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Abstract   To study the heat or diffusion equation it is often used
the Crank-Nicolson method which is unconditionally stable and
has order of convergence O(k  + h ), where k and h are mesh con-2 2

stants. Unfortunately, using this method in conventional floating-
point arithmetic we get solutions including not only the method
error, but also representation and rounding error, Therefore, we
propose an interval version of Crank-Nicolson method from
which we would like to obtain solutions including the method
error. Applying such a method in interval floating-point arith-
metic one can get solutions including all possible numerical
errors. A numerical example is presented.
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1  Introduction

In a number of our previous paper we developed interval

methods for solving the initial value problem (see e.g. [1]

– [8]). These methods have been based on conventional

Runge-Kutta and multistep methods. We have summarized

our previous research in [10].

Now, our affords are directed to construct similar me-

thods for solving a variety of problems in partial-diffe-

rential equations. In [9] we have proposed an interval me-

thod for solving the Poisson equation. Here we present a

proposition of interval method based on the Crank-Nicolson

scheme for solving the heat equation.

2 The Heat Equation and Crank-Nicolson

Method

The parabolic partial-differential equation we will consider

is the heat or diffusion equation

subject to the conditions

and

The approach one uses to approximate the solution to this

problem involves finite differences.

First we select two mesh constant h and k, with the sti-

pulation that m  = (b ! a)/h is an integer. The grid points are

i j i j(x , t ), where x  = ih for i = 0, 1, ... , m , and t  = jk for j = 0,

1, 2, ... .

Using the forward-difference method at the jth step in t,

we get

where

and taking the backward-difference method at the (j + 1)st

step in t, we obtain

(1)



where

Averaging the above formulas and omitting the local

truncation errors, we get the following method:

ij i jwhere v  approximates u(x , y ). This method is known as

the Crank-Nicolson method and has local truncation error

of order O(k  + h ), provided that the usual differentiability2 2

conditions are satisfied.

3 An Interval Crank-Nicolson Method

Taking the local truncation errors into consideration, the

equation (2) can be written in the form

where 

Let us assume that

and

where M  = const. From (1) we have

Thus, from (4) it follows that

and it means that

and

Taking into account the above relations, we define an

interval version of the Crank-Nicolson methods as follows:

where 

The system of equations (5)  is linear with a positive de-

finite, symmetric, strictly diagonally dominant and tridia-

gonal matrix. It can be solved by an interval version of

Crout reduction method.

In practice it can be difficult to determine the constant

M  since u(x, t) is unknown. If it is impossible to determine

M  from any physical or other conditions of the problem

considered, we propose to solve the problem by the conven-

tional Crank-Nicolson method (2) and take

4 A Numerical Example

To have a view on interval solutions obtained, let us con-

sider a problem for which the exact solution is known. Let

the method (5) be used to approximate the solution to the

problem consisting of the equation

subject to the conditions

and

The exact solution of the above problem is as follows:

(2)

(3)

(4)

(5)



The graph of this solution for 0 # t # 0.1 is presented in

Figure 1, and some particular values are following:

u(0, 0.05) . 0.88393649689751144,

u(0, 0.1) . 0.78134373054744425.

Figure 1: The graph of the function (6)

Using the method (5) with M  = B /16, m  = 20, i.e.4

h = 0.1, and k = 0.05, and carried out all calculations in

floating-point  interval arithmetic (using the Delhi Pascal

unit IntervalArithmetic described in [10]) we obtain

V(0, 0.05) = [0.88086446763895959,

                       0.88718106618855630].

The width of this interval is approximately equal to 6.3×

×10 . For the same h and k = 0.005 we get!3

V(0, 0.05) = [0.88390572217259396,

                       0.88441266516723841],

V(0, 0.1) = [0.78123648428033894,

                    0.78223847522173376].

The widths of these intervals are approximately equal to

5.1×10  and 6.3×10  respectively. Unfortunately, for!4 !3

larger values of t we observe a sudden increase of the

widths of interval solutions.

Let us note that the exact solution belongs to the inter-

val solutions obtained. Although in many other numerical

experiments carried out we have observed the same, it is

not true in general. We have a number of examples in

ijwhich the exact solution is outside interval solutions V  ob-

tained by the method (5). It follows from the fact that it is

i j ijimpossible to prove that u(x , t ) 0 V .

5 Conclusions and Further Studies

The interval method (5) based on the conventional Crank-

Nicolson scheme is only a proposition for solving parabolic

partial-differential equations such as the heat equation.

Applying this method in floating-point interval arithmetic

we can automatically include into interval solutions the re-

presentation and rounding errors.

Since for the method (5) we are not capable of proving

that the exact solution belongs to the interval solutions ob-

tained, the presented method should be modified to fulfil

this necessary condition. Moreover, the method should be

also modified with respect to the increase of interval widths

for the larger number of steps.
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