
∂F (u)

∂C
=
∂F (u)

∂D
=
∂F (u)

∂E
= 0, (6)

where

A =
∂u

∂x
(p0) , B =

∂u

∂y
(p0) , C =

∂2u

∂x2
(p0) , D =

∂2u

∂y2
(p0) , E =

∂2u

∂x∂y
(p0) .

(7)
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Conventional generalized finite differences

Finally, we obtain a linear system of equations of the form

ÂD̂ = B̂ + Ê , (8)

where

Â =



N∑
i=1

h2
i w

2
i

N∑
i=1

hikiw
2
i

N∑
i=1

1

2
h3
i w

2
i

N∑
i=1

1

2
hik

2
i w

2
i

N∑
i=1

h2
i kiw

2
i

N∑
i=1

hikiw
2
i

N∑
i=1

k2
i w

2
i

N∑
i=1

1

2
h2
i kiw

2
i

N∑
i=1

1

2
k3
i w

2
i

N∑
i=1

hik
2
i w

2
i

N∑
i=1

1

2
h3
i w

2
i

N∑
i=1

1

2
h2
i kiw

2
i

N∑
i=1

1

4
h4
i w

2
i

N∑
i=1

1

4
h2
i k

2
i w

2
i

N∑
i=1

1

2
h3
i kiw

2
i

N∑
i=1

1

2
hik

2
i w

2
i

N∑
i=1

1

2
k3
i w

2
i

N∑
i=1

1

4
h2
i k

2
i w

2
i

N∑
i=1

1

4
k4
i w

2
i

N∑
i=1

1

2
hik

3
i w

2
i

N∑
i=1

h2
i kiw

2
i

N∑
i=1

hik
2
i w

2
i

N∑
i=1

1

2
h3
i kiw

2
i

N∑
i=1

1

2
hik

3
i w

2
i

N∑
i=1

h2
i k

2
i w

2
i


,

(9)

D̂ =

[
∂u

∂x
(p0) ,

∂u

∂y
(p0) ,

∂2u

∂x2
(p0) ,

∂2u

∂y2
(p0) ,

∂2u

∂x∂y
(p0)

]T

, (10)
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Conventional generalized finite differences

B̂ =



N∑
i=1

(−u (p0) + u (pi )) hiw
2
i

N∑
i=1

(−u (p0) + u (pi )) kiw
2
i

N∑
i=1

(−u (p0) + u (pi ))
1

2
h2
i w

2
i

N∑
i=1

(−u (p0) + u (pi ))
1

2
k2
i w

2
i

N∑
i=1

(−u (p0) + u (pi )) kihiw
2
i


, Ê =



−
N∑
i=1

r (qi ) hiw
2
i

−
N∑
i=1

r (qi ) kiw
2
i

−
N∑
i=1

r (qi )
1

2
h2
i w

2
i

−
N∑
i=1

r (qi )
1

2
k2
i w

2
i

−
N∑
i=1

r (qi ) kihiw
2
i


. (11)

Note that as the weight functions wi we choose as in [Benito, et al.]1

w (hi , ki ) = 1/d3
i , where di = ((x0 − xi )

2 + (y0 − yi )
2)1/2 = (h2

i + k2
i )1/2.

1Benito, J.J., Urena, F., Gavete, L.: Solving parabolic and hyperbolic equations by the
generalized finite difference method. Journal of Computational and Applied Mathematics
209 (2), 208–233 (2007)
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Conventional generalized finite differences

Remark 1.

Let u0, ui , i = 1, 2, . . . n, approximate the exact values u(p0), u(pi ) of the
function u at the central and surrounding nodes. If we also ignore the remaining
terms of the Taylor series expansion given in the components of a vector Ê , we
obtain the linear system of equations whose solution provides approximate
values of a complete set of the first and second order derivatives of u at
the central node p0.

Such an approach utilizes the conventional generalized finite differences.

The matrix Â of the linear system of equations (8) is symmetrical. As proposed
in, e.g., [Benito, et al.]1, this system of equations can be efficiently solved with
the Cholesky method.

1Benito, J.J., Urena, F., Gavete, L.: Solving parabolic and hyperbolic equations by the
generalized finite difference method. Journal of Computational and Applied Mathematics
209 (2), 208–233 (2007)
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Interval generalized finite differences

PRELIMINARY ASSUMPTIONS

Xi , Yi , i = 0, 1, . . . , n, denote the intervals such that xi ∈ Xi , yi ∈ Yi ;

U = U(X ,Y ) denotes the interval extension of u = u(x , y);

Hi = Xi − X0, Ki = Yi − Y0;

W (Hi ,Ki ) = 1/D3
i , where Di = (H2

i + K 2
i )1/2.

ASSUMPTIONS ABOUT VALUES OF THE DERIVATIVES IN THE MIDPOINTS

D(3,1) = D(3,1)(X ,Y ), D(3,2) = D(3,2)(X ,Y ), D(3,3) = D(3,3)(X ,Y ) and
D(3,4) = D(3,4)(X ,Y ) denote the interval extensions of the derivatives of u,
i.e., ∂3u/∂x3 (x , y), ∂3u/∂y3 (x , y), ∂3u/∂x2∂y (x , y) and ∂3u/∂x∂y2 (x , y);

for the midpoints ξi , ηi , we assume that there exist the intervals such that
ξi ∈ Ξi , ηi ∈ Hi , i = 1, 2, . . . , n.
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Interval generalized finite differences

Based on the above assumptions we define the interval extension R = R(X ,Y )
of the error term function r = r(x , y) and compute its value at the point (Ξi ,Hi ).

We have

Ri = H3
i D

(3,1)
i + K 3

i D
(3,2)
i + 3H2

i KiD
(3,3)
i + 3HiK

2
i D

(3,4)
i , (12)

where Ri = R(Ξi ,Hi ), D
(3,j)
i = D(3,j)(Ξi ,Hi ), i = 1, 2, . . . , n, j = 1, 2, 3, 4.

If we replace all real values used in (8)-(11) by the appropriate intervals and all
functions by their interval extensions, then we obtain an interval linear system of
equations of the form

AD = B + E , (13)
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Interval generalized finite differences

where the matrix A is given as

N∑
i=1

H2
i W

2
i

N∑
i=1

HiKiW
2
i

N∑
i=1

1

2
H3

i W
2
i

N∑
i=1

1

2
HiK

2
i W

2
i

N∑
i=1

H2
i KiW

2
i

N∑
i=1

HiKiW
2
i

N∑
i=1

K 2
i W

2
i

N∑
i=1

1

2
H2

i KiW
2
i

N∑
i=1

1

2
K 3
i W

2
i

N∑
i=1

HiK
2
i W

2
i

N∑
i=1

1

2
H3

i W
2
i

N∑
i=1

1

2
H2

i Kiw
2
i

N∑
i=1

1

4
H4

i W
2
i

N∑
i=1

1

4
H2

i K
2
i W

2
i

N∑
i=1

1

2
H3

i KiW
2
i

N∑
i=1

1

2
HiK

2
i W

2
i

N∑
i=1

1

2
K 3
i W

2
i

N∑
i=1

1

4
H2

i K
2
i W

2
i

N∑
i=1

1

4
K 4
i W

2
i

N∑
i=1

1

2
HiK

3
i W

2
i

N∑
i=1

H2
i KiW

2
i

N∑
i=1

HiK
2
i W

2
i

N∑
i=1

1

2
H3

i KiW
2
i

N∑
i=1

1

2
HiK

3
i W

2
i

N∑
i=1

H2
i K

2
i W

2
i


,

(14)

D =
[
D

(X )
0 , D

(Y )
0 , D

(XX )
0 , D

(YY )
0 , D

(XY )
0

]T

, (15)
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Interval generalized finite differences

B =



N∑
i=1

(−U0 + Ui )HiW
2
i

N∑
i=1

(−U0 + Ui )KiW
2
i

N∑
i=1

(−U0 + Ui )
1

2
H2

i W
2
i

N∑
i=1

(−U0 + Ui )
1

2
K 2
i W

2
i

N∑
i=1

(−U0 + Ui )KiHiW
2
i


, E =



−
N∑
i=1

RiHiW
2
i

−
N∑
i=1

RiKiW
2
i

−
N∑
i=1

Ri
1

2
H2

i W
2
i

−
N∑
i=1

Ri
1

2
K 2
i W

2
i

−
N∑
i=1

RiKiHiW
2
i


. (16)
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Interval generalized finite differences

Remark 2.

We can solve the interval linear system of equations (13) with the interval
Cholesky method. Such a choice has an important consequence that can be easily
noticed when we follow the theorem provided by [Moore, et al.]1.

Consider a finite system of linear algebraic equations of the form Ax = b, where A
is an n-by-n matrix, b is an n-dimensional vector and the coefficients of A and b
are real or interval values. The existence of the solution to Ax = b is provided by
the following theorem.

Theorem (Moore, et al.1)

If we can carry out all the steps of a direct method for solving Ax = b in the
interval arithmetic (if no attempted division by an interval containing zero occurs,
nor any overflow or underflow), then the system has a unique solution for every
real matrix in A and every real matrix in b, and the solution is contained in the
resulting interval vector X .

1Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM
Philadelphia (2009)
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Interval generalized finite differences

Remark 3.

In the interval approach proposed, all real value coefficients of the matrix Â and
the vectors B̂, Ê of the linear system of equations (8) are included in the interval
value coefficients of the matrix A and the vectors B, E of the interval linear
system of equations (13).

Hence, based on the Theorem 1 we can conclude as follows.

If we solve the interval linear system of equations (13) with the interval Cholesky
method (i.e., the interval counterpart of the direct Cholesky method), then the
exact values of the derivatives given in D (10) at the node p0 are included in the

interval values of the vector D̂ (15) and we have

∂u

∂x
(p0) ∈ D

(X )
0 ,

∂u

∂y
(p0) ∈ D

(Y )
0 ,

∂2u

∂x2
(p0) ∈ D

(XX )
0 ,

∂2u

∂y2
(p0) ∈ D

(YY )
0 ,

∂2u

∂x∂y
(p0) ∈ D

(XY )
0 .

(17)
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Numericals examples

TEST FUNCTIONS

We consider the following functions

u1(x , y) = exp (xy) , u2(x , y) =
(
x2 + y2 + 0.5

)2
exp (xy) ,

u3(x , y) = cos (x) cos (y) , u4(x , y) = ua(x , y) + ub(x , y),
(18)

where the functions ua, ub are given in the form

ua(x , y) =
3

4
exp

(
− (9x − 2)2

4
− (9y − 2)2

4

)
+

3

4
exp

(
− (9x + 1)2

49
− (9y + 1)2

10

)
,

ub(x , y) =
1

2
exp

(
− (9x − 7)2

4
− (9y − 3)2

4

)
− 1

5
exp

(
− (9x − 4)2 − (9y − 7)2

)
.
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Numericals examples

ASSUMPTIONS & SETTINGS

the regular/irregular grid;

the number of points in the star: 9, 17, 25;

the aim is to compute the derivatives of the functions: u1, u2, u3 and u4;

the distances ρx , ρy that are further used to determine the position of the
points p0, pi , i = 1, 2, . . . , n in the star (used to examine the influence of the
distances between the points in the cloud).

THE AIM OF NUMERICAL EXPERIMENTS

A computation of the interval values of the second order derivatives of the
functions u1, u2, u3 and u4 at the point p0 = (0.5; 0.5).

Example 1. Numerical results in the case of the exact bounds of the error
term coefficient for the functions u1, u3 and u4.

Example 2. Numerical results in the case of both the exact and approximated
bounds of the error term coefficient for the function u2.

Jankowska, Marciniak (PUT, Poznan-Poland) Interval generalized finite differences PPAM 2019 20 / 30
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Examples of regular and irregular grids of n-nodes
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(d) irregular 9-point grid
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Figure
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Example 1. Numerical results for the function u1

1E-6 1E-5 1E-4

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8
 9 points  17 points  25 points (regular)
 9 points  17 points  25 points (irregular)

rx = ry

(a) ∂u1(p0)/∂x
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1E-7
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1E-5

 9 points  17 points  25 points (regular)
 9 points  17 points  25 points (irregular)

rx = ry

(b) ∂2u1(p0)/∂x2

Figure: Widths of interval enclosures of the derivatives ∂u(p0)/∂x and ∂2u(p0)/∂x2 of
the functions u1 for different values of the grid parameter ρx = ρy .
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Example 1. Numerical results for the function u3

1E-6 1E-5 1E-4
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(a) ∂u3(p0)/∂x
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(b) ∂2u3(p0)/∂x2

Figure: Widths of interval enclosures of the derivatives ∂u(p0)/∂x and ∂2u(p0)/∂x2 of
the functions u3 for different values of the grid parameter ρx = ρy .
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Example 1. Numerical results for the function u4
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Figure: Widths of interval enclosures of the derivatives ∂u(p0)/∂x and ∂2u(p0)/∂x2 of
the functions u4 for different values of the grid parameter ρx = ρy .
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Example 2. Approximated bounds of the error term
coefficient

Let us compute the derivatives of u2 at the point p0(0.5, 0.5) using a method of
approximation of the error term intervals.

In the formula

Ri = H3
i D

(3,1)
i + K 3

i D
(3,2)
i + 3H2

i KiD
(3,3)
i + 3HiK

2
i D

(3,4)
i ,

we assume that we know the interval enclosures of the third order derivatives such
that for a given point qi the following relations hold

∂3u

∂x3
(qi ) ∈ D

(3,1)
i =

[
D

(3,1)
i ,D

(3,1)

i

]
,
∂3u

∂y3
(qi ) ∈ D

(3,2)
i =

[
D

(3,2)
i ,D

(3,2)

i

]
,

∂3u

∂x2∂y
(qi ) ∈ D

(3,3)
i =

[
D

(3,3)
i ,D

(3,3)

i

]
,

∂3u

∂x∂y2
(qi ) ∈ D

(3,4)
i =

[
D

(3,4)
i ,D

(3,4)

i

]
.
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Example 2. Approximated bounds of the error term
coefficient

If the analytical formulas of the third order derivatives are not known, we have to
approximate the endpoints of the error term intervals.

One approach assumes that we compute the derivatives up to the third order
using the conventional generalized finite differences of higher order (see, e.g.,
[Urena, et al.]1) and then we use the results obtained to approximate the
endpoints considered. For k = 1, 2, 3, 4, we choose

D
(3,k)
i ≈ min

{
D

(3,k)∗
i ,D

(3,k)∗
0

}
, D

(3,k)
i ≈ max

{
D

(3,k)∗
i ,D

(3,k)∗
0

}
, (19)

where, for s = i and s = 0, we take

D(3,1)∗
s =

∂3u (ps)

∂x3
, D(3,2)∗

s =
∂3u (ps)

∂y3
, D(3,3)∗

s =
∂3u (ps)

∂x2∂y
, D(3,4)∗

s =
∂3u (ps)

∂x∂y2
.

1Urena, F., Salete, E., Benito, J.J., Gavete, L.: Solving third- and fourth-order partial
differential equations using GFDM: application to solve problems of plates. International Journal
of Computer Mathematics 89(3), 366–376 (2012)
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Example 2. Function u2. Numerical results in the case of
the exact bounds of the error term coefficient

Table: Exact values of the derivatives, their interval enclosures obtained with the
analytical formula of u2 and the widths of intervals (the regular 25-point grid with
ρx = ρy = 5E−6)

Deriv. Interval enclosure of the derivative Width

∂u/∂x
[ 3.21006354171905646E+0000, 3.21006354171965611E+0000] 5.9963E−13
exact ≈ 3.21006354171935371E+0000

∂u/∂y
[ 3.21006354171905646E+0000, 3.21006354171965611E+0000] 5.9963E−13
exact ≈ 3.21006354171935371E+0000

∂2u/∂x2 [ 1.05932096408550928E+0001, 1.05932097243747383E+0001] 8.3519E−08
exact ≈ 1.05932096876738672E+0001

∂2u/∂y2 [ 1.05932096408551582E+0001, 1.05932097243747452E+0001] 8.3519E−08
exact ≈ 1.05932096876738672E+0001

∂2u/∂x∂y
[ 6.74113338979118222E+0000, 6.74113346974061664E+0000] 7.9949E−08
exact ≈ 6.74113343761064279E+0000
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Example 2. Function u2. Numerical results in the case of
the approximated bounds of the error term coefficient

Table: Exact values of the derivatives, their interval enclosures obtained with the
approximation of the endpoints of the error term intervals and the widths of intervals
(the regular 25-point grid with ρx = ρy = 5E−6)

Deriv. Interval enclosure of the derivative Width

∂u/∂x
[ 3.21006354171910379E+0000, 3.21006354171960945E+0000] 5.0565E−13
exact ≈ 3.21006354171935371E+0000

∂u/∂y
[ 3.21006354171910369E+0000, 3.21006354171960958E+0000] 5.0587E−13
exact ≈ 3.21006354171935371E+0000

∂2u/∂x2 [ 1.05932096499612316E+0001, 1.05932097153302133E+0001] 6.5368E−08
exact ≈ 1.05932096876738672E+0001

∂2u/∂y2 [ 1.05932096499385176E+0001, 1.05932097153178944E+0001] 6.5379E−08
exact ≈ 1.05932096876738672E+0001

∂2u/∂x∂y
[ 6.74113340305148239E+0000, 6.74113345648631275E+0000] 5.3434E−08
exact ≈ 6.74113343761064279E+0000
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Discussion of results and final conclusions

The results obtained with the IGFDs lead to the following general conclusions.

The interval solution includes the exact value of the derivative in the case of
all functions and each numerical experiment. For each example function u
and each number of grid points 9, 17, 25, we can find the grid parameter
ρx = ρy such that the widths of interval solutions are the smallest. Their
further decrease does not improve the results or even makes them worse.

The smallest widths of interval solutions are usually obtained with the 9-point
grid of points. The larger number of the grid points improves the results
when we take ρx = ρy much smaller than the optimal one.

The widths of interval solutions are smaller in the case of the regular
arrangement of points than the irregular one (in the case of each example
function such a difference is equal to about one order of accuracy).
Nevertheless, the regular distribution is rarely possible near irregular and
complicated boundary. In such a case the interval GFDs are very useful.
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